
Bridge Pattern

Jim Fawcett

CSE776 – Design Patterns

Fall 2011

Intent

 “Decouple an abstraction from its implementation

so that the two can vary independently.”

 Multiple Dependent Implementations.

 Single Independent Interface.

Motivation

Motivation

 When an abstraction can have several implementations
inheritance is used to accommodate them.

 But inheritance binds an implementation to the abstraction
permanently, hence its difficult to modify, extend and reuse
abstraction and implementations independently.

 It’s inconvenient to extend the abstraction to cover
different kinds of windows or new platforms (window
abstraction example in the text).

 Inheritance without a Bridge makes client code platform
dependent.

Motivation

Motivation

 Bridge Pattern addresses these problems:

 Puts the Window Abstraction and its implementation in separate
class hierarchies.

 One class hierarchy for window interfaces and a separate hierarchy
for platform specific window implementation with WindowImp as its
root.

 All operations on Window subclasses are implemented in terms of
abstract operations from WindowImp interface. Decouples the
window abstraction from the various platform specific
implementations.

 We refer to the relationship between Window and WindowImp as a
bridge.

Forces

 We want to avoid binding clients to an implementation

 Separating abstraction from implementation adds
complexity

 Well suited to cross-platform development

 Easy to provide stubs for early development without
breaking clients when real code is inserted

Applicability

Use the bridge Pattern when:

 You want to avoid a permanent binding between an
abstraction and its implementation. Implementation may be
selected or switched at run time.

 Both the abstraction and their implementation should be
extensible by subclassing.

 Changes in the implementation of an abstraction should
have no impact on the clients (that is their code should not
be recompiled).

Structure

Client

Operation()

Abstraction

imp
OperationImp()

Implementor

RefinedAbstraction

imp->OperationImp()

OperationImp()

ConcreteImplementorA

OperationImp()

ConcreteImplementorB

Participants

 Abstraction (Window)
 defines the abstraction interface

 maintains a reference to an object of type implementor.

 Refined Abstraction (Icon Window)
 Extends the interface defined by Abstraction (optional) .

 Implementor (WindowImp)
 defines the interface for the implementation classes.

 ConcreteImplementor (XWindowImp)
 implements the implementor interface and defines its concrete

implementation.

Collaborators

 “ Abstraction forwards client requests to its Implementor

object.”

 Client interface with the abstraction class.

 Abstraction class uses the implementor class interface to

make use of the specific concrete class interface.

Consequences

 Decoupling interface and implementation.
 An implementation is not bound permanently to the interface. The

implementation of an abstraction can be configured at run time.

 Improved Extensibility
 You can extend the Abstraction and Implementation hierarchies

independently.

 Hiding Implementation details from the client.
 You can shield clients from implementation details like the sharing of

implementor objects.

Implementation

 Only One Implementor (Authors’ advice)

 Start with single abstraction and implementation, but allow for Additional

Implementations.

 Creating the right Implementor object.

 How, when and where to chose which implementor ?

 Can be instantiated by parameter passed to constructor.

 Chose default implementation when constructed and change later,

based on usage.

 Delegate the decision to another object (Abstract factory).

Implementation (continued)

 Sharing Implementors

 How to share implementations among several objects?

 Can use the Handle/Body Idiom. Clients share a reference

counted implementation.

Unique Point-of-View

 Bridge allows you to decouple an implementation so that it is

not bound to an abstraction

 A party guest can wear several masks

 Abstraction is changed at run-time

 Different user interfaces for normal operation and critical operations.

 Abstraction is not bound to a specific implementation

 One mask can be worn by several party guests

 Implementation is changed at run-time

 Fault-tolerant system reconfigures, but preserves the same user

interface, under partial failure

Windows is a Bridge

 The Bridge Pattern allows a designer to provide a simple
interface in the abstraction, while providing a powerful,
but complex interface for the implementation.

 That is essentially what windows does:

 Win32API is the abstraction’s interface

 Kernel language is the implementation’s interface

The .Net Run-time is a Bridge

 C#, Visual Basic, Managed C++ are all abstractions

 MSIL is the implementation

 Mono and dotGnu are other implementations

Known Uses

 “Design Patterns” authors cite the example:

 Windows example (from ET++).

 WindowImp is called WindowPort and has subclasses such as
XWindowPort and SunWindowPort.

 Window Object creates its corresponding Implementor by requesting
it from an abstract factory called Window System.

 Window/WindowPort design extends the Bridge Pattern in that
WindowPort also keeps a reference back to the window.

Related Patterns

 Abstract Factory

 Can create and configure a particular bridge

 Adapter Pattern

 geared towards making unrelated classes work together.

