
Introduction

O N E

So you want to become a software architect? Or perhaps you are already a
software architect, and you want to expand your knowledge of the disci-
pline? This is a book about achieving and maintaining success in your

software career. It is also about an important new software discipline and tech-
nology, software architecture. It is not a book about getting rich in the software
business; our advice helps you to achieve professional fulfillment. Although
the monetary rewards are substantial, often what motivates many people in
software architecture is being a continuous technical contributor throughout
their career. In other words, most software architects want to do technically in-
teresting work, no matter how successful and experienced they become. So the
goal of this book is to help you achieve career success as a software architect
and then maintain your success.

In this book we cover both heavyweight and lightweight approaches to
software architecture. The role of software architect has many aspects: part
politician, part technologist, part author, part evangelist, part mentor, part psy-
chologist, and more. At the apex of the software profession, the software archi-
tect must understand the viewpoints and techniques of many players in the IT
business. We describe the discipline and process of writing specifications, what
most people would consider the bulk of software architecture, but we also
cover those human aspects of the practice which are most challenging to archi-
tects, both new and experienced.

1

ch01.qxd 9/20/00 12:45 PM Page 1

So what does a software architect do? A software architect both designs
software and guides others in the creation of software. The architect serves
both as a mentor and as the person who documents and codifies how tradeoffs
are to be made by other software designers and developers. It is common to see
the architect serve as a trainer, disciplinarian, and even counselor to other
members of the development team. Of course, leadership by example will al-
ways remain the most effective technique in getting software designers and de-
velopers on the same page.

1.1 Advice for Software Architects

“Success is easy; maintaining success is difficult.”—J.B.

If you have a focus for your career, gaining the knowledge you need in order to
advance can be relatively easy. For software professionals, simply building
your expertise is all that is needed in most corporate environments. For exam-
ple, we often ask software people what books they have read. In the West, most
professionals are familiar with design patterns (see Section 1.3). And many
have purchased the book by Erich Gamma and co-authors that established the
field of design patterns [Gamma 95]. Some have even read it. However, it al-
ways surprises us how few people have read anything further on this important
topic.

For software architect books, the situation is even worse. Possibly the
reason is that there are fewer popular books, but more likely it is that people
are not really focused on software architecture as a career goal. In this book se-
ries, by publishing a common body of knowledge about software architecture
theory and practice, we are eliminating the first obstacle to establishing a soft-
ware architecture profession. However, making this information available does
not automatically change people’s reading habits.

So, if the average software professional only reads about one book per year,
just think what you could do in comparison. If you were to read three books on
design patterns, you would have access to more knowledge than the vast major-
ity of developers on that important topic. In our own professional development,
we try even harder—at least a book each month, and if possible, a book every
week. Some books take longer than a week—for example, the 1000-page book
on the Catalysis Method [D’Souza 98]. In our opinion, it contains breakthroughs
on component-oriented thinking, but so few people are likely to read it thor-
oughly (except software architects), that it becomes a valuable intellectual tool

2 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 2

for making you (the reader) a thought leader, as the entire industry moves through
the difficult transition to component-based development.

“Particularly for social systems, it’s the perceptions, not the facts,
that count” [Rechtin 97].

Getting ahead on book reading is a clearcut way to differentiate yourself from the
software masses. Converting your book learning to real-world success is also
straightforward. You can apply your knowledge on your current projects. You
can convert your knowledge into briefings and tutorials that put you in visible
leadership and teaching roles. You can share you knowledge at conferences and
professional groups. And you can write. The key transition that leads to success
starts with sharing your knowledge one-to-one (i.e., inefficiently) and proceed-
ing to share with many at a time. In our own careers, when we began to share
knowledge in one-to-many situations, the appearance of success came with it.
Since, for most people, appearance is reality, success is easy to attain. The much
more difficult challenge is maintaining success, once you’ve achieved it.

Word of Caution

The software architecture career path is a difficult one for many reasons. While
becoming a competent software architect can be difficult, maintaining your
skills is usually even harder. Here are some key reasons why the architecture
career is difficult:

† Nascent Body of Knowledge
† Confusion and Gurus
† Professional Jealousy
† The Management Trap
† The Software Crisis

We discuss each of these in the subsections that follow.

Nascent Body of Knowledge

First of all, the body of software architecture knowledge is not well established.
Software architecture is a relatively new field of computer science. Not much
software architecture is taught in schools. Academics have not yet sorted out the
fundamentals; there is still much discussion and disagreement on the basics.

However, many practicing software architects believe that sufficient
knowledge does exist. The practice of software architecture is much more ma-
ture than many will admit. Hopefully, you will gain this understanding, too,
after reading further.

Advice for Software Architects 3

ch01.qxd 9/20/00 12:45 PM Page 3

In the absence of widespread agreement about software architecture the-
ory, you have to be your own expert. You have to acquire your own set of
knowledge and a strong set of beliefs about how to do software right. No one
book or software method will give you everything that you need to be an effec-
tive software architect.

“Technical problems become political problems” [Rechtin 97].

Confusion and Gurus

Many published software approaches claim to provide the benefits of software
architecture, but most of them can’t deliver on their promises. In fact, the soft-
ware industry has created many technology fads and trends, on the basis of in-
complete principles. When these approaches are applied in practice, software
projects fail. And guess what? The overwhelming majority of corporate devel-
opment projects do fail—by being cancelled, from overspending, or for under-
delivery.

These failures are characteristic of a vast corporate software market, pop-
ulated with companies that are struggling to deliver their internal software.
New products and software development ideas are constantly being produced,
in a never-ending attempt to meet the needs of the struggling software masses.
Consequently, despite all the failures, the software products industry has
thrived.

As a software architect, you have to be an evangelist and leader for your
software team. From the myriad of conflicting software approaches and prod-
ucts you need to sort out what works and what does not. This is not easy, be-
cause a tremendous onslaught of marketing information generated by vendors
and industry experts tends to contradict your architectural messages. It is your
fate to have your architectural decisions frequently contradicted and obso-
lesced by the commercial software industry. One of your key skills as an archi-
tect is to make sound decisions that can survive the ravages of time and
commercial innovation.

Professional Jealousy

The more successful you become, the more some people will resent your suc-
cess. Many software professionals are genuinely nice people. But many people
in our profession have large egos. We all have egos that can be abrasive, but
whether you intend to compete on the basis of ego or not, professional compe-
tition can create serious problems in software organizations and in your career,
unless you are careful.

4 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 4

“Challenge the process and solution, for surely someone else will”
[Rechtin 97].

Professional jealousy is a factor that you will have to watch for vigilantly. You
must learn to conduct yourself with a certain degree of humility and be pre-
pared to defend yourself when necessary. Never take any comment personally;
it’s always a mistake. Consider a situation where you are meeting someone for
the first time and they appear to be acting quite rudely. In the eyes of people
who are have known them for an extended period of time, they may very well
be acting in their usual manner.

The Management Trap

As you become more successful in your software career, you may be joining
the ranks of management, since most companies organize around a single man-
agement ladder. If you are good at what you do, it is natural for management to
want you to mentor and supervise other people doing it, too. The company can
try to get the productivity of several good performers based upon your
experience.

As your administrative responsibilities increase, your time to perform tech-
nical work can decrease dramatically. Because you spend less time on technical
tasks and on maintaining your technical skills, you can lose your technical edge.
If you chose a software career because you enjoyed technical work, you can lose
one of your most important motivations for your work.

Being a software architect is quite different from being a manager. A
software architect is a direct technical contributor, whereas a manager con-
tributes indirectly by coordinating the actions of other people. Together, man-
agers and architects make highly effective leadership teams. In our experience,
combining the two roles can work only temporarily.

As you advance as a manager, eventually a superior will tell you to
stop touching the keyboard (i.e., programming).

You as a software architect can avoid becoming a manager if you establish a
personal professional policy. If you don’t want management duties, you must
learn how to say so. For many of us, one of the most difficult transitions is
learning how to say “No.” For example, you have to avoid lateral promotions
that lead to management and administrative roles.

In some organizations you will become trapped in a management role,
because the company does not have a technical ladder. At a certain level of

Advice for Software Architects 5

ch01.qxd 9/20/00 12:45 PM Page 5

seniority (typical of software architects), you may be surprised, one day, to find
yourself assigned responsibilities on the management organization chart. Once
this is decided, it is very hard to reverse. The best approach is to declare your
expectations (e.g., for technical assignments) when you first take the job. And
repeat your policy often.

Defining Software Architecture

An increasing number of software professionals are claiming the title: software
architect. In our opinion, very few of these people understand what software
architecture is.

Have you ever been involved in a discussion of the question: “What is ar-
chitecture?” The term “architecture” is one of those most often misused. Below
we describe one of the common misuses; then we answer the question “What is
architecture?” with a conceptual standard that is in widespread use today (see
Section 1.2).

Misuse of the Term “Architecture”

Too often, architectures are used as sales tools rather than technical blueprints.
In a typical scenario, a fast-talking technical manager (the “architect”) presents
a few high-level viewgraphs to convince you of the greatness of his product or
system. This is a presentation of a marketing architecture. Most marketing ar-
chitectures are directed externally at customers and not at software developers.
Marketing architectures are fine for advertising the features of commercial
products, but they provide only limited technical information for developers.

The problem with marketing architectures is that they are decoupled from
the development process. The so-called architect is a manager who delegates
most technical details to individual developers. Unless the architect manages
the computational model (including subsystem interfaces), the architecture is
unlikely to deliver any real technical benefits. Architectural benefits that are
easily compromised include system adaptability (for new business needs) and
system extensibility (for exploitation of new technologies).

Despite the many competing definitions, experts emphasize the impor-
tance of architecture, especially for component-based applications. As compo-
nent reuse and software complexity increase, architecture is growing
dramatically in importance. In subsequent sections we discuss several
architecture-centered approaches, which support business change, technology
innovation, and design reuse. Reuse of architectural designs benefits compo-
nent reuse, because design reuse is often much more effective than software
reuse alone.

6 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 6

Before Architecture

High-quality, flexible software is one goal of architecture-centered develop-
ment. In recent years, popular development approaches assumed that bad soft-
ware is better. In other words, getting software delivered quickly is better than
delivering quality software which supports change and reuse. Well-known
process models and vendor regimes are founded on the bad-is-better principle.

Architecture-centered approaches accommodate reuse and change more
effectively, because there is a planned system organization, specifically de-
signed for these purposes, i.e., the system architecture. In our opinion, the prac-
tice of software architecture is essential for component-based development.
Bad is better was the thesis; software architecture is the antithesis.

Of course, we do not want to lose the inherent benefit of bad is better,
i.e., rapid delivery. Architecture-centered approaches utilize several tech-
niques, including pragmatism, architecture planning, and architecture reuse,
which jointly support increased productivity, reduced risk, and minimum time-
to-market.

The Software Crisis

Many of us have serious misconceptions about the capabilities of current soft-
ware approaches. Based upon surveys of corporate software projects in the
United States, the realities of software development are as follows [Brown 98].
About one-third of all software projects are cancelled. Average projects expend
twice as much budget and schedule as initially planned. After delivery, the ma-
jority of systems are considered unsuccessful because they have far fewer ca-
pabilities than expected. Modification and extension of systems are the most
expensive cost drivers and very likely to create new defects. Overall, virtually
all application software projects produce stovepipe systems, brittle software ar-
chitectures that underperform on requirements.

The software crisis in corporate development became apparent decades
ago, when procedural software technologies were popular. Subsequent, object-
oriented approaches (such as the Object Modeling Technique) have been
equally unsuccessful for corporate developers. These outcomes have been re-
peatedly confirmed by research [Brown 98].

Three key factors are exacerbating the software crisis:

† requirements change
† commercial innovation
† distributed computing

Advice for Software Architects 7

ch01.qxd 9/20/00 12:45 PM Page 7

A significant part of the problem is rising user expectations. User requirements
for systems have increased much faster than corporate developers’ capability to
deliver. Requirements changes are more frequent, as businesses maneuver for
competitive advantage with strategic corporate software.

Another confounding factor is the destabilizing force of accelerating
technology innovation, in both commercial software and hardware platforms.
Corporate developers have difficulty finding compatible configurations of soft-
ware products and are forced to upgrade configurations frequently as new
products are released. Software maintenance due to technology upgrades is a
significant corporate cost driver.

Owing to predominance of the Internet and geographically diverse enter-
prises, distributed computing is an essential feature of many new applications.
Traditionally, software designers assumed homogeneous configurations, cen-
tralized systems, local communications, and infrequent failures. Today’s
highly distributed enterprises require heterogeneous hardware/software, decen-
tralized legacy configurations, and complex communications infrastructure.
The resulting computing environments have frequent partial system failures.
Distributed computing reverses many key assumptions that are the basis for
procedural and object-oriented software development.

The software industry has established object orientation (OO) as the
mainstream technology. OO is the technology adopted by new corporate devel-
opment projects because it is universally supported by software tool vendors.
Masses of legacy programmers are training for object-oriented development
(e.g., C++ and the Java programming language) as corporations create new
strategic systems. Unfortunately, these developers and corporations are likely
to become the next generation of disillusioned participants in the software cri-
sis. However, the organizations that survive and thrive with this technology,
must use it in sophisticated new ways, represented by componentware.

1.2 Software Architecture
as a Discipline

As a professional discipline, software architecture has at least a dozen schools
of thought. Some of the major schools of thought include:

† Zachman Framework [Zachman 97]
† Open Distributed Processing (ODP) [ISO 96]

8 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 8

† Domain Analysis [Rogers 97]
† Rational’s 4+1 View Model [Booch 98]
† Academic Software Architecture [Bass 98]

Alternative architecture approaches share concepts and principles, but their ter-
minologies differ greatly. Each architecture school is relatively isolated from
the others. In the literature of any given school, perhaps one or two other
schools are acknowledged, however briefly. None of the schools appear to
make any significant use of the results of the others. Since the terminology be-
tween these groups varies significantly, communication is difficult, especially
between practitioners using different architecture approaches. Upon further
study, we find that the goals of each school are quite similar, and each school
has some unique value to offer.

In addition to these schools, there are many vendor-driven approaches
that are tied to specific product lines, such as Netscape ONE, Sun Enterprise
JavaBeans, and Microsoft BackOffice. In fact, every vendor appears to have a
unique architectural vision for the future founded upon its own product lines.

Many vendors actually have minimal understanding of application archi-
tecture. Thus, I focus here on those approaches which consider key application
drivers with appropriate product support for underlying capabilities.

Architecture Approaches

Here is a brief tour of the major schools of software architecture thought.

Zachman Framework

Derived from IBM research and practice, the Zachman Framework is a
traditional architecture approach; i.e., it is decidedly non-OO. The Zachman
Framework is a reference model comprising 30 architecture viewpoints. The
refer- ence model is a matrix, which intersects two paradigms: journalism
(who, what, when, why, where, and how) and construction (planner, owner,
builder, designer, subcontractor). Architects choose from among these view-
points to specify a system architecture.

Open Distributed Processing

A formal standard from ISO and ITU (telecommunications), Open Distributed
Processing (ODP) defines a five-viewpoint reference model (enterprise,
information, computational, engineering, and technology). ODP defines a com-
prehensive set of terminology, a conformance approach, and viewpoint
correspondence rules for traceability. The product of seven years of standards

Software Architecture as a Discipline 9

ch01.qxd 9/20/00 12:45 PM Page 9

work, ODP is a recent adoption that fully supports OO and component-based
architecture. In fairness, I should note that ODP is my primary approach to
software architecture.

Domain Analysis

A process for the systematic management of software reuse, domain analysis
transforms project-specific requirements into more general domain require-
ments for families of systems. The requirements then enable the identification
of common capabilities, which are used as the basis for horizontal frameworks
and reusable software architectures. An important capability of this approach is
the definition of robust software designs, which are relatively resistant to re-
quirements and context changes.

4+1 View Model

A four-viewpoint approach is under development by Rational Software. The
viewpoints include: logical, implementation (formerly “component”), process
(i.e., runtime), and deployment. The “+1” denotes use case specifications sup-
porting requirements capture. This approach is closely aligned with the Unified
Modeling Language and the Unified Process.

Academic Software Architecture

Academic software architecture comprises a community of computer science
researchers and educators constituting an academic field. Their educational ef-
forts are focused on basics and fundamentals. In their research contributions,
this community avoids proven architectural standards and practices in order to
achieve originality, theoretical formality, and other academic goals.

Common Principles

It is often said that the principles of software are simple. For example, let’s
consider (1) simplicity and (2) consistency. Architects agree that managing
complexity (i.e., achieving simplicity) is a key goal, because it leads to many
architectural benefits, such as system adaptability and reduced system cost. For
example, a simpler system is easier to test, document, integrate, extend, and so
forth.

“Explore the situation from more than one point of view. A seem-
ingly impossible situation might become transparently simple”
[Rechtin 97].

10 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 10

Simplicity is most necessary in the specification of the architecture itself. Most
architectural approaches utilize multiple viewpoints to specify architecture.
Viewpoints separate concerns into a limited set of design forces, which can be
resolved in a straightforward and locally optimal manner.

Consistency enhances system understanding and transfer of design
knowledge between parts of the system and between developers. An emphasis
on consistency contributes to the discovery of commonality and opportunities
for reuse. Architects agree that unnecessary diversity in design and implemen-
tation leads to decidedly negative consequences, such as brittle system
structure.

Architecture Controversies

The principal disagreements among architecture schools include: (1) terminol-
ogy, (2) completeness, and (3) a priori viewpoints.

Architects disagree on terminology due to their backgrounds or schools
of thought. For example, when discussing software interfaces, the consistency
principle is variously called: standard interfaces, common interfaces, horizon-
tal interfaces, plug-and-play interfaces, and interface generalization. We can
also argue that variation-centered design (from design patterns) and compo-
nent substitution are largely based upon consistent interface structure.

Unnecessary diversity of terminology leads to confusion, and sometimes
to proprietary advantage. Some vendors and gurus change terminology so fre-
quently that keeping up with their latest expressions becomes a time-
consuming career.

Differences in terminology lead to miscommunication. In contrast, some
distinct areas of disagreement among architecture schools can’t be resolved
through improved communications alone.

The notion of complete models is promoted by legacy OO approaches
(e.g., OMT), the Zachman Framework school, and various others. These
groups have promoted a vision that complete models (describing multiple
phases of development) are a worthwhile goal of software development pro-
jects. Other schools would argue that multiple models are not maintainable,
that unnecessarily detailed models are counterproductive, and that architec-
tural significance should be considered when selecting system features for
modeling.

These contrary notions can be summarized in terms of the principle of
pragmatism. We side with the pragmatists for the above reasons and because
most software systems are too complex to model completely (e.g., multithreaded

Software Architecture as a Discipline 11

ch01.qxd 9/20/00 12:45 PM Page 11

distributed computing systems). Pragmatism is a key principle to apply in the
transition from document-driven to architecture-centered software process.

The selection of architecture viewpoints is a key point of contention
among architecture schools. Some schools have preselected a priori view-
points. Some schools leave that decision to individual projects. The Zachman
Framework is an interesting case, because it proposes 30 viewpoints, from
among which most projects select groups of viewpoints to specify.

Variable viewpoints have the advantage that they can be tailored to ad-
dress the concerns of particular system stakeholders. Predefined viewpoints
have the advantage that they can accompany a stable conceptual framework
and a well-defined terminology, as well as predefined approaches for resolving
viewpoint consistency and architecture conformance.

Innovative Software Architecture

There are many active and successful schools of software architecture thought.
Software architecture is a discipline unified by principles, but divided by termi-
nology. The various architecture schools can be viewed as different branches
of an evolutionary progression.

The Zachman Framework has evolved from the traditional non-OO
approaches. ODP is an outgrowth from object-oriented and distributed-
computing paradigms that has achieved stability, multiindustry acceptance, and
formal standardization. Both Zachman and ODP approaches have enjoyed sig-
nificant success in production-quality software development. Domain analysis
has demonstrated its worth in defining robust, domain-specific software
architectures for reuse. The 4+1 View Model is an approach undergoing
development, in parallel with the Unified Process.

All of the above can be described as innovative software architecture ap-
proaches. They are being applied in practice, based upon various levels of
proven experience. Academic research in software architecture is defining a
baseline for architecture knowledge that resembles a lowest common denomi-
nator of the above approaches. Fortunately, the academic community has legit-
imized the role of the software architect, regardless of whether their guidance
is useful to innovative architects.

In our opinion, software architects should have a working knowledge of
the innovative approaches described above. In addition, they should utilize one
of the product-quality architecture frameworks in daily practice. Component
architecture development is a challenging area, requiring the best of stable con-
ceptual frameworks supporting sound architectural judgement.

12 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 12

The Architecture Paradigm Shift

The nature of information systems is changing from localized departmental ap-
plication to large-scale global and dynamic systems. This trend is following the
change in business environments toward globalization. The migration from rel-
atively static and local environments to highly dynamic information technol-
ogy environments presents substantial challenges to the software architect
(Figure 1.1).

A majority of information technology approaches are based upon a set of
traditional assumptions (Figure 1.2). In these assumptions the system com-
prises a homogeneous set of hardware and software which is known at design
time. A configuration is relatively stable and is managed from a centralized
system management configuration. Communications in traditional systems are
relatively predictable, synchronous, and local. If the state of the system is well
known at all times and the concept of time is unified across all the activities,
another key assumption is that failures in the system are relatively infrequent
and, when they, do occur, are monolithic. In other words, either the system is
up or the system is down.

In the building of distributed application systems, most of the assumption
are reversed. In a distributed multiorganizational system it is fair to assume that
the hardware and software configuration is heterogeneous. The reason is that dif-
ferent elements of the system are purchased during different time frames by

Software Architecture as a Discipline 13

FIGURE 1.1 Virtual Enterprise Paradigm Shift

Imagery Report
To: Intelligence Officers
From Pacom & NPIC

Subject:
The subject of this image
is drug trafficking in a
South American country

Item A is one of the planes
used for transport

Item B is a processing
plant

Local/Static to Global/Dynamic:
Rapidly Changing Technologies and Business Requirements

Multimedia

Virtual Enterprises

Integrated Network

Voice and VIDEO Search Server

presentation
storage
system
(voice & Video)

Documentation
Storage
System
(Text, Imagery,
Graphics)

Text
Search
Service

Graphics
and Imagery
Search
Server

Integrated Network

Voice and VIDEO Search Server

Documentation
Storage
System
(Text, Imagery,
Graphics)

Text
Search
Service

Graphics
and Imagery
Search
Server

presentation
storage
system
(voice & Video)

Servers:
Application
Backup
File
DBMS
Image Processing

Digital Video Architecture

The Digital Video Architecture
has been proposed by BELL
Labs and has currently been
modified by MITRE to
include the Header layer.
This layering is necessary to
break the different
development activities into
manageable pieces similar
to what OSI has done for
communication

ch01.qxd 9/20/00 12:45 PM Page 13

different organizations and many of the decisions are made independently.
Therefore in a typical configuration you have a variety of information technol-
ogy. It is also the case that hardware and software configurations are evolving.
Occurring within any organization are turnover in employees and evolution of
business processes. The architecture of the organization impacts the architecture
of the information technology. As time progresses, new systems are installed,
systems are moved, new software is acquired, and so on. When multiple organi-
zations are involved, these processes proceed relatively independently, and the
architect must accommodate the diverse evolving set of configurations.

In distributed systems, the assumption is that there is remote processing
at multiple locations. Some of this remote processing is on systems that were
developed independently and therefore have their own autonomous concept of
control flow. This reverses the assumption of localized and unified processing
resources. There are some interesting implications for the concepts of state and
time. The state of a distributed system is often distributed itself. The state in-
formation may need to be replicated in order to provide efficient reliable access
at multiple locations. It is possible for the distributed state to become nonuni-
form in order to get into error conditions where the replicated state does not
have the desired integrity and must be repaired. The concept of time-
distributed systems is affected by the physics of relativity and chaos theory.
Electrons are traveling near the speed of light in distributed communication
systems. In any large system there is a disparity between the local concepts of
time, in that this system can only have an accurate representation of partial or-
dering of operations in the distributed environment. The total ordering of oper-
ations is not possible because of the distances between information process. In
addition, distributed communications can get quite variable and complex. In a
distributed system there are various qualities of service which communications

14 Chapter One Introduction

FIGURE 1.2 Traditional and Distributed-Systems Assumptions

TRADITIONAL SYSTEM ASSUMPTIONS
•
•
•
•

Homogeneous hardware/software
Stable, centrally managed configuration
Synchronous and local: processing, state, time, and communications
Infrequent, monolithic failures

DISTRIBUTED SYSTEM ASSUMPTIONS
•
•
•
•
•

Homogeneous hardware/software – evolving configurations
Remote, autonomous processing
Distributed, replicated, non-uniform: state and time
Asynchronous, insecure, variable: communications
Frequent partial system failures

ch01.qxd 9/20/00 12:45 PM Page 14

systems can provide. The communications can vary by timeliness of delivery,
the throughput, the levels of security and vulnerability to attack, the reliability
of communications, and other factors. The communications architecture must
be explicitly designed and planned in order to account for the variabilities in
services.

Finally, the distributed system has a unique model of failure modes. In
any large distributed system components are failing all the time. Messages are
corrupted and lost, processes crash, and systems fail. These kinds of failures
happen frequently and the system must be architected to accommodate for
them.

In summary, distributed processing changes virtually all of the traditional
system assumptions that are the basis for most software engineering method-
ologies, programming languages, and notations. To accommodate this new
level of system complexity, architects have three new needs.

First, architects need the ability to separate complex concerns, in particu-
lar to separate concerns about business-application functionality from concerns
about distributed-system complexity. Distributed computing is a challenging
and complex architectural environment unto itself. If systems are built with tra-
ditional assumptions, architects and developers are likely to spend most of their
time combating the distributed nature of real-world applications. Problems and
challenges of distributed computing have nothing to do fundamentally with
business-application functionality.

The purpose of information technology is to establish new business
processes. By separating concerns, we can focus on the business functionality
that is the true purpose of the information system. Ideally, architects would
like to separate distributed-system issues into categories of design, where the
majority of components are purchasable as commodity communication infra-
structure.

Object-oriented architects also need the ability to future-proof the infor-
mation systems that they are planning. It is important to accommodate com-
mercial technology evolution, which we know is accelerating and beginning to
provide substantial challenges for architects and developers. Future-proofing
also requires the ability to adapt to new user requirements, since requirements
do change frequently and account for a majority of system software cost over
the life cycle. It is important to plan information systems to support the likely
and inevitable changes that users will require in order to conduct business.

A third need for object-oriented architects is the ability to increase the
likelihood of system success. Corporate developers to date have had a very
poor track record of creating successful systems. The object-oriented architect

Software Architecture as a Discipline 15

ch01.qxd 9/20/00 12:45 PM Page 15

is responsible for planning systems with the maximum probability of deliver-
ing success and key benefits for the business. Through proper information
technology planning, we believe that it is possible to increase the likelihood of
system delivery on time and on budget.

In confronting these three needs, authorities in software engineering and
computer science tend to agree that architecture is the key to system success.
Authorities in areas ranging from academia to commercial industry are declar-
ing that software architecture is essential to the success and management of in-
formation systems. There is a long and growing list of software authorities who
have come to this conclusion. Unfortunately, it is not always clear to everyone
what software architecture truly is. In order to provide clarification, we need to
take a look at some of the reference models which provide definitions of soft-
ware and systems architecture (Figure 1.3).

The needs that we are discussing have been thoroughly considered by
many authorities. There are two leading meta-architecture frameworks that
guide the development of software system architecture. One of the popular
frameworks originated at IBM and is called the Zachman Framework. The
Zachman Framework predated the popularity of object orientation and took the
perspective that separating data from process. In the Zachman Framework
there are six information system viewpoints as well as five levels of design ab-
straction. The original Zachman Framework published in 1987 contained

16 Chapter One Introduction

FIGURE 1.3 Software-Intensive Systems Architecture Reference Models

Reuses
concepts

Interface
definition
language

RM-ODP

OBJECT-ORIENTED STANDARDS

ISO open
distributed
processing

Trader
service

Rational’s
4 + 1 model

view

Rational’s
4 + 1 model

view

US DoD
specialization

ISO OSI
7 layer

reference
model

C4ISR
framework

(n
ot

 s
ta

nd
ar

ds
)

Commercial
specialization

OMG object
management
architecture

ch01.qxd 9/20/00 12:45 PM Page 16

viewpoints for the network, the data, and the process of the information system
[Zachman 87]. A subsequent revision introduced three additional viewpoints.
The current framework resembles the set of traditional journalistic questions,
which include who, what, when, why, where, and how. Each viewpoint in the
Zachman Framework answers a chief set of questions to assure that a complete
system engineering architecture is created.

The Zachman Framework formed a matrix of architecture descriptions
which are also organized in terms of levels. There are five levels of description
above the information system implementation. They range from architectural
planning done by individual programmers at the finest grain to the overall enter-
prise requirements from the investors’ perspective of the information system. In
total, the Zachman Framework identifies 30 architectural specifications, which
provide a complete description of the information system. In practice no real-
world project is capable of creating these 30 or more detailed plans and keeping
them all in synchronization. When the Zachman Framework is applied, systems
architects partition the viewpoint into various categories and create architectural
specifications that cover all of the different Zachman descriptions without having
to create the large number of specification documents that the Zachman Frame-
work implies. One example is a very successful architecture initiative by the
United States Department of Defense called the C4ISR architecture framework,
where C4ISR stands for Command and Control, Computers, Communication, In-
telligence Surveillance, and Reconnaissance. The C4ISR architecture frame-
work is used to describe DOD information technology at the highest echelons of
the organization. The primary benefit in this case is that different service organi-
zations and agencies can communicate their architectural plan through common-
viewpoint description.

Beyond the Zachman Framework, object-oriented architects have discov-
ered additional needs for defining computational architecture and other view-
points which are not obvious applications of the Zachman principles. The
international standards organization (ISO) has also considered these architec-
tural issues. Recently completed is the ISO reference model for open distrib-
uted processing called RM-ODP. This model belongs to a category of ISO
standards called open distributed processing (ODP). ODP is an outgrowth of
earlier work by ISO in open systems interoperability. The Open Systems Inter-
connection (OSI) seven-layer reference model identified an application layer
which provided minimal structure and guidance for the development of appli-
cation systems. In fact, the seventh layer for applications groups remote proce-
dure calls, directory services and all other forms of application level services
within the same architectural category, not defining any particular structure or
guidance for this significant category of functionality.

Software Architecture as a Discipline 17

ch01.qxd 9/20/00 12:45 PM Page 17

A Standard for Architecture

Among the various architecture approaches, there is a useful international stan-
dard that defines what information systems architecture means, the Reference
Model for Open Distributed Processing (RM-ODP) [ISO 96]. We will cover it
as one way to think about software architecture. This model is representative of
mature software architecture practice today.

RM-ODP defines five essential viewpoints for modeling systems
architecture:

† Enterprise Viewpoint
† Information Viewpoint
† Computational Viewpoint
† Engineering Viewpoint
† Technology Viewpoint

The five viewpoints provide a comprehensive model of a single information
system.

An enterprise viewpoint contains models of business objects and policies. En-
terprise policies include permissions, prohibitions, and obligations. An infor-
mation viewpoint includes the definition of information schemas as objects.
Three kinds of RM-ODP schemas include static, invariant, and dynamic. A
computational viewpoint includes definitions of large-grained object encapsu-
lations, including subsystem interfaces and their behaviors. These three view-
points define architecture in a manner that makes distributed computing
transparent. An engineering viewpoint exposes the distributed nature of the
system. The distribution transparencies supported by infrastructure are de-
clared explicitly. The allocation of objects onto processing nodes is also speci-
fied. RM-ODP defines a reference model of distributed infrastructure called a
channel which is used to model all forms of middleware connections.

RM-ODP defines eight distribution transparency properties. It is interest-
ing to note that only a handful of these properties are supported by major com-
mercial infrastructures (without resorting to niche-market products). For
example, CORBA products provide full support for access, location, and trans-
action transparency, with some support for failure and persistence trans-
parency. Microsoft’s Distributed Component Object Model (DCOM) provides
support for persistence and transaction transparency, with limited support for
the other properties.

Open distributed processing and its reference model are the result of ten
years of formal standardization work at ISO. The reference model for open dis-
tributed processing is object oriented. It provides a referenced model that was

18 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 18

intended to address three fundamental goals: (1) to provide a standard frame-
work for further work and additional detailed standards under the open distrib-
uted processing initiative, (2) to provide a set of common terminology and
concepts that could be applied for the development of product and application
systems for open distributed processing, (3) to provide a guideline for object-
oriented architects to specify software systems. This third purpose is directly
relevant to the day-to-day practices of systems architects.

Open distributed processing includes several other standards which are
significant (Figure 1.3). In particular, it has adopted the interface definition
language from CORBA as a notation for a specified computational architec-
ture. It also has a standard for the treasury service, which is the key directory
service supporting the discovery of application functions in distributed sys-
tems. The trader service has subsequently been adopted as a commercial stan-
dard through the object management group. The group’s object management
architecture is a commercial specialization of open distributed processing.

All together, the OMG’s consensus standards and the ISO open distrib-
uted processing form a set of software architecture standards that are useful in-
tellectual tools for most software architects and developers.

RM-ODP has three completed standards documents. Part one of the stan-
dards is a non-normative overview and summary of the overall concepts and
terminology. All three parts of the adopted standard are cosponsored by the In-
ternational Telecommunications Union ITU-T through their X.900 series. The
cosponsorship of both ISO and ITU-T represents a broad international consen-
sus on this guideline for object-oriented architecture.

Part two of the standard is the foundations document, comprising a glos-
sary of standard terminology for object oriented distributed systems.

Part three of the standards is the architecture document. It defines the var-
ious viewpoints for object-oriented architecture along with their structuring
rules and various open distributed processing functions which enable distrib-
uted computing.

Altogether, these three standards documents comprise less than 200 pages
of documentation with the normative parts, part two and part three comprising
about 100 pages. Even though this is a relatively short standard, it provides a
great deal of valuable information. Many ISO standards are relatively inscrutable
to the practicing software engineer; this standard is no exception. However, we
believe that the effort to understand it is very worthwhile, given the challenges of
distributed computing in business process change that need to be resolved.

Who supports RM-ODP? RM-ODP is the product of formal standards bod-
ies including ISO and IEEE. The IEEE is an accredited standards organization

Software Architecture as a Discipline 19

ch01.qxd 9/20/00 12:45 PM Page 19

reporting to ISO; therefore, the IEEE is a voting participant and joint supporter
of RM-ODP as well. RM-ODP is the formal standards basis for the object
management group’s object management architecture and all of the resulting
technologies that the group has adopted which form the basis for distributed
object computing and technologies that are available commercially. RM-ODP
is also accurately used in several mission-critical industries which depend upon
information technology for their income. In particular, RM-ODP is applied
across the telecommunications industry through the telecommunications infor-
mation network architecture consortium, and RM-ODP is actively used by
telecommunication companies such AT&T, Lucent, and Nortel. In the telecom-
munications industry, information technology is their business, and distributed in-
formation systems success is essential to maintaining their competitive advantage.

Also applying ODP actively is the financial services industry. Companies
such as Merrill Lynch, Morgan Stanley, and various mortgage lending organi-
zations are applying RM-ODP to define new information systems concepts.
The deployment of new information technologies is becoming one of the key
competitive advantages that these companies have for creating new market
channels to distribute and transact new financial instruments, and securities
and perform other financial services. For these industries failure of information
systems directly affects bottom-line profitability and is usually not an option. If
these influential companies accept this architectural approach and apply it ac-
tively, can your organization afford not to consider its benefits?

The RM-ODP comprises five standard viewpoints. Each viewpoint is a
perspective on a single information system (Figure 1.4). The set of viewpoints
is not closed, so that additional viewpoints can be added as the needs arise. An-
other of their purposes is to provide information descriptions that address the
questions and needs of particular stakeholders in the system. By standardizing
five viewpoints, RM-ODP is claiming that these five stakeholder perspectives
are sufficient for resolving both business functionality and distributed systems
issues in the architecture and design of information systems. RM-ODP is an el-
egant model in the sense that it identifies the top priorities for architectural de-
scriptions and provides a minimal set of traceability requirements which are
adequate to assure system integrity.

The enterprise viewpoint of our RM-ODP takes the perspective of a busi-
ness model. The enterprise models should be directly understandable by man-
agers and end users in the business environment. The enterprise viewpoint
assures that business needs are satisfied through the architecture and provides a
description which enables validation of these assertions with the end users.

The information viewpoint defines the universe of discourse in the infor-
mation system. The perspective is similar to the design information generated

20 Chapter One Introduction

ch01.qxd 9/20/00 12:45 PM Page 20

by a database modeler. The information viewpoint is a logical representation of
the data and processes on data in the information system.

Each of the five RM-ODP viewpoints is object oriented, and they provide
a complete model of the system from the given perspective. The information
viewpoint is an object-oriented logical model of the information assets in the
business and how these assets are processed and manipulative.

The computational viewpoint partitions the system into software compo-
nents which are capable of supporting distribution. It takes the perspective of a
designer of application program interfaces for componentware. The computa-
tional viewpoint defines the boundaries between the software elements in the
information system. Generally, these boundaries are the architectural controls
that assure that the system structure will embody the qualities of adaptability in
management of complexity that are appropriate to meet changing business
needs and incorporate the evolving commercial technology.

The engineering viewpoint of RM-ODP exposes the distributed nature of
the system. Its perspective is similar to that of an operating system engineer
who is familiar with the protocol stacks and allocation issues that are necessary
to define the distributed processing solutions for the information system.

The fifth viewpoint is the technology viewpoint. It defines the mappings
between the engineering objects and other architected objects to specific stan-
dards and technologies including product selections. The viewpoint is similar

Software Architecture as a Discipline 21

FIGURE 1.4 Architecture Viewpoint Perspectives

Information
system

Enterprise
viewpoint

Computational
viewpoint

Technology
viewpoint

Information
viewpoint

Engineering
viewpoint

ch01.qxd 9/20/00 12:45 PM Page 21

to that of a network engineer who is familiar with the protocol standards and
products available commercially which are appropriate selections to configure
the information system.

All five RM-ODP viewpoints are co-equal in the sense that they do not
form levels of description; rather each viewpoint provides a complete model of
the information system that is object oriented and corresponds to the other
viewpoints. Each defines various constraints on the design of the information
system that provide various architectural benefits for each of the system’s
stakeholders. The RM-ODP viewpoints enable the separation of concerns
which divide the business and logical functionality of the system from the dis-
tributed computing and commercial technology decisions of the architecture.

The first three viewpoints identify informational and computational char-
acteristics. The enterprise and information viewpoints are purely logical views
of the business, represented as object-oriented models (Figure 1.5). The com-
putational viewpoint is independent of the distribution of software modules,
but it must define computational boundaries which are enabled for distribution.
The CORBA IDL notation for specifying computational interfaces is appropri-
ate for this purpose. IDL provides a way to define computational interfaces
which are independent of the distribution and deployment issues in enterprise
development. The first four viewpoints—enterprise, information, computa-
tional, and engineering—are independent of specific implementations. In other
words, the majority of the architectural design is independent of the specific
product selections which configure the system. This property of RM-ODP
enables the evolution of technology components without impacting the overall
architectural constraints defined in the first four viewpoints. The engineering
viewpoint defines qualities of service and distribution transparencies which

22 Chapter One Introduction

FIGURE 1.5 Characteristics of Architecture Viewpoints

RM–ODP Viewpoints

1.

2.

3.

4.

5.

Enterprise
–Business purpose, scope, and policies for system

Information
–Meaning of information and information processing

Computational
–Modules and interfaces enabling distribution

Engineering
–Mechanisms of distribution

Technology
–Choice of technology and component details

D
is

tr
ib

ut
io

n
tr

an
sp

ar
en

t

Im
pl

em
en

ta
tio

n
in

de
pe

nd
en

t

ch01.qxd 9/20/00 12:45 PM Page 22

evolving technology selections must support. The terminology of RM-ODP as-
sists in providing concise descriptions of these technology requirements.

RM-ODP contains many terminology definitions which are useful con-
cepts for object-oriented architects. Some of the key definitions in RM-ODP
are the distribution transparencies. RM-ODP defines in distribution transparen-
cies which specify the qualities provided by distributed computing infrastruc-
ture (Figure 1.6). Currently available commercial infrastructures provide some
subset of these, such as location, and access transparencies provided by
CORBA along with partial support for persistence in transaction transparency.
Additional transparencies are available through niche-market products and
through custom implementations which are enabled by proper architectural
separation of infrastructure requirements from technology selections. Tech-
nologies which do not provide access transparency, such as Microsoft COM+
and the distributed computing environment, do not adapt well to the future evo-
lution of distributed systems (Figure 1.7).

RM-ODP provides standard definitions for distributed infrastructure ob-
jects that enable abstract descriptions of engineering constraints. Figure 1.7 is
an example of the engineering objects which RM-ODP defines. These engi-
neering objects are capable of defining the characteristics of all forms of dis-
tributed infrastructure, including remote procedure calls, screening data
interfaces, and asynchronous interfaces for signaling. Among the most impor-
tant features of RM-ODP are its definitions supporting conformance assess-
ment. After all, what is the purpose of architectural documentation unless we

Software Architecture as a Discipline 23

FIGURE 1.6 Distribution Transparencies

Distributed Transparency Architectural Guarantee

Access Masks platform-protocol difference in data
representation and invocation mechanisms

Failure Masks failures and recoveries of other objects
Location Masks the use of location information to find &

bind to objects
Migration Masks awareness of changes in location of the

object from itself
Relocation Masks changes in the location of an interface/service

from clients
Replication Masks the existance of replicated objects that

support common states and services
Persistence Masks activation and deactivation of objects

(including the object itself)
Transaction Masks coordination of activities to achieve

consistency

ch01.qxd 9/20/00 12:45 PM Page 23

can assess conformance—that is, make sure that the implementation of the sys-
tem corresponds to the written and intended architectural plans.

RM-ODP defines four categories of conformance and proceeds to specify
how conformance is represented in an architectural plan. The first category is
called programmatic conformance. This is the usual notion of behavioral testing
of software interfaces. Many of the programmatic conformance points will occur
in the computational viewpoint specification of RM-ODP based architectures.

Perceptual conformance includes testing at user interfaces in communi-
cations ports that represent external boundaries to the system. Usability and
user interface testing can be defined through perceptual conformance assess-
ment. Interworking conformance involves testing between systems implemen-
tations. It is not sufficient for individual systems to have programmatic
conformance in order to guarantee interoperability. Interworking conformance
includes interoperability testing between working implementations, which is an
additional requirement beyond programmatic conformance.

Interchange conformance involves testing of the exchange of external
media, such as disks and tapes. It assures that information that is stored on ex-
ternal media can be interpreted and assimilated in other systems that conform
to the same standards. RM-ODP also defines correspondence requirements be-
tween the various viewpoints of application architecture. In general, the objects
defined in each of the viewpoints do not have to be explicitly correspondent,
because they represent independent description of the system representing vari-
ous levels of granularity of descriptions and constraints.

Several key points of correspondence which must be assured. The compu-
tational viewpoint must support any dynamic behaviors that are specified in the

24 Chapter One Introduction

FIGURE 1.7 Distribution Channel Model

Server
object

Server
binder

Protocol
object

Interceptor

Control
interfaces

Server
stub

Client
object

Client
binder

Protocol
object

Client
stub

ch01.qxd 9/20/00 12:45 PM Page 24

information viewpoints. The information viewpoint represents the information
in the information system and its processing. Whenever a process occurs, it
must be explicitly allocated to the internal operation of one of the computa-
tional modules or it must be explicitly allocated to a particular computational
interaction—in other words, invoking a software interface to cause the process-
ing of information. In addition, there is an explicit correspondence requirement
between the computational and engineering viewpoints. In general, engineer-
ing objects outnumber computational objects, because the engineering view-
point exposes the objects in the distributed infrastructure, which may be
numerous. For every computational interface defined in the computational
viewpoint, there must be an explicit correspondence to engineering interfaces
in the engineering viewpoint objects. The computational boundaries must map
onto distributed engineering objects so that the distribution strategy is clarified
by the architecture.

Applications and Profiles

Open systems standards (such as RM-ODP) are purposefully generic so that
they apply to all domains. To make standards deliver their benefits, a profile is
required. A profile is an implementation plan for how the standard is applied
within a context. Several profiles of RM-ODP are in use today.

The 4+1 View Model is a viewpoint-based architecture approach sup-
ported by OO tools such as Rational Rose. The viewpoints include:

† Use Case View
† Logical View
† Process View
† Implementation View
† Deployment View

The use case view models enterprise objects through a set of scenarios. The
logical view includes object models of packages, classes, and relationships.
The process view represents control flows and their intercommunications. The
implementation view defines the modular structure of the software. The de-
ployment view identifies the allocation of software onto hardware. An architec-
ture defined as a 4+1 View Model covers aspects of all 5 RM-ODP viewpoints.

RM-ODP is being applied in several industries, including financial ser-
vices and defense. For example, the United States Department of Defense
(DoD) has a profile of RM-ODP, called the Command, Control, Communica-
tions, Computers, Intelligence, Surveillance, and Reconnaissance Architecture
Framework (C4ISR-AF). C4ISR-AF defines three viewpoints: operational

Software Architecture as a Discipline 25

ch01.qxd 9/20/00 12:46 PM Page 25

architecture, system architecture, and technical architecture. An information
viewpoint is also specified.

Before applying the framework, DoD services defined their architectures
using disparate conventions. C4ISR-AF is currently used by all DoD services
to describe their architectures. The framework is enabling technology ex-
changes across diverse system development programs. Reuse opportunities and
common interoperability solutions are being identified and defined as a result.

Viewpoint Notations

Within each viewpoint, the RM-ODP approach uses formal notations (or speci-
fication languages) that support architecture description.

One of the most useful notations for specifying computational viewpoints
is the ODP interface definition language (ODP IDL). ODP IDL is a related in-
ternational standard that is identical to CORBA IDL. It enables the specifica-
tion of object encapsulations that can be implemented on multiple
infra structures, such as CORBA, Microsoft COMT, and the Adaptive Com-
munication Environment (ACE). Since ODP IDL is programming a language
independent, a single interface specification suffices to define interoperable in-
terfaces for C, C++, Ada95, COBOL, Smalltalk, the Java programming lan-
guage, and Microsoft IDL. These mappings are defined by open systems
standards and supported by commercial products.

Another useful notation for describing architecture viewpoints is the Uni-
fied Modeling Language (UML). UML is an object-oriented notation recently
adopted by the Object Management Group. UML is also supported by Mi-
crosoft in its respository and development environment technologies.

Although it is not widely publicized, RM-ODP is providing architectural
benefits in multiple industries. RM-ODP is a formal standard that defines how
to describe distributed OO architectures. In practice, RM-ODP’s viewpoints,
models, and transparency properties are useful conceptual tools for object-
oriented architects.

1.3 Design Patterns and Software
Architecture

We view software architecture as an eclectic practice, combining ideas from
many areas of computer science and software engineering. Reuse of these ideas
and existing knowledge is paramount to the effective practice of the architec-

26 Chapter One Introduction

ch01.qxd 9/20/00 12:46 PM Page 26

tural discipline. Luckily, the popular movement of design patterns has codified
and documented a great deal of software knowledge for this purpose. We be-
lieve that software architects should also be pattern literate.

What the design patterns community has done is to make the reuse of
lessons learned into a popular, trendy approach. Patterns represent a rejection
of originality as a technical goal, including an active avoidance of the Not-
Invented-Here (NIH) syndrome.

Design Patterns

Design patterns are a significant extension to object-oriented paradigm. Design
patterns are documented representations of software engineering knowledge.
They are intended to capture expert-level knowledge and important lessons
learned. Design patterns are a departure from previous object-oriented guid-
ance in several respects. Patterns document essential design knowledge, tran-
scending original object-oriented notions. Originally, object orientation was
based upon modeling of the natural world as objects. To design effective soft-
ware systems, more sophisticated structures are needed that are unique to soft-
ware.

Design patterns have more stringent requirements for documenting
knowledge. Design patterns should represent proven solutions, not merely
wishful thinking about how software should be done. This concept is embodied
in the so-called rule of three. Informally, the rule of three states that: “A single
design occurrence is an event, two occurrences are a coincidence, and three oc-
currences are a pattern.” To the design patterns authors, there is a more literal
meaning, that patterns are proven solutions applied by one or more communi-
ties of experts on a recurring basis.

Design patterns also introduce the notation of design force, also called is-
sues or concerns. Design patterns document these forces explicitly and elabo-
rate the solution in terms of resolving the design forces.

In order to facilitate problem solving, it is useful to find ways to separate
design concerns—design elements which are implicitly responsible for resolv-
ing all potential concerns, those that are potentially unstable (when subject to
scrutiny), and those that may require voluminous documentation to justify the
design. Explicit reference models for separation of concerns have been pro-
posed for software engineering and other fields of engineering endeavor.

Figure 1.8 also contains a software design-level model proposed by Shaw
and Garland showing three levels [Shaw 96]. In comparison, the software com-
munity does not have a sophisticated view of how to separate design concerns,

Design Patterns and Software Architecture 27

ch01.qxd 9/20/00 12:46 PM Page 27

and it is also not known what the components are that comprise each of these
levels. In the software design model, the machine level represents the binary
software that is part of the operating system and commercial products that can-
not be modified by the application developer. The code represents the program
that is the domain of application development, and the third level is the archi-
tecture, which provides a model of how the system is partitioned and how the
connections between the partitions communicate. The shortcomings of this
simple model are that it does not represent any significant separation of con-
cerns and that important properties such as interoperability between systems
are not considered.

Software Design-Level Model

Figure 1.9 shows the software design-level model that we propose in our book
called CORBA Design Patterns [Mowbray 97a]. This model was originated by
one of the founders of the design pattern movement, Richard Helms, and de-
scribes in a recursive fractal fashion what the various levels of software design
are in terms of objects. At the micro levels we have individual objects, and the
design principles that apply to those individual objects are usually object spe-
cific. There is a class of patterns called idioms which represent design guidance
for language-specific issues. These issues are fairly fine grained.

The next level up is called micro architecture patterns. In micro architec-
tures we have small configurations of objects, generally a handful of objects
that give us sophisticated ways of organizing our software structure to support
variability in other qualities of design. The framework level then takes a num-
ber of micro architecture patterns and combines them into a partially completed

28 Chapter One Introduction

FIGURE 1.8 The Concept of Design-Level Models

Processor–memory–switch

Hardware design levels

Programming

Register–transfer

Sequential

Combinational

Circuit

Lo
gi

c
de

si
gn

S
w

itc
hi

ng
ci

rc
ui

ts

ch01.qxd 9/20/00 12:46 PM Page 28

application with reusable software. Above the micro level, we have completed
applications and systems. The application level represents the application of
zero or more frameworks to provide an independent program. We encounter is-
sues such as user interface programming which are significant in software de-
velopment. At the system level, we take a number of applications which play
the role of subsystems and integrate those applications to create a working sys-
tem environment. The system level is where many of the design forces applica-
ble to programming are changed in terms of their priorities. Management of
complexity and change become critical at the system level and above.

At the enterprise level, we have a number of different systems which are
integrated across an organization or virtual enterprise of organizations working
in conjunction. The enterprise level is the longest scale of internally controlled
operating environments.

The global industry level is represented by the Internet, the commercial
market, and the standards organizations, which comprise the largest scale of
software systems. Figure 1.10 represents the separation of design forces which
occurs as we move throughout these various levels. Overall, the management
of risk is a force which applies at all levels when we make software decisions.
At the finer-grained levels, management of performance and functionality is-
sues is very important and perhaps dominates any of the other design forces

Design Patterns and Software Architecture 29

FIGURE 1.9 Software Design-Level Model

Application level

System level

Enterprise level

Global/industry level

Frameworks

Micro
architectures

Objects
& classes

ch01.qxd 9/20/00 12:46 PM Page 29

that apply horizontally across all the levels. Looking at the system level, the
key design forces here include the management of change and the management
of complexity. We come to this conclusion due to the writings of other authors.
In particular Horowitz writes that the adaptability of systems is the primary
quality which is missing where the majority of system cost is due to changes in
requirements reference [Horowitz 93]. Shaw and Garland identify the manage-
ment of complexity as the key design force at the system architecture level
[Shaw 96].

Above the system level the environment changes on a more frequent
basis. Each system must be modified to support individual business processes;
at an enterprise level with multiple systems the change accumulates as people
move and the organization evolves on a daily basis. Management of the re-
sources at the enterprise level and of technology transfer to support capabilities
such as design and software reuse becomes more significant and important. At
the global and industry level, the management of technology transfer become
predominant. When something is published on the Internet, it is instantly ac-
cessible on a global basis to virtually any organization or individual. Using the
management of technology transfer design force, it is important to manage the
information that the enterprise discloses in terms of software intellectual capi-
tal as well as the information that the organization exploits.

Figure 1.11 shows the overall priorities for these horizontal design forces
as they apply to the coarser-grained levels. Here we show that at the system ar-
chitecture level the management of change is the predominant force, because it
is linked directly to the cost of the system in published work. We also identify
as a second priority the management of complexity, because it is a design force
that is emphasized by academic authorities in software architecture. Priorities
at the other levels are indicated to show how the perspective of each of the ar-
chitectural designers at these levels varies by the scale of software design. We
see these as guidelines for making sure that the appropriate priorities are

30 Chapter One Introduction

FIGURE 1.10 Prevalent Forces in Software Decisions

The universal force
• Management of risk

Primal forces
•
•
•
•
•
•

Management of performance
Management of functionality
Management of complexity
Management of change
Management of IT resources
Management of technology transfer

ch01.qxd 9/20/00 12:46 PM Page 30

allocated to decisions that are made at each of these levels. The reference
model helps us to organize patterns knowledge and identify priorities for de-
sign forces that are horizontal across all the levels. Design patterns are a mod-
ern approach to providing technical guidance. The breakthrough that design
patterns provide is the capability of applying lessons learned and reusing de-
sign information across organizations.

Design patterns represent a high-quality academic research movement
that has its own conference series and visibility at most other technology
events. The origin of design patterns comes from actual bricks-and-mortar
building architecture. The original vision for design patterns included a design
level model which we did not discover in other authors’ work. We believe that
design patterns represent the right approach for documenting guidance and
solving technical problems in software architecture and system development.
Figure 1.12 shows an example of a popular design pattern called the model
view controller. This is a pattern that applies at the framework level and pro-
vides an approach for reusing software objects that contain data and processing
which must be viewed and controlled in many different ways.

The model view controller pattern includes model objects, view objects,
and controller objects. The model object is the reusable component. It repre-
sents the data in the system and the encapsulating processes which need to be
represented and controlled in several ways. The view objects represent various
visualizations of that information, and there can be many simultaneous views
that may be presented to groups of users. The controller objects represent vari-
ous business processes or mechanisms for controlling the processing of the
data. The model view controller pattern has been around at least since the in-
vention of Smalltalk and has been reapplied at several different scales of

Design Patterns and Software Architecture 31

FIGURE 1.11 Priorities for Key Design Forces

Horizontal Force
Component

Programming
Component
Integrator

Software
Architect

Enterprise
CIO

Global CEO

Performance 1

Functionality 2 1

Complexity 2 2

Change 1 2

IT Resources 1 2

Tech. Transfer 1

ch01.qxd 9/20/00 12:46 PM Page 31

software by various groups, including UML’s business classes and the OMG
business object task force which defines business objects in an analogous set of
categories [Mowbray 97b]. Figure 11.6 shows the overall structure of design
patterns. The essence of any design pattern is a problem–solution pair. The
problem is explained and expanded in terms of the applicable design forces and
any contextual forces which may be present. The solution resolves the design
forces in a particular manner. The selection of any solution is a commitment,
and a commitment provides some benefits as well as consequences. In addi-
tion, selection of a solution may lead to additional problems where other pat-
terns are appropriate.

Design patterns are distinguished from other forms of software literature
in that design patterns are presented in terms of a standard outline or template.
Several templates have been published that meet the needs of various software
design models. Figure 1.13 is a listing of the template developed for the
CORBA design patterns [Mowbray 97a]. In this template there is a separation
between the solution description and the variations of the solution, which may
vary by structure and by scale of application. Making this separation allowed
the authors to clarify the base solution at a particular scale and then to describe
the variations and nuances of applying the pattern in separate sections of the
template. The design pattern template is a rhetorical structure that assures con-
sistent coverage of the key questions that people may need to answer in order
to apply the design information. In particular, when justifying the application

32 Chapter One Introduction

FIGURE 1.12 Model-View Control Pattern

Controller

Users

View

Model

Synonymous uses:

Smalltalk–80:
model–view–controller

Jacobsen’s reuse classes:
entity, interface, control

OMG business objects:
entity, interface, process

ch01.qxd 9/20/00 12:46 PM Page 32

of a pattern, it is important to understand the benefits and potential conse-
quences of the pattern to understand the real tradeoffs in design. If the design
pattern authors have properly documented the pattern, they have identified
those points of debate explicitly so that the users of the pattern do not have to
reinvent that information.

Figure 1.14 is an example of a CORBA design pattern that applies in
general to technologies beyond CORBA for system building. The problem is
that most systems have vertical solutions, where each software module has a
unique interface corresponding to each software implementation. The vertical
solutions lead inevitably to stovepipe interdependencies between the modules
in the system. By adding the common interface pattern to a system, we can
capture the common interoperability information so that the software modules
can interoperate without explicit dependencies upon particular implementa-
tions. The common interface pattern is a fundamental principle that is applied
in standardization work and in software architectures in general.

Figure 1.15 shows a related pattern which applies the common interface
in a more general and sophisticated context. In this pattern, called the horizon-
tal vertical metadata pattern, we have a static architecture for a system defined
in terms of a common interface with vertical interface extensions; also we are
adding some dynamic architecture elements represented metadata. A key trade-
off described in the pattern talks about how dynamic architecture and static ar-
chitecture can be varied to represent different portions of the design. Dynamic

Design Patterns and Software Architecture 33

FIGURE 1.13 An Example Pattern Template

Consequences

Related patterns

Problems

Benefits

Solutions

Applicable forces

Pattern name
Intent
Primal forces
Applicability
Solution
Benefits/consequences
Variations
Scalability
Related solutions
Example
Background

ch01.qxd 9/20/00 12:46 PM Page 33

architecture is one of the key solutions for implementing variability and adapt-
ability in software architectures.

Figure 1.16 shows how the horizontal-vertical-metadata pattern is actu-
ally an instance of a more general concept that is applied across standards
organizations and profiling entities all the way down to a system level of

34 Chapter One Introduction

FIGURE 1.14 Common Interface Pattern

Vertical solutions

Common interfaces are
horizontal solutions

FIGURE 1.15 Horizontal-Vertical-Metadata Pattern

Vertical
API

Horizontal interfaces
Change & complexity

Vertical
API

Vertical
API

Vertical
API Metadata

Change &
resource

management

Vertical
interfaces

Functionality &
performance

Dynamic
architecture

Static
architecture

ch01.qxd 9/20/00 12:46 PM Page 34

deployment. This application of the horizontal-vertical-metadata pattern is di-
rectly analogous to the functional and system profiles that we described in
Chapter 4, where the functional profile is a vertical extension of a global stan-
dard. A system profile is a vertical extension of a functional profile, and any
particular application system is a vertical instance of a system profile.

Figure 1.17 shows an application-level pattern and how it is applied. We
present this example to give you a flavor of what is involved. In this case we
are showing a UML sequence diagram. Before the pattern is applied, there is a
simple request and return transaction which actually causes the client program
to block while it is occurring. It turns out that this is the default behavior of
most distributed computing infrastructures such as remote procedure calls and
CORBA. We can improve the performance of this configuration by adding a
moderate amount of complexity and, after applying the pattern, we can return a
reference to the result which will be computed in parallel and then retrieved
later (Figure 1.17).

Figure 1.18 shows a table of several examples of design pattern lan-
guages. Much of the available pattern documentation addresses a specific soft-
ware design level. More recent work on CORBA design patterns and

Design Patterns and Software Architecture 35

FIGURE 1.16 Pattern Applicability at Multiple Scales

System = application profile
V

H
M

Enterprise = system profile
V

H
M

Domain/industry = functional profile
V

H
M

Global = a standard
V

H
M

ch01.qxd 9/20/00 12:46 PM Page 35

pattern-oriented software architectures has addressed several levels of abstrac-
tion where these level are explicit. At the idiom level of design patterns we are
concerned with individual objects. Idiom documentation has been widely avail-
able in the form of programming language guidebooks. Idioms represent expert
programming techniques. These are techniques that one would rediscover after
substantial use of a language. If software engineers are maintaining software
written by other people, it is essential to understand idioms in order to under-
stand the intentions of the programmers applying these sophisticated ideas.

36 Chapter One Introduction

FIGURE 1.17 Partial Processing Sequence Diagram

Before applying the pattern

Client
Service
object

Request()

Return

U
na

bl
e

to
 p

ro
ce

ed

T
im

e
After applying the pattern

Client
Service
object

Request()

Return

Return Continue

C
on

tin
ue

 w
ith

 p
ar

tia
l

T
im

e

FIGURE 1.18 Comparison of Design Pattern Languages

Software
Scale

Most
Useful to

Key
Horizontal

Forces

Buschmann
Architecture

Patterns

CORBA
Design

Patterns

Fowler
Analysis
Patterns

Micro-
Architecture

OO
Programmer

Change
Change

Complexity
Performance

System
Architect

Micro to
System

System

System
Architect

Change
Complexity

Objects to
Micro

OO
Analyst

Functionality
Change

Gamma
Design

Patterns

ch01.qxd 9/20/00 12:46 PM Page 36

One of the first published design pattern languages described microarchitecture
patterns [Reference Gamma 96]. The goal of the gamma pattern language was
to invent a new discipline of variation-centered software design. The gamma
pattern language is organized in terms of several categories including cre-
ational patterns, structural patterns, and behavioral patterns. When applying the
gamma patterns, complexity of design is increased with the benefit of potential
support for potential modification of the software. Gamma patterns have be-
come very popular and are applied widely in software engineering organiza-
tions today.

AntiPatterns

A recent development in the patterns community is called AntiPatterns. An
AntiPattern differs from an ordinary pattern in that it is a solution pair rather than
a problem–solution pair (Figure 1.19). An AntiPattern starts with a problematic
solution. The reason why the solution is there is due to various contextual forces.
The AntiPattern solution leads to various kinds of symptoms and consequences,
and the consequences can be quite devastating. The AntiPattern proceeds to

Design Patterns and Software Architecture 37

FIGURE 1.19 AntiPatterns

Consequence

Related patterns & AntiPatterns

AntiPattern
solution

Refactored
solution

Benefits

Symptoms & consequences

Contextual causes

ch01.qxd 9/20/00 12:46 PM Page 37

define a potential solution for migrating the problematic solution to a re-factored
solution providing improved benefits. AntiPatterns are fundamentally about soft-
ware refactoring. Refactoring is modification to software to improve its structure
or quality. Common examples of AntiPatterns include stovepipe systems,
spaghetti code, and analysis paralysis. AntiPatterns are further explained in the
book AntiPatterns published by John Wiley & Sons in 1998 [Brown 98].

1.4 Conclusions

In order to realize the benefits of software components and object technology,
much more effective guidance is needed than the naive application of objects
which characterized the first generation of these technologies. Design patterns
are a highly effective and academically based guidance approach that is now
being practically applied in many software development shops. The technology
and skills transfer available through design patterns can lead to some important
benefits, including reducing software risks, enhancing the effectiveness and pro-
ductivity of the software developer, and making successful practices repeatable.

In particular, the reference model for open distributed processing is the
formal standard for object-oriented architecture. This reference model is
widely used because it is effective for defining distributed systems. The model
is used in many industries where mission-critical systems must be successful.
RM-ODP separates complex concerns for the specification of distributed sys-
tem. RM-ODP enables future proofing because it defines an approach for spec-
ifying architectural plans which are independent of distribution and technology
choices. We believe that RM-ODP is a key architectural guideline for object-
oriented systems and should be applied in your organizational practices.

1.5 Exercises

EXERCISE 1.1 Define your career plan for the next two years. As your career
progresses to higher levels of seniority, you will be expected to require redirec-
tion on a less frequent basis, with the maximum being about once a year. We
believe that planning is essential, so making a career plan at this early stage of
your reading would be a positive step. Identify your goals, and then identify
what you need to know in order to achieve your goals (i.e., knowledge gaps).
Be brutally honest.

EXAMPLE SOLUTION: Three years ago, my goal was to continue in tech-
nical architecture roles and increase my knowledge in several areas, so that I

38 Chapter One Introduction

ch01.qxd 9/20/00 12:46 PM Page 38

could be a more complete contributor. In particular, I wanted to gain extensive
experience in UML modeling, design patterns, and software process and to re-
connect with programming fundamentals. I also wanted to gain some manage-
ment experiences for addition to my resume. I wanted to give the research and
development cycle one more go, for both personal and professional reasons.
After all, I joined this industry because I loved programming. At the back of
my mind was a desire to help some friends in small commercial businesses, but
I sorely lacked experience in this area, having worked mostly for large defense
contractors and think tanks. Having a list of what I wanted to learn, I next con-
sulted the Internet, the world’s most extensive collection of free resources. I lo-
cated several books, training courses, and other information that helped me
identify specific learning targets.

Being a relatively independent middle manager in the technical ladder, I
adjusted my workload to align with my goals. I prepared a tutorial on UML
and defined an architecture using UML notation, that was within the scope of
our research. I downloaded the latest version of the Java programming lan-
guage from SunSoft and began programming the first phase of the architecture
prototype. I was having fun and achieving my goals while performing useful
architecture research and evangelism for my firm, which was in the midst of
UML adoption. Reviewing my results with co-workers enriched my learning
experience and helped my firm to move forward on UML-related initiatives.
Also I pursued directed readings and attended a patterns workshop, which
greatly enriched my knowledge of the field.

Having achieved a modicum of success on this path, I was ready for the
next phase. Time to replan. In the pre-Y2K days, the software industry was
very profitable. Opportunities abounded. I lacked much of the essential knowl-
edge to help my friends in small commercial businesses (my ultimate goal). In
addition, I wanted to do more technical architecture work, on a faster cycle.
Defining a new architecture every month would be ideal, but that kind of op-
portunity was not available at my current firm. Also, business in my firm was
in a cooling-off period.

A career change was in order. I took a job at a very stable, highly rep-
utable small commercial firm; e.g., their paychecks came regularly and they al-
ways cleared the bank. This new firm knew everything that I wanted to
learn—a perfect match. At the library I discovered the book resources to learn
the requisite areas of knowledge that I was lacking, a bit of business training,
and so forth. I was able to read about these matters and apply them on the job
daily. I was able to complete several interesting architecture projects, including
a financial system specification, a middleware architecture specification for a
large telecommunications firm, and a high-level architecture for a real-time
system. In addition, I was able to do a great deal of UML modeling, learn

Exercises 39

ch01.qxd 9/20/00 12:46 PM Page 39

Visual Basic and C++, and do some CORBA programming. I was also teach-
ing courses on the topics that I wanted to master—excellent progress, by any
standards of performance. At this point, I had achieved the technical goals that
I had set two years earlier. Time to re-plan, as this exercise continues in real
life.

EXERCISE 1.2 Select an architecture framework for use in your current firm
(or customer’s organization)—for example, RM-ODP, Zachman Framework,
or 4+1 Model View. Write a brief profile description about how the framework
should be applied in your organization.

BACKGROUND FOR SOLUTION: We believe that having a framework is
far superior to working without one. Whatever framework you choose, certain
conventions and guidelines for applying it in your organization will need to be
managed. The need for these profile conventions is most obvious in the selec-
tion of the Zachman Framework. Since you have 30 candidate specifications to
write, you must address two issues. First, 30 specifications is too much work,
and you should compress and simplify the amount of effort required to plan a
system. Focus on the useful, practical elements for your domain of application.
Combine elements as appropriate to assure coverage without elevating the
document-driven aspects to an unreasonable level. Second, if there is no pro-
file, you can’t possibly expect any two architectures to be comparable. You
should select essential and optional viewpoints to be specified, and define what
they mean in your organization’s terminology. You can also propose conven-
tions for how these viewpoints will be documented, such as a template for each
viewpoint, and notational conventions. We believe that these steps are required
for any responsible application of these powerful frameworks.

EXERCISE 1.3 Create a pattern system for use in your organization. Select
patterns from among the available pattern catalogs to cover the areas of great-
est concern and need in your organization.

BACKGROUND FOR SOLUTION: A “pattern system” is documented in a
simple tabular form. Use page 380 of [Buschman 96] as your starting point.
The pattern-system table contains a listing of the names of each pattern, along
with their book page reference, for quick retrieval. Implicit in this exercise is
the selection of the key patterns catalogs (i.e., books) that would be readily
available to every developer. Remember: Patterns are lessons learned. The pur-
pose of this exercise is to create a job aid so that your developer can more ef-
fectively apply lessons learned. We suggest that you consider including
sources such as [Gamma 95], [Fowler 96], [Mowbray 97], and [Hays 97] to
your list of candidate catalogs.

40 Chapter One Introduction

ch01.qxd 9/20/00 12:46 PM Page 40

