
 1

Patterns for the eXtensible Access Control Markup
Language

Nelly Delessy and Eduardo B. Fernandez

Dept. of Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431
ndelessy@fau.edu, ed@cse.fau.edu

Abstract

Web services are becoming the way for enterprises to interoperate. Many security
standards for them have been developed; one of these is XACML (eXtensible Access
Control Markup Language). XACML has been defined by OASIS and it includes a
policy, an access decision language, and a specialized web services policy language. We
present here three architectural patterns for XACML. The XACML Authorization pattern
unifies the definition of authorization rules throughout an organization. WSPL is a
specialization of XACML Authorization, intended to describe access control rules for
web services. The XACML Access Control Evaluation pattern defines a
request/response syntax for access control decisions.

1 Introduction

The typical computer system of a large organization is heterogeneous since its
applications include off-the-shelf products from different vendors, as well as user-defined
applications with different origins. At the same time, driven by business imperatives,
these systems are opened to a wide variety of partners, customers or mobile employees,
which introduce a new variety of security threats. These organizations must protect their
information assets from attacks. Their information assets typically include services,
which come in a variety of technologies, components, and data.

To protect these assets, an organization needs to define security policies, which are high
level guidelines that specify in what states the system is considered to be secure [Fer06].
These policies need to be enforced by security mechanisms. In large organizations, the
policies may be issued by different actors making their management difficult. Moreover,
they need to be enforced for a variety of resources.

 2

Furthermore, the ubiquity of the web implies that a subject does not need to be known in
advance by the system to request access to a resource. The use of credentials including
attributes may be sufficient to trust a subject. Policies should be able to capture this
aspect.

XACML (eXtensible Access Control Markup Language) has been defined by OASIS
[OAS] and it includes languages for expressing authorization rules and for access
decision (enforcement of the rules). The XACML profile for web services, also known as
WSPL (Web Services Policy Language), is a language to declare authorization rules for
protecting web services endpoints. We describe here patterns for these three aspects of
XACML.

XACML is an XML-based language and it is rather complex. Here we present its
underlying security model sing UML diagrams. The UML diagrams provide a notation
that can be used to better understand the language and to guide the design of systems
using this standard. These models can also be used to compare more conveniently this
standard with other languages or standards with similar purposes.

The XACML standard proposes an authorization system that consists of five conceptual
units (Figure 1). The Policy Enforcement Point (PEP) performs access control by
requesting an access decision to the Policy Decision Point (PDP). The PDP uses the
policies made available to it by the Policy Administration Point (PAP) and the additional
attributes sent by the Policy Information Point (PIP) to render its decision. The PEP
communicates with the PDP and PIP through a Context Handler (CH) that is an adapter
between the XACML components and the protected application [XAC04].

PEP CH PIP

PAP

PDP

access
requester

1. access request 2. request

3. XACML
request

4. retrieve
policies 5. policies

6. additional
 attributes

 query

8. attributes

9. attributes10. XACML
response

11. response12. access response

7. additional
 attributes

query

Figure 1: Overview of the data flow in the XACML authorization system (from

[XAC04])

 3

2 XACML Authorization

XACML enables an organization to represent authorization rules in a standard manner.

2.1 Example

Consider a financial company that provides financial services to its customers. Their
computer systems can be accessed by customers who send orders to the company for
buying or selling commodities (stocks, bonds, real estate, art, etc.) by email or through
their website. Brokers employed by the company can carry out the orders of the
customers by sending requests to the systems of various financial markets or consult
information from financial news websites. Also, a government auditor visits periodically
to check for application of laws and regulations.

All those activities are regulated by policies with various granularities within the
company. For example, the billing department can have the rule «only registered
customers whose account status is ok may send orders», the technical department can
decide that «emails with attachments bigger than x Mb won’t be delivered», the
company security policy can state that «only employees with “broker” role can access the
financial markets web services» and that «only the broker custodian of a customer can
access its transaction information», whereas the legal department issues the rule «auditors
can access every transaction information», etc.

All these policies are enforced by different components of the computer system of the
company (email server, file system, web service access control component, financial
application). This approach has several problems: The policies are described in possibly
different syntaxes and it is difficult to have a global view of what policies apply to a
specific case. Moreover, two policies can be conflicting and there is no way to combine
them in a clear way. In summary, this approach could be error-prone and complex to
manage.

2.2 Context

A complex environment such as a large enterprise with many partners, contractors and
relations with other enterprises. These various actors are accessing the organization’s
resources, comprising web services, sensitive documents or system components.

2.3 Problem

An organization’s resources are usually from various types (XML documents, web
services, web component, CORBA services…). Accesses to these resources are
controlled by distributed enforcement mechanisms, according to the security policies of
the institution. Since the resources are of different types, the enforcement mechanisms

 4

come in various forms: they can be part of a web server, an application firewall, etc.
Therefore, policies have to be implemented in many locations, using different syntaxes. It
is important to define precisely the policies about accessing these resources.

Moreover, security policies in an organization are typically issued by different actors
from its departments (human resources, legal, marketing departments…), and the policies
they write may concern a wide and overlapping set of resources. Defining these policies
in a way that the right policies can be applied to each access may be complex, and thus
error prone.

How do we unify the definition of access policies throughout the organization, making
the whole system simpler and less error-prone? The solution to this problem is affected
by the following forces:

• The policies are issued by a variety of actors and may be stored in many locations.
This means they may be expressed in different forms.

• The policies are constantly changing and they need to be constantly updated.
• An active entity accessing a resource can be represented in a variety of ways,

including certificates.
• Some policies can require a set of actions (or obligations) to be performed in

conjunction with policy enforcement (auditing, notification…).
• The environment in which the access is requested can also affect an access

decision. For instance, an access may only be permitted at some hours of the day.

2.4 Solution

Write all policies in a common language using a standard format. This format is generic
enough to implement some common high level policies or models (open/closed systems,
extended access matrix, RBAC, multilevel). In addition, define a way to compose
policies so that when several policies apply to one access, it is possible to render one
unique decision: the policies have a combining algorithm.

Structure

Figure 2 describes the structure of this pattern.

A PolicyAdministrationPoint is a rule repository that centralizes the definition of
policies throughout the organization.

The Subject intending the access, the Resource at which the access is targeted, and the
Environment of the access are described through their attributes. The Environment
represents the characteristics of an access that are independent of the Subject or
Resource. It could include the current date, time or other environmental properties.

A Rule is a basic unit of policy and it has the usual meaning. In the access matrix model,
it defines a set of Subjects, Resources (i.e. protection objects), and Actions (i.e. access

 5

types). However, in this pattern, a Rule associates not only one, but a set of Subjects,
with a set of Resources, and a set of Actions. It also includes a set of Environments to
which the rule is intended to apply, a condition and an effect (“Permit” or “Deny”, i.e.
positive and negative rules). The condition refines the rule by imposing constraints on the
subjects, the resources, or the environment. The Target of the rule is made of the sets of
Subjects, Resources, Actions and Environments to which the rule is intended to apply.
A Target is used for identifying the applicable rules in a given context.

+policyCombiningAlgorithm()

PolicySet

+ruleCombiningAlgorithm()

Policy

-effect={Permit,Deny}
-condition

Rule

1

Target

-attributes
Resource

-attributes
Subject

-attributes
Action

-attributes
Environment

*

*

*

*

+addRule()
+deleteRule()
+updateRule()
+createPolicy()
+deletePolicy()
+createPoliySet()
+deletePolicySet()

PolicyAdministrationPoint

1 *

-obligation
PolicyComponent

*

1..*

* *
1

*

Figure 2: Class diagram for the XACML policy language

Policies are composed of Rules. When evaluating a Policy, Rules are combined
according to the Policy’s ruleCombiningAlgorithm (Deny-overrides, Permit-overrides,
First-applicable, Only-one-applicable, or a user-defined algorithm

Policies are structured according to a Composite Pattern [Gam95], where a PolicySet is
the composite element.). Similarly, when evaluating a PolicySet, Policies are combined
according to the PolicySet’s policyCombiningAlgorithm. (We could use here a Strategy
pattern [Gam95] to have more than one algorithm.). This indicates that policies have a
tree structure. Each PolicyComponent may include an obligation that defines an
operation that should be performed after enforcing the access decision. For example, an
obligation could be an audit operation or a notification to an external client.

 6

In addition to its rules’ Targets, each PolicyComponent may be associated with a
Target. A Target at this level is either specified by the Policy writer, or calculated as the
union or the intersection of the Targets of the Rules comprising this Policy.

Dynamics

We describe the dynamic aspects of the XACML policy language using a sequence
diagram for the use case “Create a new policy”.

Create a new policy (Figure 3):

Summary: A Policy writer intends to create a new PolicyComponent.
Actors: Policy writer.
Precondition: The Policy writer must have authorization to create Policies.

createRule1

addRule1

createRule2

addRule2

createPolicy

<<actor>>
:PolicyWriter :PolicyAdministrationPoint

rule1:Rule

rule2:Rule

<<create>>

<<create>>

:Policy<<create>>

addRule1

addRule2

addObligations

addTarget

addRuleCombiningAlgorithm

policyCreated

ruleCreated

ruleCreated

policyCreated

Figure 3: Sequence Diagram for defining a new Policy

Description:

a. The Policy writer creates as many rules as necessary, specifying the target, the
effect and possibly a condition for each rule.

 7

b. The rules are added to the set of existing rules.
c. The Policy writer creates a Policy by specifying the rules and optionally some

obligations and targets, and the ruleCombiningAlgorithm.
d. The PolicyAdministrationPoint acknowledges the creation of the new Policy.

Postcondition: The new Policy is added to the Policy set of the
PolicyAdministrationPoint.

2.5 Implementation

The enterprise must have decided to use XACML to provide security for its documents
and services. This decision is based on the fact that XACML is a standard and several
products support its use. Once this decision is made, we need:

1. Define semantics for the subject, the resource and the environment’s
attributes for each intended authorization. These attributes can be from
existing standards (LDAP attributes, SAML, …), and are extensible.

2. Translate existing rules into the XACML format.
3. Define new rules and implement them as XACML rules and policies.
4. Add/Remove policies when needed.

For example, we can have rules describing authorization for individual users, roles or any
relevant active entity.

2.6 Consequences

The XACML Policy Language pattern presents the following advantages:

• The organization’s policies to control access are easily defined using he
constructs of the language. This makes the whole system less complex, and thus
more secure.

• A variety of policy types can be described, as the policy language includes the
resource, the subject and the environment’ attributes.

• Similarly, a variety of subject types can be described.
• Policies and rules can be easily combined.
• A policy writer can specify complex conditions.
• This pattern enables logging or other actions through the obligation concept.

The pattern also has some (possible) liabilities:

• The structure of a policy is complex. It is verbose for even simple rules and may
require a longer processing time to evaluate a request.

2.7 Known Uses

This pattern is used in several commercial products, such as Xtradyne's WS-DBC (an
XML Firewall) [Xtr05], DataPower's XS40 XML Security Gateway [Dat05]. Parthenon
Computing has produced a suite of Policy products based on XACML (Policy Tester,

 8

Policy Engine, Policy Server) [Par05]. In addition, Sun provides an open source
implementation written in Java [Sun04].

2.8 Example Resolved

The use of XACML authorization rules makes it possible for the company to centralize a
wide range of policies and rules. Those can be easily managed, and the conflicts can be
resolved by using rights combining algorithms when evaluating an access request.

2.9 Related Patterns

The policies are structured according the Composite Pattern [Gam95]. Rules correspond
to a specialization of the Authorization pattern [Fer01].

3 XACML Access Control Evaluation

This pattern decides if a request is authorized to access a resource according to policies
defined by the XACML Authorization pattern.

3.1 Example

We consider the same financial company. Its policies and rules are enforced by different
components of the computer system of the company (some by the email server, file
system, web service access control component, financial application). It requires much
time and money to administer access control on those different systems.

3.2 Context

A complex environment such as a large enterprise with many partners, contractors and
relations with other enterprises. These various actors are accessing the organization’s
resources, comprising web services, sensitive documents or system components. These
accesses are controlled at several enforcement points, according to security policies.

3.3 Problem

An organization’s resources are usually of various types. Accesses to these resources are
controlled by distributed enforcement mechanisms, according to its security policies.
Since the resources are from different types, the enforcement mechanisms come in
various forms: they can be a part of a web server, an application firewall, etc. Therefore,
the organization has to set up and maintain numerous authorization systems for its
networks.

 9

How do we enforce the rules defined in the institution policies? The solution to this
problem is affected by the following forces:

• Enforcement points could be implemented in a variety of systems (part of a Web
Server, in a WAN, …).

• Any type of security policy should be enforced.
• Enforcement may require reading system or environment variables.

3.4 Solution

Protect resources by PolicyEnforcementPoints. All access requests to this
PolicyEnforcementPoint are evaluated by submitting them to a unique
PolicyDecisionPoint in a common format. This PolicyDecisionPoint returns the access
decision, based on the ApplicablePolicy corresponding to the access context. The
PolicyInformationPoint provides attributes from the subject.

Structure

Figure 4 illustrates the XACML access control evaluation pattern. A Subject can access a
Resource in the current Environment only if an XACMLAccessResponse authorizes it
to do so. The Subject, Resource and Environment are described through their attributes.
Its specificity is that an access is realized through three entities, the Subject, the
Resource and the Environment, instead of just the Subject and the Resource. This
enables to fully describe the characteristics of an access to be evaluated.

The PolicyEnforcementPoint requests an access decision to the PolicyDecisionPoint
through a ContextHandler, which is an adapter between any specific enforcement
mechanism and the XACML PolicyDecisionPoint. The PolicyDecisionPoint is
responsible for deciding whether or not an access should be permitted, by locating the
ApplicablePolicySet, that is the set of policies that is applicable to the particular access
attempt applying it to the XACMLAccessRequest, and issuing a corresponding
XACMLAccessResponse.

The ContextHandler can also get additional attributes from a PolicyInformationPoint,
which is responsible for obtaining attributes from the subject.

 10

PolicyAdministrationPoint

+retrieveApplicablePolicy()
+evaluateApplicablePolicy()

-policyCombiningAlgorithm
PolicyDecisionPoint

PolicyEnforcementPoint

evaluates

PolicyComponent

ApplicablePolicySet

ContextHandler

1

*

correspondsTo +getAttributeValue()

PolicyInformationPoint

-attributeValues
Subject

-attributeValues
Resource

1
*

1
1

*

-decision={Permit,Deny,Indeterminate,NotApplicable}
-obligations

XACMLAccessResponse

* *

1

1

correspondsTo

*

*

<<creates>>

requestsAccess

-subjectAttributes
-resourceAttributes
-action
-environmentAttributes

XACMLAccessRequest

* *
isAuthorizedFor

correspondsTo

Figure 4: Class diagram for the XACML access control evaluation

Dynamics

We describe the dynamic aspects of the XACML access control model using a sequence
diagram for the use case “Control an access request to a resource”.

Control an access request for a resource (Figure 5):

Summary: A Subject requests access to a resource. The access request is made
through its PolicyEnforcementPoint, which in turn accesses the PolicyDecisionPoint
through its ContextHanlder, in order to determine whether to accept or deny the
request.
Actors: A Subject
Precondition: An existing PolicyAdministrationPoint must be accessible by the
PolicyDecisionPoint. It contains policies defined by the organization.
Description:

a. A Subject sends a request for access to a Resource to its
PolicyEnforcementPoint.

b. The PolicyEnforcementPoint sends the request to the ContextHandler in its
native format.

 11

c. The ContextHandler sends a corresponding XACML request to the
PolicyDecisionPoint.

d. The PolicyDecisionPoint retrieves the ApplicablePolicy for this
XACMLRequest from the PolicyAdministrationPoint.

e. The PolicyDecisionPoint may request additional attributes from the
ContextHandler.

f. The ContextHandler obtains the attributes from a PolicyInformationPoint and
returns them to the PolicyDecisionPoint.

g. The PolicyDecisionPoint evaluates the ApplicablePolicy corresponding to the
XACMLRequest and returns an XACMLResponse to the ContextHandler or
sends a request to the PolicyInforcementPoint if the attributes are not enough
to.make a decision.

h. The ContextHandler translates the response to the native response format of the
PolicyEnforcementPoint.

i. The PolicyEnforcementPoint fulfills the Obligations contained in the response.
j. If the access is permitted, the PolicyEnforcementPoint allows the requester to

access the resource.
Alternate Flows:
If the XACMLAccessResponse’s decision is ‘Deny’, the PolicyEnforcementPoint
denies access to the resource.
If the XACMLAccessResponse’s decision is ‘Indeterminate’ or ‘NotApplicable’, the
decision has to be made by the PolicyEnforcementPoint.
Postcondition: Access control to a resource has been realized, based on the Subject’s
attributes, the Resource’s attributes, the Environment’s attributes, and an applicable
policy.

The Appendix includes pseudo-code for the functions retrieveApplicablePolicy() and
evaluateApplicablePolicy().

3.5 Implementation

To implement the XACML access control evaluation, the following tasks need to be
performed:

1. Implement a ContextHandler for applications that already have a
PolicyEnforcementPoint that use another access decision language

2. Implement an XACML PolicyEnforcementPoint for those applications that do not
implement access control

3. Add the translated existing authorization rules to the PolicyAdministrationPoint
4. Add the new authorization rules to the PolicyAdministrationPoint

3.6 Consequences

The XACML access control pattern presents the following advantages:

• Since the access decisions are requested in a standard format, an access decision
becomes independent from its enforcement. A broad variety of enforcement

 12

mechanisms could be supported and can evolve separately from the
PolicyDecisionPoint.

• This pattern can support the access matrix, RBAC or multilevel models for access
control.

The pattern also has some (possible) liabilities:

• It is intrusive for existing applications that already have security, since they
require the implementation of a ContextHandler.

• It could affect the performance of the protected system since XML is a verbose
language.

3.7 Known Uses

This pattern is used in the commercial products mentioned in the previous pattern.

3.8 Example Resolved

The use of XACML Access Control allows the company to centralize the decisions of
accesses to resources in the company. Consequently, applications do not need to care
about access control decisions anymore. Every access request or response is in the
XACML format.

3.9 Related Patterns

The Reference Monitor [Fer01] defines the security model for this pattern. It includes the
Metadata-based Access control Model [Pri04]. The Application Firewall pattern [Del04]
could be implemented according to the XACML patterns. This pattern uses the MBAC
model [Pri04] as a component.

13

:P
ol

ic
y

C
om

po
ne

nt
:P

ol
ic

y
C

om
po

ne
nt

<<
ac

to
r>

>
:S

ub
je

ct

:P
ol

ic
y

E
nf

or
ce

m
en

t
P

oi
nt

:C
on

te
xt

H
an

dl
er

:P
ol

ic
y

D
ec

is
io

n
P

oi
nt

:P
ol

ic
y

A
dm

in
is

tra
tio

n
P

oi
nt

:P
ol

ic
y

In
fo

rm
at

io
n

P
oi

nt
:R

es
ou

rc
e

re
qu

es
tA

cc
es

s

re
qu

es
tA

cc
es

s

ge
tR

es
ou

rc
eA

ttr
ib

ut
es

()

ge
tE

nv
iro

nm
en

tA
ttr

ib
ut

es
()

XA
C

M
LA

cc
es

sR
eq

ue
st

re
tri

ev
eA

pp
lic

ab
le

P
ol

ic
y(

)

A
pp

lic
ab

le
P

ol
ic

y

:P
ol

ic
y

C
om

po
ne

nt

ev
al

ua
te

Ta
rg

et
()

ta
rg

et
M

at
ch

es

ad
dT

oA
pp

lic
ab

le
P

ol
ic

y(
)

ev
al

ua
te

A
pp

lic
ab

le
P

ol
ic

y(
)

re
qu

es
tA

dd
iti

on
al

At
tri

bu
te

s(
)

re
qu

es
tA

dd
iti

on
al

At
tri

bu
te

s(
)

ad
di

tio
na

lA
ttr

ib
ut

es

ad
di

tio
na

lA
ttr

ib
ut

es

ev
al

ua
te

A
pp

lic
ab

le
P

ol
ic

y(
)

XA
C

M
LA

cc
es

sR
es

po
ns

e

ac
ce

ss
G

ra
nt

ed

fu
lfi

llO
bl

ig
at

io
ns

()

ac
ce

ss
R

es
ou

rc
e(

ac
tio

n)

re
sp

on
se

Fi
gu

re
 5

:
Se

qu
en

ce
 D

ia
gr

am
 fo

r c
on

tr
ol

lin
g

an
 a

cc
es

s r
eq

ue
st

 fo
r a

 re
so

ur
ce

 15

4 WSPL

WSPL enables an organization to represent access control policies for its web services in
a standard manner. It also enables a web services consumer to express its requirements in
a standard manner.

4.1 Example

Our company has a variety of web services for different purposes. Applications
incorporate them as part of their structure. Application users pay for the use of these web
services. If we want to make any money, we need to control access to them.

4.2 Context

Applications that use web services. Providers have security policies to control access to
their web services, consumers have requirements for a web service invocation.

4.3 Problem

Web services are services that are accessible by means of messages sent using standard
web protocols, notations and naming conventions [W3C]. In addition, they are self-
describing through WSDL and can be discovered (maybe automatically discovered)
using UDDI. Therefore, using different syntaxes for their policy descriptions would
reduce these two properties.

Moreover, security policies are typically issued by different actors in different enterprise
departments and the policies they write may concern a wide and overlapping set of web
services. Applying the right policies to each access to a web service may also be
complex, and thus error prone.

How do we describe policies to control web services invocations? The solution to this
problem is constrained by the following forces:

• The policies are issued by a variety of actors of an organization and may be stored
in many locations

• Web services consumers can also issue policies (requirements). For instance, a
consumer could require a service to have a certificate from a well-known
certification authority.

• Any type of security policy should be enforced.
• The policies are constantly changing and they need to be constantly updated
• We have a variety of subjects, e.g. roles.
• The environment in which the access is requested can also affect an access

decision

 16

• Some policies can require a set of obligations to be performed in conjunction with
policy enforcement (auditing, …)

4.4 Solution

WSPL bind each WSDL web service component to an XACML component. In addition,
define combination rules for such policies.

Structure

Figure 6 describes the structure of this pattern.

Each WSDL’s web service component, Endpoint (port), Message, and Operation,
involves several Aspects, such as reliable messaging, privacy, authorization, trust,
authentication, or cryptographic security. Each of the web service components
respectively corresponds to an EndpointPolicy, MessagePolicy, and OperationPolicy
and are described by XACML PolicySets.

An EndpointPolicy, MessagePolicy, or OperationPolicy consists of Objectives that
govern an aspect of the web service components. All Objectives must be achieved by the
service invocation. An Objective is defined by an XACML Policy.

Each Objective consists of a set of ordered Strategies. At least one Strategy must be
achieved for its Objective to be achieved. This ordering may enable to perform functions
such as policy or trust negotiation. Strategies are represented by XACML Rules.

An XACML Attribute concept is refined as an UnconstrainedAttribute can have its
value assigned by the policy-user, whereas a ConstrainedAttribute cannot. An
AuthorizedAttribute must have its value assigned by an authority.

 17

-parameters
-technicalFeatures

Aspect

WebService

EndPointPolicy

-parameterValues
-technicalFeatures

Strategy

Objective

Endpoint

1

1

*

1

1..*

-target
PolicySet

1 1

defines

1 1

1 1

correspondsTo

1
*

[ordered]

Policy

1..*

1 1

defines

Rule

XACML

WSDL

correspondsTo

1

*
1 1

defines

*

Operation

Message

1

1

OperationPolicy

MessagePolicy

1 1

1 1

correspondsTo

correspondsTo

1

1

1

1

defines

defines

1

1..*

1

1..*

1

*

1

*

1

*

1

*

satisfies
e.g.: reliable messaging,
privacy, authorization,
 trust, authentication,
 cryptographic security...

At least one Strategy
 must be achieved for its
Objective to be achieved.

Figure 6: Class diagram for the WSPL pattern

4.5 Example Resolved

Using WSPL we can define precise rules about who can access which resources and in
what way. We can then provide security to our users and prevent users who do not pay
for using our services.

 18

4.6 Consequences

In addition to the advantages of the XACML pattern, the WSPL pattern presents the
following advantage:

• Consumers and providers ‘s policies can be combined to decide how a service
invocation should occur.

The pattern also has some (possible) liabilities:

• It is intrusive for existing web services that already implement security, since they
require to implement a ContextHandler.

• It could affect the performance of the protected system as XML since a verbose
language.

4.7 Known Uses

OpenWSPL is an open source Java implementation of the Web-Service Policy language
[WSPL].

4.8 Related Patterns

WSPL defines a type of Adaptor [Gam94] between WSDL and XACML.

The architecture defined by the XML Firewall pattern [Del04] could be implemented
using this pattern.

Acknowledgements
This work was supported by a grant from the US Dept. of Defense (DISA), administered
by Pragmatics, Inc. Our shepherd, Munawar Hafiz, provided valuable comments that
helped to improve this paper. The comments of the participants in the PLoP’05 writers’
workshop also were of significant value.

References

[Dat05] DataPower, http:///www.datapower.com

[Del04] N. Delessy-Gassant, E.B.Fernandez, S. Rajput, and M.M.Larrondo-Petrie,

“Patterns for application firewalls”, Procs. of PLoP 2004.

[Fer01a] E. B. Fernandez and R. Pan, “A Pattern Language for security models”,

Proc. of PLoP 2001,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions

 19

[Fer06] E.B.Fernandez, E. Gudes, and M. Olivier, The design of secure systems,
under contract with Addison-Wesley.

[Fer05] E.B.Fernandez, T. Sorgente, M. M. Larrondo-Petrie, and N. Delessy,

“Web services security: Standards, industrial practice, and research
issues”, submitted for publication.

[Gam94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley, Boston, Mass.,
1994.

[OAS] http://www.oasis-open.org/home/index.php

[Par05] http://www.parthcomp.com/

[Pri04] T. Priebe, E. B. Fernandez, J. I. Mehlau, and G. Pernul, "A pattern system

for access control ", in Research Directions in Data and Applications
Security XVIII, C. Farkas and P. Samarati (Eds.), Proc. of the 18th. Annual
IFIP WG 11.3 Working Conference on Data and Applications Security,
Sitges, Spain, July 25-28, 2004.

[Sun04] http://sunxacml.sourceforge.net/

[W3C] http://www.w3.org/2003/glossary/subglossary/xkms2-req

[WSPL] http://sourceforge.net/projects/openwspl/

[XAC04] XACML – http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml

[Xtr05] Xtradyne technologies, http://www.xtradyne.com/

5 Appendix

5.1 Pseudocode for retrieveApplicablePolicy()

retrieveApplicablePolicy(XACMLAccessRequest){

FOR EACH PolicyComponent Є PolicyAdministrationPoint
 evaluateTarget(XACMLAccessRequest, PolicyComponent)
 IF targetMatches
 THEN add PolicyComponent to ApplicablePolicy
}

evaluateTarget(XACMLAccessRequest, PolicyComponent){
 IF SubjectsMatch() AND

 20

 ResourcesMatch() AND
 ActionsMatch() AND
 EnvironmentMatch()
 THEN
 targetMatches
}

SubjectsMatch(XACMLAccessRequest, PolicyComponent){//at least one

 //subject matches
 FOR EACH SubjectDescriptor Є

PolicyComponent.Target.SubjectDescriptors
 IF SubjectMatches() RETURN true
 RETURN false
}

SubjectMatches(XACMLAccessRequest, PolicyComponent){//all qualifiers

 //match
 FOR EACH SubjectAttributeQualifier Є SubjectDescriptor
 IF ! SubjectAttributeQualifier.operator(

SubjectAttributeQualifier .value,
XACMLAccessRequest.SubjectAttributeValue)

 RETURN false
 RETURN true
}

5.2 Pseudocode for evaluateApplicablePolicy:

evaluateApplicablePolicy(ApplicablePolicy, XACMLAccessRequest){
 FOR EACH PolicyComponent p Є ApplicablePolicy
 DepthFirstSearch(p)

RETURN PolicyDecisionPoint.policyCombiningAlgorithm()
}

depthFirstSearch(PolicyComponent p){
 FOR EACH PolicyComponent or Rule x Є p
 IF x is a Rule
 evaluateRule(x)
 ELSE
 depthFirstSearch(x)
 p.result = p.combiningAlgorithm()
}

evaluateRule(Rule x){
 IF evaluate(Rule.condition)
 RETURN x.result = x.effect
 ELSE RETURN x.result = NotDeterminate
}

