
Creating Software Architecture
using Pattern Sequences

James Siddle
www.jamessiddle.net
jim@jamessiddle.net

Note to the workshop: Because this is a long paper, please read the the first 16 pages (up to the end of section 4).
If you have time to read more, it would be useful to read the next 8 or so pages (section 5). Thanks.

1 Introduction
This paper examines the approach of using pattern sequences to create software
architecture. Pattern sequences are introduced as a way of combining patterns to
solve wider design problems than can be solved by individual patterns. A specific
project experience is also described, from which two pattern sequences are drawn. A
concrete, step-by-step example of the pattern sequences, based on the project
experience, is then presented; this serves to motivate a detailed examination of
pattern sequence characteristics which follows. The examination aims to demonstrate
why pattern sequences can be employed to create software architecture effectively.
The pragmatic issue of how pattern sequences can be applied to real software
development finishes off the discussion.

1.1 Intended Audience

The ideal reader of this paper is a software practitioner - whether programmer,
developer, engineer, or architect. They are actively involved in creating software, and
like the idea of using patterns in their work - perhaps they've come across one or two
object oriented design patterns that seem to capture solutions to difficult problems in
a simple and easy to understand way.

They also want to understand how patterns can be combined. After all applying a
pattern in isolation is all well and good, but complex software just isn't that easy -
maybe they've applied design patterns before, only to find their design decisions
don't always agree with everyone else's. Or perhaps the reader is a developer or
architect familiar with the idea of architecture patterns who wants to know how to fit
these things together into an overall architecture.

The reader is also pragmatic. Even if they knew how to go about combining patterns
to solve their wider design problems, they recognise that patterns have to be applied
in a real project context. They also recognise that many organisations these days are
moving towards following an iterative and incremental processes of some kind.

Finally, the reader may be well-informed about patterns and have heard about things
called pattern sequences. In this case the reader might be looking for a concrete
example to help them to understand pattern sequences better.

Page G5-1

1.2 Software Architecture and Pattern Sequences

To frame the following discussion, it's necessary to introduce the concepts of
software architecture and pattern sequences.

There are many definitions of software architecture in software design literature, but
Grady Booch's recent definition is particularly suited to understanding the
application of software patterns and pattern sequences to create architecture:

As a noun, design is the named (although sometimes unnameable) structure or
behavior of a system whose presence resolves or contributes to the resolution of a force
or forces on that system. A design thus represents one point in a potential decision
space. A design may be singular (representing a leaf decision) or it may be collective
(representing a set of other decisions). [...]

All architecture is design but not all design is architecture. Architecture represents the
significant design decisions that shape a system, where significant is measured by cost
of change. [Booch06]

A pattern describes a solution to a problem in particular problem context by
resolving the forces acting in that context; a pattern sequence, which is an ordered
collection of patterns, resolves many forces and thus results in a collection of design
decisions. A sequence of patterns that solve significant design problems therefore,
can be seen as a way of creating an architecture.

It's also important to note that while 'cost of change' can reasonably be stated as the
most significant factor in design decision making, this is not necessarily a widely
held view in software development teams. On the project presented, other more
strategic or tactical concerns such as software reuse or flexibility were generally
understood as the most significant factors.

The concept of pattern sequences is described in [Porter+04] as follows:

A sequence is the ordering of patterns in a given architecture—or perhaps in a family of
architectures—that tells the order in which the patterns should be applied. A sequence
is a sort of architect’s tour of the artifact being built. [...] Good design is about
following established sequences.

By way of example, consider the ENCAPSULATED CONTEXT OBJECT and DECOUPLED
CONTEXT INTERFACE patterns, which are described in [Henney06]. A pattern
sequence combining these patterns is described as follows:

Introduce an ENCAPSULATED CONTEXT OBJECT and define a DECOUPLED CONTEXT
INTERFACE

The above sequence states that shared execution context such as logging or security
services should be encapsulated into a discrete object to enable easy propogation
throughout a software system. It also states that an interface should subsequently be
introduced onto the object. In the resulting architecture, common services and

Page G5-2

execution related information can be provided to disparate parts of the system in a
way that minimizes coupling between context users and context provider,
encouraging maintainability and flexibility in the code.

Another patterns-related concept mentioned below that needs a little introduction is
that of a pattern story. While a pattern sequence describes an ordered collection of
patterns that can be applied to create architecture, a pattern story describes an actual
architecture in terms of the patterns used to create it [Henney06].

2 Project Experience - Origin of Sequences and Example
The pattern sequences and motivating example that are presented in this paper
originated on a project where patterns were applied to create a component
middleware software architecture; this project is introduced below. For reasons of
confidentiality, the following description has been anonymized.

2.1 Project Introduction

The aim of the project in question was to develop the software for an innovative
telephony product. C, C++ and Java programming languages were used for
development, and it was necessary for the software to run on a custom hardware
platform that was being developed at the same time. Scrum [ScBe01] and XP [Beck99]
Agile methodologies were followed on the project.

In addition to functional requirements from the telephony domain, there were also
non-functional or operational requirements on the software. In particular, a custom,
service-oriented, embedded middleware was required in order to support a product
line strategy that was being taken. The key requirements on the middleware were:

Support for reusable, telephony-domain services; dynamic deployment of services;
platform independence; abstraction of service communication; location transparent
service communication; abstracted execution; a common approach to management
and testing of services; and an extensibility mechanism in the communication path
between services.

The middleware was developed by a team of eight people over a period of
approximately six months, as part of a wider effort to elaborate the project's software
architecture. Early project iterations focussed on elaborating the component
middleware, platform, and application-level components. Team members had to
coordinate and agree on architecture decisions such as platform abstractions and
execution model during this time, and the elaboration was driven by combinations of
user-stories and architecture constraints to create a “base-line” software architecture.
The middleware elaboration was also pattern-oriented, meaning that the design and
implementation of the software, along with the development team's understanding,
was based around patterns.

Page G5-3

The middleware was also required to support specific services from the telephony
domain that had been envisaged as part of the product-line strategy. These include
the following, which are reproduced from "Using Patterns to Create a Service-Oriented
Component Middleware" [Siddle06], a pattern story that describes the patterns applied
on the project in detail:

• a service to allow telephone directory lookups both locally within a user's
personal directory, and remotely in enterprise directory applications;

• a service to provide "buddy" presence information to local applications, and to
propagate user presence information to remote enterprise applications;

• a service to record and manage telephony-related user actions and related
events for subsequent user and administrative reference.

The following diagram, also reproduced from the above-mentioned pattern story,
provides an overview of the envisaged middleware architecture:

2.2 Pattern Applications

A broad collection of patterns were applied to create the middleware. These were
drawn from several sources, including LAYERS, COMPONENT CONFIGURATOR and
INTERCEPTOR from the "Pattern Oriented Software Architecture" books [POSA 1-3],
SINGLETON and TEMPLATE METHOD from "Design Patterns" [GoF], and EXECUTOR
[Crahen02] and INVOKER [Voelter+04] that were recommended by a knowledgeable
source rather than being drawn from a particular patterns publication. For a fuller
picture of the patterns that were applied on the project, the reader is referred to the

Page G5-4

Figure i: Envisaged Middleware Architecture

Platform

Services

Application

Service Bus

Svc Container

Service
(Business Logic)

Svc Container

Service
(Business Logic)

Host specific elements
e.g. File system access, device drivers, operating system

 . . .
S ervice

Interface - local

S ervice
Interfaces - remote

S ervice
Interface - remote

previously mentioned pattern story.

The following diagram provides a simple, figurative view of the contribution the
patterns made to the architecture that was originally envisaged. Not all patterns
applied are shown, rather a subset of those applied are included in the diagram by
way of introduction. Note that the diagram shows a number of middleware
components and the most significant roles from the applied patterns that they
embody. In the following diagram, the patterns are italicised:

On reflection, the patterns applications built up the architecture in several discrete,
distinct steps - a sequence was observed. Several of these steps have been labelled in
the diagram above, though not all steps are included in order to make the diagram
easy to understand.

Page G5-5

Figure ii: Figurative representation of pattern contribution (in italics) to architecture vision

La
ye

rs

Platform

Services

(7)

Broker – Service Bus (4)

(5)(5)

Wrapper Façade – OS abstraction (2)

(1)

(3)

Log

Interceptor

Executor Executor

ServiceServiceService

Component
Configurator

Applications

3 Pattern Sequences
The following pattern sequence was derived from pattern applications on the project
described above; it is proposed as a pattern sequence to solve the same overall
problem that was posed to the middleware development team, namely to create a
component middleware fulfilling the specific requirements described. The diagram is
followed by explanatory text, and a description of how the sequence was derived
from the pattern applications that took place:

3.1 Explanation

The diagram shows a sequence of patterns that was observed from creating the
middleware software architecture introduced above. The step labelled "Service
Interfaces" is a sub-sequence of the overall middleware architecture sequence, and is

Page G5-6

Figure iii: Observed pattern sequence

Introduce interception points on communication
path between services

INTERCEPTOR

Service
Interfaces*

EXECUTOR

BROKER
(message passing broker
system variant)

COMPONENT
CONFIGURATOR

WRAPPER FACADE

LAYERS

*Sub-sequence, elaborated in Appendix A

Contribution to ArchitecturePattern

Support service invocation via well-defined
interfaces, and service discovery by interface type

Abstract service execution, support concurrent
service execution

Establish service communication and location
transparency

Provide dynamic service deployment and
lifecycle management

Encapsulate low-level, host-specific functions
and data structures

Introduce Platform, Service, and Application
layers to frame subsequent implementation

derived from a combination of patterns that were applied to introduce support for
explicit interfaces between services. The "Service Interfaces" step can be seen as an
'invocation' of the sub-sequence, which is presented in detail in Appendix A -
"Proposed Sub-Sequence for Service Interfaces".

The patterns shown above were applied individually to solve design problems that
were encountered by the development team in creating the middleware. The patterns
in the sub-sequence however were not; they were applied all at once to introduce
explicit service interfaces, but not in any discernable order.

As such the overall sequence is treated as an observed pattern sequence and is
presented here in the main body of the paper, while the sub-sequence is treated as a
proposed sequence derived from the successful combination of a number of patterns,
and is presented in an appendix. The patterns are presented as two sequences to
allow a deeper exploration of pattern sequence characteristics below.

3.2 Reasons for Observed Sequencing

So why was sequencing was present in the application of patterns that took place on
the project?

Firstly, this is because architectural requirements were captured in a 'road map' that
contained a collection of broadly stated architectural concerns, which was loosely
ordered according to percieved dependencies. Concerns were taken from the road
map and passed to development teams to implement on a per-iteration basis.
Examples of concerns in the architecture road map include those project
requirements described previously.

Secondly, in certain cases the sequencing was caused by design decisions that were
made in relation to the architecture vision. For example "Service" layer elements were
expected to only depend on lower-level "Platform" layer elements or other "Service"
layer elements. This was dictated by the LAYERS in the architecture vision. As a
result, patterns such as WRAPPER FACADE - selected to be applied in the context of
the "Platform" layer - would be implemented before or concurrently with "Service"
layer elements.

The Agile, iterative context, the presence of a guiding architecture vision and road
map, and the use of patterns by the middleware development team ultimately led to
a pattern sequence emerging naturally.

3.3 Deriving the Pattern Sequence from the Project

The patterns included in the sequences were selected because of their contribution to
the architecture that emerged, and because they show the creation of the architecture
from first principles. Patterns were selected for inclusion into the sequences to ensure
the key architectural decisions were captured.

Page G5-7

The sequencing in the middleware architecture sequence above closely matches the
pattern application sequence that occurred during the early stages of creating of the
actual architecture. The ordering of pattern applications on the project was the main
deciding factor in ordering the pattern sequence. There are however some variations
between the sequence presented and the actual implementation sequence that took
place, these are described below:

• Some patterns were recognised in the architecture after implementation took
place. In terms of the patterns presented here, BROKER and LOOKUP (which is
part of the sub-sequence) were identified afterwards.

• COMPONENT CONFIGURATOR and BROKER were actually applied concurrently
and independently, they are presented in sequence here because the extra step
introduced by separating the patterns in the sequence is a logical one;

• The pattern sequences are not exhausive; not all patterns applied on the
project were included;

• As previously mentioned the patterns in the sub-sequence were applied
collectively to solve a particular design problem, but not in a discernable
order.

For a detailed description of how the patterns were combined to provide service-
interfaces on the project, see [Siddle06].

Page G5-8

4 Example Sequence - in Detail
What would an architecture created by applying the pattern sequences introduced
above actually look like? This section of the paper steps through a concrete example
of the pattern sequences in the form of UML class diagrams that closely reflect the
architectural steps that were taken on the originating project. These diagrams show
the core abstractions, roles and responsibilities, and the essential characteristics of
relationships between software elements that are introduced by applying the pattern
sequence.

That said, some 'massaging' has taken place to simplify the presentation, these
simplifications, corrections and caveats are described after the example.

4.1 Step 1 - LAYERS

We start by introducing "Application", "Service", and "Platform" layers. These layers
establish high level groupings for software elements that will be introduced into the
system later, and introduce some basic concepts such as "Service" and "Platform".

Page G5-9

Figure iv: Step 1 - LAYERS

4.2 Step 2 - WRAPPER FACADE

The next step shows the introduction of a collection of WRAPPER FACADE classes into
the architecture's "Platform" layer. These classes provide a set of abstractions which
in conjunction with the strict "Platform" layer provide platform independence - one
of the goals of the pattern sequence.

Page G5-10

Figure v: Step 2 - WRAPPER FACADE

4.3 Step 3 - COMPONENT CONFIGURATOR

We now see the architecture after COMPONENT CONFIGURATOR has been applied.
FileAccess and LibraryLoader are WRAPPER FACADE classes introduced
above; the other classes are introduced by COMPONENT CONFIGURATOR. The
architecture now provides a dynamic mechanism for managing the lifecycle and
deployment of platform independent, reusable Services.

Page G5-11

Figure vi: Step 3 - COMPONENT CONFIGURATOR

4.4 Step 4 - BROKER

Now the BROKER pattern has been introduced: The ComponentConfigurator class
creates and initialises an instance of the BROKER CommunicationChannel class for
each Component, then passes it to the Component so that it can send and receive
messages. The CommunicationChannel is associated with the Component in the
ComponentRepository to ensure that it is cleaned up correctly.
CommunicationChannel instances communicate with each other in a location
transparent way, by sending and receiving all messages via an instance of the
Broker class in a well-known location. The architecture now provides location
transparent communication, in addition to existing capabilities.

Page G5-12

Figure vii: Step 4 - BROKER

4.5 Step 5 - EXECUTOR

Now EXECUTOR has been applied to introduce an Executor class. This class is
responsible for handling service execution, and achieves this by waiting for messages
to arrive over a service's CommunicationChannel object. For each message that
arrives, an appropriate thread of execution for message processing is determined (via
the Thread WRAPPER FACADE); the associated Component is informed of the
message on the resulting thread. The ComponentConfigurator class is again
refined to associate an Executor with each Component, and each service's
Executor is initialised with the CommunicationChannel object associated with
the Component. The architecture now provides abstracted service execution.

Page G5-13

Figure viii: Step 5 - EXECUTOR

4.6 Step 6 - Service Interfaces

As discussed previously, support for service interfaces was introduced into the
architecture by applying several patterns together. A sub-sequence to introduce
service interfaces into the example architecture described so far is proposed in
Appendix A, accompanied with a continuation of the example to complete the
reader's understanding of the emerging architecture.

4.7 Step 7 - INTERCEPTOR

Finally we apply the INTERCEPTOR pattern, which introduces an interception point on
the communication path between services; the following diagram shows an
interception point immediately prior to service execution, when a message is
received.

When an instance of the Executor class receives a message for it's service, it creates
an instance of the ExecutionInterceptionContext class and initialises it with
the received message. The Executor informs an instance of the
ExecutionInterceptionDispatcher class of the event, passing it the
ExecutionInterceptionContext as a parameter. The dispatcher object is
responsible for maintaining a list of interested interceptors, each of which
implements the ExecutionInterceptor interface. The dispatcher informs the
interceptors of the event, passing on the context object it received. The interceptors
can examine the message via the context object. The also have the opportunity to
interact with the context object to perform any interception activities they wish to,
such as redirecting or blocking the message.

The architecture that results from the application of the INTERCEPTOR pattern
supports a flexible and powerful way of interacting with, blocking, or redirecting
messages before they result in service invocation. Such a mechanism can be used for
logging, statistic gathering, or security checks.

Page G5-14

Page G5-15

Figure ix: Step 7 - INTERCEPTOR

4.8 Corrections, Simplifications, and a Caveat

So how does the example above differ from the actual architecture that was created?
There are several differences:

• A number of the WRAPPER FACADE classes introduced at step 2 of the example
actually emerged over the course of the project, often requiring rework to
ensure architecture conformance. Additionally, the actual Thread
implementation was more complex than that shown, and included classes that
were closely coupled with service execution infrastructure rather than being
general purpose WRAPPER FACADEs.

• As mentioned previously, the collaboration between BROKER and COMPONENT
CONFIGURATOR classes at step 4 was not taken explicitly on the project;
services actually created their own channels for communication until
EXECUTOR was applied.

• The INTERCEPTOR shown has been simplified from the actual implementation;
on the originating project, the interception point was actually within the
misplaced threading wrapper mentioned above.

The architecture shown in the example reflects the architecture from the originating
project at a point in time when the project was transitioning from architecture
elaboration to full-scale production. For reasons that won't be elaborated here, the
project team's understanding and conformance to the architecture subsequently
deteriorated significantly.

As such, the example above should be viewed as an example based on a test-bed
architecture, rather than on a full-blown production-proven architecture. The key
difference being that the architecture created was proven according to architecture
acceptance tests such as acceptable levels of message throughput and platform
independence; it was not proven more extensively in the field across many
production deployments.

Page G5-16

5 Pattern Sequence Characteristics
A number of characteristics can be observed in the pattern sequence example above,
including:

That pattern sequences are defined according to pattern dependencies;

the creation and preservation of architecture;

the creation of working software at every step;

combining pattern applications for design purposes;

and pattern sequences as patterns themselves.

The above characteristics are examined over the next few sections; this discussion is
followed by a short examination of how pattern sequences can form the basis of
pattern languages [Alexander+77] [POSA5]. It should be noted that characteristics of
creating and preserving architecture and of creating working architecture at every
step were suggested by the work of Christopher Alexander in [Alexander02]. The
concept of gradually creating a 'good' or 'whole' architecture through a series of
"structure preserving transformations" is explored extensively thoroughout the
referred text.

5.1 Dependencies define the Sequence

A pattern sequence breaks up the overall problem into managable pieces, and solves
each sub-problem in turn according to the dependencies between them. Two types of
dependencies between patterns can be seen in the observed and proposed sequences:
implementation dependencies and conceptual dependencies.

Implementation dependencies are those where one pattern builds on or refines
software elements introduced by another, given the overall problem that is being
solved by the sequence. An example of this can be seen in step 3:

The classes introduced by COMPONENT CONFIGURATOR depend on those introduced by
WRAPPER FACADE. The ComponentConfigurator class requires the FileAccess
class to read configuration files. It also requires the LibraryLoader class in order to
load libraries and resolve code symbols, such as the creator function name, to locations
in memory. The implementation dependency exists in this case because of the platform
independence goal; it would not be appropriate for the ComponentConfigurator
class to access low level operating system functions directly.

Step 4 reveals that implementation dependencies are not the same as code
dependencies, such as in the example above where one class invokes a method on
another class:

We saw above that the ComponentConfigurator class is responsible for managing
Component lifecycle; this responsibility would naturally include the lifecycle of

Page G5-17

associated objects. The CommunicationChannel class, introduced in step 4, provides
support for location transparent communication. So, in order to support location
transparent Components, the ComponentConfigurator was updated to provide a
CommunicationChannel for each Component.

The resulting implementation shows a code dependency from the
ComponentConfigurator class (introduced in step 3) to the
CommunicationChannel class (step 4), but this does not mean there is an
equivalent dependency in the pattern sequence. Such a dependency would mean the
pattern application at step 3 was taking place without certain required software
elements from step 4 being in place.

The dependency is still from step 4 to step 3 because the application of BROKER has
refined the implementation of COMPONENT CONFIGURATOR to support location
transparency. This refinement is another type of an implementation dependency -
according to the overall goals of the sequence, BROKER requires that COMPONENT
CONFIGURATOR has been applied first, in order to refine it.

More implementation dependencies can be observed in steps 5 and 7.

In step 5, EXECUTOR builds on the implementation of BROKER by introducing an
Executor class that reads messages from CommunicationChannels. This step
shows another refinement dependency, where the ComponentConfigurator class
now associates an Executor with each Component. In step 7, INTERCEPTOR refines the
implementation of EXECUTOR, such that the Executor class invokes an instance of the
ExecutionInterceptionDispatcher class to support service invocation
interception.

Conceptual dependencies are those where domain model concepts introduced by
one pattern depend on those introduced by other patterns. The most compelling
example of this is how LAYERS introduces concepts such as "Service" and "Platform"
that give meaning to subsequent patterns in the sequence:

WRAPPER FACADE introduces "Platform" software elements; other patterns introduce
software elements that support the "Services".

COMPONENT CONFIGURATOR, BROKER, and EXECUTOR are all strongly shaped by the
concept of a "Service" in the architecture created by the pattern sequence. COMPONENT
CONFIGURATOR manages service lifecycle; BROKER provides location transparent
communication to services; and EXECUTOR ensures that execution is abstracted from
service business logic.

To put the above patterns before LAYERS would beg the question, "Why am I
applying this pattern?", "What is it that requires location transparent
communication?", "Is it all execution within the system that needs to be abstracted?".

So if the patterns in a sequence are shaped by certain concepts, the patterns that
introduce those concepts should ideally come first.

Page G5-18

Another example can be found in step 7:

A service execution INTERCEPTOR is shaped by the concept of service execution, so
naturally follows from the LAYERS and EXECUTOR patterns.

5.2 Creation and Preservation of Architecture

The aim of applying pattern sequences is to create architecture, so it should be
unsurprising that the sequences show new design problems being tackled and new
software elements being introduced at every step. This characteristic can be seen at
every step in the pattern sequence and motivating example.

Additionally, the application of each pattern in the sequence introduces new
architecture while preserving existing architecture as much as possible. The
preservation of existing architecture can be seen in step 2:

By introducing FileAccess and LibraryLoader WRAPPER FACADEs in the
"Platform" layer, the conceptual dependencies and logical groupings introduced by
LAYERS are supported.

It would have been possible to introduce a dependency going upwards in the layers,
for example LibraryLoader could have invoked a static string manipulation helper
method on ComponentConfigurator. Such an implementation would have
transformed the architecture in a destructive fashion because the previously
introduced layers would have been ignored.

Introducing a WRAPPER FACADE implementation in the correct layer with
dependencies either within the same layer or going down the layers preserves the
architecture.

Similarly in step 4:

The BROKER's CommunicationChannel and Broker classes build on the
InterProcessCommunication WRAPPER FACADE from step 2.

As such the application of BROKER not only introduces location transparent
communication between services but also supports platform independence. If
CommunicationChannel invoked operating system calls directly, the architecture
introduced by LAYERS and WRAPPER FACADE would have been invalidated.

In step 5, the established architecture is preserved in a number of ways. Firstly:

The LAYERS and WRAPPER FACADEs previously introduced are used correctly because
the Executor requests low-level thread related functionality via the Thread WRAPPER
FACADE.

Secondly:

Executor instances are created and managed by the ComponentConfigurator and
are associated with CommunicationChannel and Component instances in the
ComponentRepository.

Page G5-19

This preserves the existing component configuration architecture. Thirdly:

The Executor class reads messages from the CommunicationChannel and dispatches
them to the Component for processing.

Assuming the Executor does not violate location transparency and makes correct
use of the CommunicationChannel, this preserves the architecture introduced by
BROKER.

The characteristic of creating and preserving architecture is thought to be present in
the pattern sequence because of the use of Agile to elaborate the original architecture;
discrete, working deliverables were expected on a regular basis and extensive
architecture rework was not acceptable. As such, each pattern application had to fit
with the existing architecture as much as possible.

There are a number of potential benefits from applying pattern sequences that
exhibit these characteristics.

In an elaboration exercise where an architecture maintains coherence as it emerges, it
may be possible to avoid expensive rework required to ensure architectural
conformance, providing a more efficient development effort. It's also thought that a
more coherent, understandable software system will emerge, encouraging team
understanding and helping to reduce premature software aging.

The coherence is thought to emerge from the sequence because of the ordering of
pattern applications according to dependencies between the patterns. Subsequent
pattern applications will fundamentally be affected by earlier ones, so by getting the
order right, the architecture that emerges should hang together better - roles and
responsibilities of functional units will make sense and will embody design decisions
taken to balance all architectural forces, rather than just dealing with one force.

The overall coherence of the architecture may also be supported when domain model
concepts are introduced in the order of dependencies between them, which can help
to ensure that the design decisions are consistent with the underlying domain model.
An example that points to the potential effect of incorrect conceptual ordering would
be if LAYERS were not initially established, "Service" related design decisions would
run the risk of making invalid assumptions or missing important information.

5.3 Working Software Architecture at Each Step

Another interesting potential characteristic of pattern sequences is that of creating a
workable software architecture at each step.

In the pattern sequence presented in figure iii, each pattern builds upon the previous
patterns to solve a distinct part of the overall problem, and makes no reference to
subsequent patterns. As a result of this, each pattern application results in a workable
architecture. This is a potential characteristic because it can only be seen in the

Page G5-20

middleware architecture pattern sequence, not in the sub-sequence that introduces
service interfaces. This is explored further below.

The examples shown up to this point describe several distinct software architectures:

At step 3, the LAYERS, WRAPPER FACADE, and COMPONENT CONFIGURATOR patterns are
combined to provide a simple architecture supporting platform independent services.

Step 4 refines the architecture by applying BROKER to allow services to communicate in a
location transparent way.

Step 5 refines the architecture further by introducing EXECUTOR to abstract execution
away from services.

Finally step 6 introduces support for cleanly defined interfaces between services, and
step 7 adds a powerful INTERCEPTOR to provide extensibility and control of the
communication path between services.

Each of the architectures described above is useful and coherent in its own right, and
each subsequent pattern application adds to the existing architecture to create a new
architecture.

But what about that sub-sequence? Applying EXPLICIT INTERFACE doesn't result
directly in a new working software architecture, nor does the introduction of a
Proxy class without an equivalent Invoker. This is thought to be because the
majority of the patterns in the sub-sequence were not written with the delivery of
discrete working software deliverables in mind. It's also because the sub-sequence is
speculative - it was derived after the fact from patterns that were applied to solve an
overall problem in the architecture. No single pattern was evident that introduced
service interfaces while also providing a working solution.

So it may be that this desirable characteristic is apparent in the observed sequence
simply by coincidence - that it can be seen in the middleware architecture sequence
because of the Agile context, where a complete working deliverable was required at
the end of each iteration.

That said, it may be possible derive a pattern sequence that does create working
architecture at each step. Where individual patterns don't provide a discrete working
step, compound patterns or pattern sequences may do. Such steps would either be
solving 'functionally complete' problems - where the solution provides a discrete,
useful piece of function to the project stakeholders, or establishing stable but
intermediate pieces of working software as part of a larger effort.

This potential characteristic of pattern sequences is a desirable one. It may contribute
to the creation of a well-formed, coherent architecture, where each step provides a
solid foundation for subsequent steps; it may also help to manage evolving
requirements and changing project needs by supporting changes of direction while
sustaining a coherent architecture. This idea is explored later in the section related to
Agile software development.

Page G5-21

5.4 Combine Multiple Pattern Applications for Design

In step 2 of the example that can be found above, the WRAPPER FACADE pattern
introduced classes that were used by subsequent patterns in the sequence:

FileAccess and LibraryLoader were used by COMPONENT CONFIGURATOR,
InterProcessCommunication was used by BROKER, and Thread was used by
EXECUTOR.

Each of these represent a distinct application of the WRAPPER FACADE pattern.

The above statement highlights an important characteristic of pattern sequences: that
the patterns do not, or should not reference patterns that appear later in the
sequence, but realistically some forward referencing is necessary for implementation
purposes.

What does this mean? The WRAPPER FACADE pattern is generic, does not require
other patterns to have been applied to provide useful functionality, and could be
applied any number of ways to support subsequent development. But, without some
forward thinking, the middleware development team could have spent six months
creating a comprehensive, exhaustively tested, thoroughly reviewed collection of
WRAPPER FACADE classes to support every conceivable future need for platform
abstraction. Obviously this is not conducive to the efficient use of software
development resources or the hoped for success of a project.

So, when applying a pattern from a sequence, some thought should be given to how
the resulting implementation will be used; future patterns in a sequence provide at
least some of this implementation context. In the motivating example described in
this paper, WRAPPER FACADE classes were introduced to support the patterns that
appear later in the sequence.

It is also possible to distribute a single pattern, as it appears in a sequence, as
multiple pattern applications throughout a pattern sequence application. Why, for
example, should the introduction of an InterProcessCommunication WRAPPER
FACADE precede the application of COMPONENT CONFIGURATOR? The latter would
make no use of it, so it might make more sense to distribute the WRAPPER FACADE
applications throughout the sequence, introducing them as and when they are
needed.

So for implementation purposes multiple, similar applications of an individual pattern
that appears in a sequence can be distributed throughout the application of the
sequence. For design purposes, it's reasonable to describe just one pattern instance
and to 'annotate' it with all expected applications.

This difference in the treatment of patterns for design versus implementation can be
seen in the motivating example:

Step 2 shows all instances of WRAPPER FACADE that are required by later patterns, but as

Page G5-22

described previously this does not reflect the actual project experience, where WRAPPER
FACADE classes were introduced as needed.

The key point for design is that domain model concepts, characteristic structure, and
expected software element roles and responsibilities are introduced at the correct
point in the sequence to enable correct reasoning and decision making.

But there is the possibility that a documented pattern sequence will explicitly include
a pattern several times. This is likely to occur where multiple instances of the same
pattern are solving problems in different contexts, so warrant separate inclusion in
the sequence to prompt a separate design activity appropriate to the context. An
example of this is provided by INTERCEPTOR:

Imagine that an interception point is also required in the BROKER pattern's Broker
class. This interceptor must provide access to messages in a similar way to the service
execution interceptor described previously, but only to a limited set of message
properties and content in order to prevent performance problems due to the high
volume of message throughput handled by the Broker class.

In this case, it would be better to include INTERCEPTOR twice in the pattern sequence
documentation, because this would hopefully prompt a separate design discussion in
each case, appropriate to the quite different contexts.

This characteristic of pattern sequences has been commented on before in [Zdun06],
specifically in relation to selecting patterns, where each pattern selection represents
an event in the pattern selection process.

5.5 Pattern Sequences as Patterns

A pattern sequence is a solution to a problem in a particular context; it resolves the
forces expressed in the architecture vision. Therefore, it is reasonable to state that
pattern sequences could themselves be patterns. With some formalisation, the
sequences presented in this paper would be candidate patterns, though without
further examples of them in action it's impossible to known whether they really solve
the problems they claim to.

The emphasis of this paper has been understanding patterns and pattern sequences
by example rather than presenting new patterns, so the observed and proposed
sequences are not presented as candidate patterns here.

The relationship between compound patterns, pattern sequences, and patterns
generally is explored further in [Henney06] and extensively in [POSA5].

5.6 From Pattern Sequence to Pattern Language

The patterns applied to create the software architecture were not drawn from a
particular pattern language - they were selected in a piecemeal way from a variety of
sources to solve each design problem as it arose. The concept of pattern languages

Page G5-23

was not prominent in the project team's collective knowledge at the time; an
alternative approach to pattern application on the project would have been to select a
pattern language publication to guide the application of patterns.

However the patterns applied, and to a fuller extent the patterns that were selected
for the sequence, were collectively applied to create software architecture in a
particular context. As such the proposed sequences can be seen as a reasonable
collection of design steps around which a pattern language could be formed - the
concrete project background gives the sequence a firm basis in reality.

To form a pattern language, it would be necessary to consolidate the patterns
presented to ensure they formed a coherent whole. The sequence as presented
combines patterns from a variety of loosely related sources; as such, it is possible that
an attempt to follow the sequence as presented would run into problems caused by
the inconsistent context of those diverse pattern descriptions. Inconsistency in
pattern descriptions is thought to have derailed a number of pattern application
attempts on the project described previously; in particular it was difficult for some
team members to grasp how the INTERCEPTOR and ASYNCHRONOUS COMPLETION
TOKEN [POSA2] patterns should be applied in the emerging architecture.

Such a consolidation of patterns into a 'proto' language is outside the scope of this
paper, also pattern languages for Enterprise, Internet and Realtime Distributed Object
Middleware [Voelter+04] and Distributed Computing [POSA4] already exist, so such a
process would be an unnecessary duplication of effort.

Page G5-24

6 Applying Pattern Sequences
Having discussed the characteristics of pattern sequences above, the following
sections now examine how can pattern sequences be applied on an actual projects.

6.1 Retelling the Architecture

The pattern sequences presented above were arrived at through a process of
reflection, after the software architecture had been created. It may be possible for a
sequence to play an effective role in communicating both the problem domain and
the architecture that was created, over and above a pattern story describing specific
details of the project. A pattern story captures the specifics of pattern application,
while a sequence derived from a story is abstracted away from less relevant details.

The proposed sequences gradually introduce the important entities and concepts
from the problem domain, and give a grounding in the UBIQUITOUS LANGUAGE
[Evans03] of the project - or at the very least the language understood by the
sequence creator. Project specific details included in a pattern story may hinder as
much as help understanding; understanding an existing architecture via the more
generalised pattern sequence can contribute towards understanding the original aims
of the project and the underlying problem domain.

The sequences also gradually build up a picture of the architecture in the recipient's
mind, in a similar way to the 'tea garden' example in [Alexander02], ensuring that all
of the important architectural decisions are understood both individually and in
relationship to preceding architectural decisions.

Retelling the architecture in this way ensures that team members joining an existing
project are well grounded in the language and domain model of the project, are able
to make design decisions consistent with the existing architecture, and have a deeper
understanding of the project aims and problem domain than just a pattern story
would provide.

6.2 Establishing Initial Architecture Decisions

Pattern sequences can be used to establish initial architecture decisions, prior to code
production commencing. If a suitable pattern language can be found for the problem
domain where up-front design decisions are desired, a previously followed pattern
sequence that is known to create the desired architecture offers a good solution to
making up-front design decisions.

It may also be possible to compose a pattern sequence from several pre-selected sub-
sequences. For example in [Henney06], several possible sequences from a particular
pattern language are described. A project specific pattern sequence could be
composed of sub-sequences taken from different sources.

Page G5-25

If no pattern sequences from the selected language are known, the least attractive
option would be to define a sequence according to the dependencies described in the
pattern language.

The first option described above - following a path that is known to lead to success -
is the most intuitively appealing. That said, success is not ensured by following a
known sequence - after all certain crucial decisions may have been overlooked or
simply forgotten when deriving a sequence from actual pattern applications. But an
associated pattern story, describing an actual project where the sequence was
applied, may offer "backup" to a pattern sequence by providing enough concrete
details so that any shortcomings in the sequence can be corrected. Some important
decisions may even have been made subconsciously, and missed from both the story
and the sequence; the specific context provided by the story may help to identify
such decisions if problems are encountered when applying the sequence.

In whichever way the pattern sequence to create a software architecture is
determined, whether from existing sequences, sub-sequences, or from a pattern
language, the patterns selected should be consistent with one another. One way of
achieving this would be to draw the patterns from a single pattern language. For
example on a distributed enterprise application project creating an internet portal for
a supermarket, it would not make sense to combine patterns or sub-sequences from
distributed computing and telecommunications. A coherent, well formed pattern
language that is known to solve problems in the problem domain of the project is
more likely to help developers to create a coherent, well formed architecture than a
confusing set of ill-matched, inconsistent patterns that solve problems in totally
different domains.

A pattern sequence chosen to capture initial architectural decisions prior to code
production carries with it the first attempt at key design decisions, dependencies and
relationships between proposed software elements, and an initial domain model. The
ordering of such a pattern sequence also indicates an appropriate order that these
aspects of the project can be firmed-up in, to encourage the creation of a well-formed
architecture.

6.3 Pattern Sequences as Implementation Road-maps

On the project where the pattern sequences and motivating example originated,
patterns were selected and implemented one at a time as required by the architecture
road map, vision, and selected user stories, on a per-iteration basis. This was the
selected development process.

However using a pattern sequence as the primary way of guiding software
development is an alternative approach that is worth considering.

The aim of creating software architecture by following a pattern sequence is to create

Page G5-26

coherent, well-formed, and understandable software architecture that is fit for
purpose. When design problems are tackled one at a time, with each problem
solution building upon the solutions to previous problems, it is thought that
architecture coherence will be greater than an ad-hoc approach to solving design
problems. In practical terms, the aim is for each code element to be written according
to the best understanding of the problem domain, keeping every key design decision
made so far in mind.

The most compelling benefit of such an approach is the possibility of combining step-
wise refinement and growth of a software system, while simultaneously making use
of the best known approaches to solving design problems in that system's domain.
The benefits of approaching software development in an iterative fashion are well
understood:

Iterative development prescribes the construction of initially small but ever larger
portions of a software project to help all those involved to uncover important issues
early before problems or faulty assumptions can lead to disaster. Iterative processes are
preferred by commercial developers because it allows a potential of reaching the design
goals of a customer who does not know how to define what they want. - from the
Wikipedia definition of Software development process [Wikipedia]

So, by employing pattern sequences that provide working, functionally complete
increments in an ongoing way, it is thought that that the benefits of both can be
realised. Such an approach can also offer an easy to understand roadmap of
development activities, which though it may ultimately be incorrect, is known to be
approximately correct for the particular pattern language 'family member' that the
sequence represents. Such an approach may help to improve planning and
resourcing aspects of software development.

One of the significant problems with this approach is the availability of known,
trusted pattern languages for software development. Though, as previously
mentioned, such pattern languages are starting to emerge, until sequences from such
languages are employed to implement significant, complex, challenging projects,
they will be an unknown quantity. It is big step to trust all design, implementation,
planning, and resourcing activities to single pattern language.

6.4 Applying Pattern Sequences on Agile Projects

The relationship between pattern sequences and Agile software development is not
simple and is also not the focus of this paper, however the most prominent ways that
pattern sequences interact with Agile processes are briefly explored here.

One of the most interesting interactions between pattern sequences and Agile
methodologies is in relation to incremental design. Pattern sequences propose a road-
map of design decisions that can be followed to create a coherent, complete and well-

Page G5-27

formed architecture. In this sense, a pattern sequence can be seen as a "Big Up-Front
Design", which is generally unacceptable in Agile methodologies. These
methodologies typically evolve software architecture through emerging
requirements, along with customer and technical feedback.

That said, there may be a middle-ground where pattern sequences and Agile
approaches can be applied together effectively. One known issue with incremental
design is that teams must be fully committed to architecture rework as the
architecture evolves, or risk building on prototype or partially complete software. If
not carefully tracked and reworked early enough in development, such prototype
code can become an intrinsic part of the architecture and be very difficult and costly
to rework at a later stage. This did in fact occur with early versions of certain
middleware architecture components on the project described above.

As such, two possible scenarios present themselves where Agile and pattern
sequences can be combined. The first scenario would be when development teams or
organisations are transitioning to Agile and are first learning the strong discipline
required to perform incremental design effectively. In this scenario, a pattern
sequence would limit the set of design decisions that can be made by the team, and
while this does limit the evolutionary aspect of Agile, it could make the all the
difference in delivering software fit for purpose.

The second scenario would be when there is a reasonable degree of certainty that the
pattern sequence will provide a suitable architecture, and the possibility of emerging
requirements is not high enough to risk evolving an architecture. In this scenario, the
ability to deal with all emerging requirements is traded for a reduction in the risks
associated with incremental design.

Note that in both scenarios, the variability provided by the underlying pattern
language would allow for some flexibility because subsequent patterns in the
sequence can be changed or even ignored as the architecture is being developed. So
while applying a pattern sequence on an Agile project will reduce the ability to deal
with emerging requirements, it does not eliminate the ability altogether.

Additionally, pattern sequences can support adaptation because the impact of
changes in project direction can be more easily assessed. If a new requirement
requires changes to previously written software, the sequence can show the other
code elements that will be directly affected by the change. It can also show what the
far-reaching effects are likely to be; removing a pattern implementation that has
influenced subsequent software development may cause inconsistency in the
architecture, the sequence can help to determine if this will happen.

Creating working software over comprehensive documentation is also supported, to
a degree, by pattern sequences. Pattern sequence literature can be treated as design
documentation, thus helping to keep a development project focussed on the creation
of useful software rather than documentation. There is a risk though that

Page G5-28

determining and documenting the 'right' sequence upfront would simply take the
place of extended "analysis and design" phases of more traditional software
development processes and actually work against Agility.

The Agile focus on team communication and collaboration over processes and tools
is also both helped and hindered by pattern sequences; on the one hand a pattern
sequence enshrines the proposed solution to the core problem being solved, and
carries with it the language and concepts of the problem domain. This helps to create
a UBIQUITOUS LANGUAGE which naturally supports agility. However, the adoption
of a pattern sequence could result in restrictive and counter-productive processes
concieved to ensure 'pattern sequence conformance'.

Communication between team members is also supported by the ongoing coherence
of the architecture being developed - individual software elements created during
development will be consistent with other software elements, as a result the software
system as a whole will be easier to understand and discuss.

Page G5-29

7 Summary
This paper demonstrated how pattern sequences can be applied to create software
architecture effectively. A particular project experience where patterns were applied
to create the architecture was described. On reflection, the pattern applications
showed noticable sequencing and contributed in an ongoing way to the incremental
growth of the architecture. The reasons behind this sequencing was explored, then
pattern sequences to reproduce the architecture were presented.

A motiviating example of the sequences, drawn from the project experience, was
then described step-by-step and this served as the basis for a discussion of pattern
sequence characteristics that followed. The discussion examined pattern
dependencies, the creation and preservation of architecture, and the provision of
discrete increments of working software. It was also recognised that similar
applications of a single pattern can be combined into one step of a pattern sequence
for design purposes, but distributed throughout a pattern sequence application for
the purposes of effective implementation; that successful, widely recognised
sequences may themselves be patterns; and that sequences may form the basis of
pattern languages.

Finally the possible ways of applying sequences were examined - ranging from
simply 'retelling' the steps taken to create architecture, through using sequences to
establish up-front design decisions, to full adoption of pattern sequences as a
development processes. This included a brief examination the interaction between
pattern sequences and Agile software development.

Acknowledgements
Thanks to Kevlin Henney for providing the inspiration for writing this paper and for
extensive feedback and support during it's development, to James Coplien for
providing helpful comments and feedback on an early draft of the paper, and to
James Noble for shepherding the paper for EuroPLoP 2007 and offering many
insightful comments.

Page G5-30

8 Appendix A - Proposed Sub-Sequence for Service Interfaces
The following pattern sub-sequence is proposed as a way of introducing support for
location transparent service interfaces into an architecture emerging from the pattern
sequence seen in the main body of this paper. A continuation of the example from
the main body of the paper follows. The example shows four views of the
architecture from the project that the pattern sequence was drawn from, after the
patterns had been applied. Discrete steps are not shown because discrete steps were
not taken on the project: the architecture emerged somewhat more haphazardly.
However these views of the example architecture serve two purposes: they complete
the picture of the architecture from the project, and they give an example of what an
architecture emerging from the proposed sub-sequence would look like.

Note that the sub-sequence ordering was selected according to conceptual
dependencies and according to the creation and preservation of architecture. These
are explored in section 5 of this paper.

Page G5-31

Figure x: Proposed sub-sequence to add support for service interfaces

Contribution to ArchitecturePattern

Provide ability for services to obtain specific proxy
for remote service implementing explicit interface

Add server-side object, receives service invocations
and invokes explicit service interface

Add client-side object implementing explicit
interface, encapsulates remote communication

Decouple services from context implementation
by introducing service discovery interface

Introduce object representing service discovery
context, make available to services

Add explicitly defined service interfaces

LOOKUP

INVOKER

PROXY

DECOUPLED
CTXT INTERFACE

ENCAPSULATED
CONTEXT OBJECT

EXPLICIT
INTERFACE

8.1 Completed sub-sequence architecture view 1: EXPLICIT INTERFACE,
ENCAPSULATED CONTEXT OBJECT, and DECOUPLED CONTEXT INTERFACE

The following diagram shows the software architecture after EXPLICIT INTERFACE,
ENCAPSULATED CONTEXT OBJECT, and DECOUPLED CONTEXT INTERFACE have been
applied. The architecture shown provides services with a way of discovering and
calling service interfaces, while remaining decoupled from the underlying discovery
mechanism.

Page G5-32

Figure xi: Step 6 - EXPLICIT INTERFACE, ENC. CONTEXT OBJECT, DECOUPLED CONTEXT INTERFACE

8.2 Completed sub-sequence architecture view 2: PROXY

The introduction of PROXY allows remote invocation of service interfaces via the
location transparent communication provided by the previously applied BROKER
implementation.

Page G5-33

Figure xii: Step 6 - PROXY

8.3 Completed sub-sequence architecture view 3: INVOKER

We now see how remote Service Invocations from PROXY objects are handled when
they arrive in the locality of the Componentthat provides the remote
implementation. INVOKER implementations, on request from an Executor, decode
request messages and invoke target Components, via desired explicit interfaces. Any
return values are encoded and returned to the Executor.

Page G5-34

Figure xiii: Step 6 - INVOKER

8.4 Completed sub-sequence architecture view 4: LOOKUP

The final view of the completed sub-sequence example shows how service-interface
discovery is provided in the emerging architecture. In our LOOKUP implementation
we introduce a remote Registry which can be consulted to discover the named
CommunicationChannel location of implementations of particular service-
interfaces; the ComponentRepository is also searched in case required services are
provided locally.

Page G5-35

Figure xiv: Step 6 - LOOKUP

9 References
[Alexander+77] C. Alexander, S. Ishikawa, M. Silverstein, et al "A Pattern

Language", Oxford University Press, 1997

[Alexander02] C. Alexander, "The Nature of Order Book 2: The Process of Creating
Life", The Center for Environmental Structure (2002)

[Booch06] G. Booch, "Handbook of Software Architecture - Blog", March 2nd,
2006, "On Design"

http://booch.com/architecture/blog.jsp?archive=2006-03.html

[Buschmann+04] F. Buschmann and K. Henney, “Explicit Interface and Object
Manager”, EuroPLoP 2003 Proceedings, Universitätsverlag
Konstanz Gmbh (2004)

[Beck99] K. Beck, “Extreme Programming Explained: Embrace Change ”,
Addison-Wesley Professional (1999)

[Crahen02] E. Crahen, “Executor. Decoupling tasks from execution”, VikingPLoP
2002

[Evans03] E. Evans, "Domain-Driven Design: Tackling Complexity in the Heart
of Software", Addison-Wesley Professional (2003)

[GoF] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns
- Elements of Reusable Object-Oriented Software”, Addison-Wesley
(1995)

[Henney06] K. Henney, “Context Encapsulation. Three Stories, a Language, and
Some Sequences” (2006),

http://www.two-sdg.demon.co.uk/curbralan/papers.html

[Porter+04] R. Porter, J.O. Coplien, T. Winn, “Sequences as a Basis for Pattern
Language Composition”, Science of Computer Programming,
Elsevier (2004)

[POSA1] F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, “Pattern-Oriented Software Architecture Volume 1 - A System of
Patterns”, John Wiley and Sons (1996)

[POSA2] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, “Pattern-
Oriented Software Architecture Volume 2 - Patterns for Concurrent
and Distributed Objects”, John Wiley and Sons (2000)

[POSA3] M. Kircher and P. Jain, “Pattern-Oriented Software Architecture
Volume 3 - Patterns for Resource Management”, John Wiley and
Sons (2004)

Page G5-36

http://booch.com/architecture/blog.jsp?archive=2006-03.html
http://www.two-sdg.demon.co.uk/curbralan/papers.html

[POSA4] F.Buschmann, K. Henney, D.C. Schmidt, “Pattern-Oriented
Software Architecture Volume 4: A Pattern Language for Distributed
Computing”, John Wiley and Sons (2007)

[POSA5] F.Buschmann, K. Henney, D.C. Schmidt, “Pattern-Oriented
Software Architecture Volume 5: On Patterns and Pattern Languages”,
John Wiley and Sons (2007)

[Riehle97] D. Riehle, "Composite Design Patterns", OOPSLA (1997)
http://www.riehle.org/computer-science/research/1997/oopsla-
1997.html

[ScBe01] Schwaber, Ken and Beedle, Mike, “Agile Software Development
with SCRUM”, Prentice Hall, Upper Saddle River, NJ (2001)

[Siddle06] J. Siddle, "Using Patterns to Create a Service-Oriented Component
Middleware", VikingPLoP (2006),

http://jms-home.mysite.orange.co.uk/docs/patternspaper.pdf

[Vlissides98] J. Vlissides, "Pluggable Factory, Part I", C++ Report (1998)
http://www.research.ibm.com/designpatterns/pubs/ph-nov-
dec98.pdf .

[Voelter+04] M. Voelter, M. Kircher, U. Zdun , “Remoting Patterns : Foundations
of Enterprise, Internet and Realtime Distributed Object Middleware”,
Wiley Software Patterns Series

[Wikipedia] https://www.wikipedia.org

[Zdun06] U. Zdun, "Systematic pattern selection using pattern language
grammars and design space analysis", Software - Practice and
Experience, John Wiley & Sons (2006)

Page G5-37

https://www.wikipedia.org/
http://www.research.ibm.com/designpatterns/pubs/ph-nov-dec98.pdf.
http://www.research.ibm.com/designpatterns/pubs/ph-nov-dec98.pdf.
http://jms-home.mysite.orange.co.uk/docs/patternspaper.pdf
http://www.riehle.org/computer-science/research/1997/oopsla-1997.html
http://www.riehle.org/computer-science/research/1997/oopsla-1997.html

	1Introduction
	1.1Intended Audience
	1.2Software Architecture and Pattern Sequences

	2Project Experience - Origin of Sequences and Example
	2.1Project Introduction
	2.2Pattern Applications

	3Pattern Sequences
	3.1Explanation
	3.2Reasons for Observed Sequencing
	3.3Deriving the Pattern Sequence from the Project

	4Example Sequence - in Detail
	4.1Step 1 - LAYERS
	4.2Step 2 - WRAPPER FACADE
	4.3Step 3 - COMPONENT CONFIGURATOR
	4.4Step 4 - BROKER
	4.5Step 5 - EXECUTOR
	4.6Step 6 - Service Interfaces
	4.7Step 7 - INTERCEPTOR
	4.8Corrections, Simplifications, and a Caveat

	5Pattern Sequence Characteristics
	5.1Dependencies define the Sequence
	5.2Creation and Preservation of Architecture
	5.3Working Software Architecture at Each Step
	5.4Combine Multiple Pattern Applications for Design
	5.5Pattern Sequences as Patterns
	5.6From Pattern Sequence to Pattern Language

	6Applying Pattern Sequences
	6.1Retelling the Architecture
	6.2Establishing Initial Architecture Decisions
	6.3Pattern Sequences as Implementation Road-maps
	6.4Applying Pattern Sequences on Agile Projects

	7Summary
	8Appendix A - Proposed Sub-Sequence for Service Interfaces
	8.1Completed sub-sequence architecture view 1: EXPLICIT INTERFACE, ENCAPSULATED CONTEXT OBJECT, and DECOUPLED CONTEXT INTERFACE
	8.2Completed sub-sequence architecture view 2: PROXY
	8.3Completed sub-sequence architecture view 3: INVOKER
	8.4Completed sub-sequence architecture view 4: LOOKUP

	9References

