
Testing Software Patterns

Testing Software Patterns

Mohammad Al-Sabt and Matthew Evans, Microsoft Corporation

Geethika Agastya, Dayasankar Saminathan, Vijay Srinivasan,
and Larry Brader, Satyam Computer Services Ltd.

pat ter ns & pract ices

The information contained in this document represents the current view of
Microsoft Corporation on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market conditions, it should not
be interpreted to be a commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information presented after the date of
publication.

This Documentation is for informational purposes only. MICROSOFT MAKES
NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user.
Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in
any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Testing Software Patterns
Introduction . 1

Who Should Read This Guide . 1
History . 1

Test Methodology . 2
Test Criteria . 4

Microsoft Pattern Form . 4
Common Pattern Characteristics . 5
Characteristics Specific to Implementation Patterns . 8

Testing Tactics . 9
Stand-alone: Focus on the Pattern by Itself . 9
Cluster Testing: Focus on the Pattern Within a Cluster or Framework 12
Assigning Bug Severity . 15
Pattern Test Trace Matrix . 16
Contents of the Test Trace Matrix for the Observer Pattern 17
Contents of the Test Trace Matrix for the Observer Implementation Pattern 21
Additional Testing Tactics Specific to Data Patterns . 23

Patterns Tested . 23
Enterprise Solution Patterns Using Microsoft .NET . 23
Data Patterns . 24

Summary . 25
References . 25
Community . 27
Feedback and Support . 27
Collaborators . 27

Testing Software Patterns

Introduction
Patterns have been around conceptually since the late 1970s when Christopher
Alexander wrote The Timeless Way of Building and A Pattern Language, which helped
spark the pattern movement that was later applied to software engineering in the
1990s. Although Alexander and the software patterns community have created quite
a stir around the construction of a pattern language, testing such a language has
been largely neglected.

Testing has a different agenda: to substantiate designs and implementations based
on certain criteria and according to a methodology. Hence, following Microsoft®
Solution Framework (MSF) processes, the test team has developed a formal testing
methodology and testing criteria, which are distilled from best practices found in
the larger patterns community.

This document describes the testing methodology that the test team developed and
applied to the new field of testing software patterns.

Who Should Read This Guide
This guide is written for testers, architects, designers, and developers of patterns
who want to validate the patterns that they produce in a more systematic and
regimented fashion than is generally practiced in the industry today.

History
When the testing teams first examined how to test patterns, the only industry
standards were peer review and a variety of pattern definitions, all of them
following the Rule of Three as their base test. The AntiPatterns Web site (http://
www.antipatterns.com/whatisapattern/) offers following definition of the Rule of Three:

RULE OF THREE: A software pattern documents a recurring solution. The
pattern solution abstracts three or more experiences. The solution is something
which is regularly applied or practiced by some community(s) of sophisticated
developers and architects. The logical basis for the rule of three is: the first occur-
rence shows the design can work, the second occurrence is interesting, and the
third occurrence suggests that the design might be worthy of being a pattern
because it appears to have a wider applicability. Non-normative comment: The
informal concept behind the rule-of-three is: the first occurrence is an event, the
second occurrence is a coincidence, and the third occurrence may be a pattern.

Testing Software Patterns2

To build a methodology and criteria, the test team conducted discussions with
Microsoft and industry pundits, interacted with the various patterns groups, and
reviewed existing patterns literature.

Test Methodology
The following high-level overview should help you understand the overall testing
approach, before you read the details about the specific tactics used and the criteria
against which patterns were evaluated. Figure 1, shows the overall methodology
that the test team used.

The overall testing methodology consisted of five parts:
● Literature comparison — compares the pattern to existing write-ups of this

pattern in the greater patterns community. Is the pattern well-formed and does
the guidance it provides agree with established patterns?

● Comparison against other implementations — compares the implementation
described against past implementations discussed in previously existing patterns.
This includes implementations in other technologies.

● Implementation testing — validates the implementation against best practices for
the technologies discussed. This is close to traditional testing, except that an
SDE/Test may need to create the code to be tested.

● Technical writing clarity — applies UI testing aims to content:
● Are the directions clear?
● Is the structure of the dialog boxes (content) consistent?
● Is the flow self-evident?
● Are the help files (3rd party books) consistent with the application?

● Brainstorming & proof by contradiction — applies aims of testing for exception
conditions (for example, loss of network connectivity or bad data) to the content.

Although this five-part testing methodology accounts for the main areas addressed,
the tactical form of the process consisted of evaluating the pattern as stand-alone
guidance and as part of a cluster of patterns. For more information, see “Testing
Tactics.”

Testing Software Patterns 3

Brainstorming &
Proof by Contradiction

Quality Assurance
Technical Writing Clarity

Implementation
Testing

Comparison Against
Other Implementations

Literature Comparison

Bug ReportsTest Team

Pattern
Document

Figure 1
Overall Testing Strategy

Testing Software Patterns4

Test Criteria
The test team evaluated Microsoft patterns against the templates that the writers
adopted and against quality characteristics that the larger patterns community has
identified.

Microsoft Pattern Form
Although they are categorized into three levels of refinement (architecture, design,
and implementation), Microsoft patterns are written in only two forms: one for
architecture and design patterns and the other for implementation patterns. The two
forms, like the patterns themselves, are designed to be complementary; the basic
difference is in the required elements of which each consists.

Architecture and Design Pattern Form
Architecture and design patterns consist of the following required elements which
all patterns of this form must include:
● Pattern Name
● Context
● Problem
● Forces
● Solution
● Example
● Resulting Context

Architecture and design patterns consist of the following optional elements, which
pattern writers use only as necessary:
● Aliases
● Testing Considerations
● Security Considerations
● Operational Considerations
● Known Uses
● Variants
● Related Patterns
● Acknowledgments

Testing Software Patterns 5

Implementation Pattern Form
Implementation patterns consist of the following required elements which all
patterns of this form must include:
● Pattern Name
● Context
● Implementation Strategy
● Resulting Context

Implementation patterns consist of the following optional elements, which pattern
writers use only as necessary:
● Background
● Example
● Tests
● Testing Considerations
● Security Considerations
● Operational Considerations
● Known Uses
● Variants
● Related Patterns
● Acknowledgments

Through research, the test team defined several characteristics for every pattern,
regardless of its form or level of refinement. These characteristics became the criteria
for evaluating all architecture, design, and implementation patterns. In addition, the
test team identified a few characteristics that apply only to implementation patterns.
The following sections describe both types of characteristics.

Common Pattern Characteristics
The test team identified the following common characteristics of high-quality
patterns, according to published research papers on the subject of patterns develop-
ment and use (please refer to references section for a list of these resources). These
characteristics were shared and reviewed with development and program manage-
ment to drive early feedback and set expectations:
● Relevance and Completeness
● Evocative Naming
● Identified Relationships
● Composability
● Extensibility

Testing Software Patterns6

● Absence of Pattern Overload
● Tradeoff and Alternatives
● Reconciliation of Forces

Relevance and Completeness
The pattern should be both relevant to the subject matter and to the pattern language of
which it is a part. In addition, it should be a complete solution to the problem within the
context that the pattern defines.Some of the questions you can ask to determine
relevance and completeness include:
● Is the problem that the pattern defines relevant to the problem and forces driving

the pattern? An answer of no here could mean that the pattern is not well-
defined.

● Are the key decisions required for making architecture and design choices
evident? An answer of no here could mean that the pattern is not complete or
underdeveloped.

● Does the solution that the pattern defines only partially solve the problem? An
answer of no could mean that either the problem is too broadly defined or that
the solution is incomplete.

Evocative Naming
The pattern name should represent what the pattern intends to achieve and should
be descriptive without being verbose. This name should use a metaphor or terminol-
ogy that is meaningful to the audience and that quickly encapsulates the problem-
solution pair in the minds of readers. The pattern may have an alias by which the
pattern is commonly known. Any alias names for the pattern should pass the same
tests as the pattern name itself.

Identified Relationships
Defining relationships, roles, and responsibilities for the elements (such as sub-
systems and components) is a key aspect when building the solution for the problem
in a pattern. Any well-conceived pattern has clear relationships captured through
formal engineering models, with the roles and responsibilities unambiguously
described without compromising the intent of the pattern. This characteristic maps
to solution section.

Composability
As you might expect, the term composability derives from music. The composability
characteristic treats a pattern as an atomic unit that is analogous to a musical note.
A composable pattern must be formulated in such a way that it can be combined
with other related patterns to solve larger problems. This is similar to the quality of
a musical note that allows you to combine it in different ways to form numerous
compositions. Like many analogies, it has limitations.

Testing Software Patterns 7

Maximizing composability means minimizing restrictions and maximizing flexibility
to improve the ratio between functionality on the one hand and simplicity, ease of
use, and ease of learning on the other. It is completely possible to compose a set of
patterns to engineer a total software solution. This characteristic maps to the pattern
as a whole. Answering some of the following questions can help you determine
whether a pattern is composable:
● Does this pattern, or its context, provide a solution that could form a part of the

solution to a larger problem?
● Does this pattern, while helping to solve a larger problem, exclude the usage of

any other patterns?
● Does this pattern work with other patterns to provide a solution to a larger

problem, apart from solving the problem it is intended for?

Extensibility
Any well-conceived and well-documented pattern is extensible and also lends itself
to parameterization so that it can be used along with other related patterns to solve
a larger problem. Extensibility is critical because patterns are rarely implemented in
isolation. An extensible pattern often provides a solution in a problem domain that
is considered to be a superset or extension to the current problem. This characteristic
maps to the pattern as a whole. Some of the questions you can ask to determine
pattern openness include:
● Is the solution generic enough to enable it to be applied to specific business

application scenarios having the relevant context?
● Is the pattern solution open to enable parameterization and hence generate

variants of itself to apply to specific business application scenarios with the
relevant context?

Pattern Overload
Patterns can be easily overloaded because anything and everything that attempts
to solve a recurring problem can be termed as a pattern. In other words, the pattern
experts have clearly mandated that patterns should attempt to solve potential
technical/business problems that impact architecture and design decisions. This
characteristic maps to the context, problem, and solution sections. Some of the
questions you can ask to identify pattern overload include:
● Is the recurring problem inherent to the application, platform, or programming

language? An answer of yes here could mean that the pattern contains too much
implementation-specific information.

● Does the solution that the pattern provides consist of elements that can be used in
the architecture or design for the problem being addressed? If the answer is no,
then implementing the pattern may require that you use more architecture and
design patterns. This would extend the architecture or design pattern beyond its
intended scope.

Testing Software Patterns8

● Does the solution consist of implementation (programmatic) sequences to use for
addressing the problem? If the answer is yes, then the solution is tied to a specific
technology or language. Another problem could be that the solution is over-
loaded with other patterns.

Tradeoffs and Alternatives
This criterion is very important because it enables the pattern tester to clearly
validate whether there is a compromise for forces that are in potential conflict. This
would mean that the pattern has to provide alternative solutions for each of those
forces depending on the compromise.

Reconciliation of Forces
Forces which are not in conflict are reconciled in a very clear manner when provid-
ing the solution to a problem. Because forces are the direct fallout from the problem
at hand, the solution would reconcile these forces without compromising the
pattern’s intent. This characteristic maps to the solution section.

Characteristics Specific to Implementation Patterns
In addition to the common pattern characteristics just discussed, a few additional
characteristics apply only to implementation patterns.

Applicability to Target Technologies
It is very important to ensure that the pattern can be applied in the target technolo-
gies without compromising the pattern’s intent. Well-written implementation
patterns achieve this characteristic by applying one or more technology features to
provide alternate solutions to tradeoff forces, reconciling the forces that are not in
conflict with the technologies used, and providing guidelines and best practices.
This characteristic maps to the solution section.

Code Review
If any code snippets are included in the pattern, the code must be tested against the
following criteria:
● Microsoft naming conventions and best practices coding standards as stated in

Coding Techniques and Programming Practices (Visual Studio .NET Design Consider-
ations), which is on the MSDN Web site at http://msdn.microsoft.com/library/en-us
/vsent7/html/vxconcodingtechniquesprogrammingpractices.asp

● Independent program block with zero external dependencies

Testing Software Patterns 9

Scenarios
Application scenarios are defined. The scenarios depict the problem and the forces
that drive the creation or need for a pattern. The scenario creation helps the reader
relate to the context of the pattern in a tangible manner. This also helps the reader to
understand the approach that the pattern explains and to validate whether the forces
have been reconciled. Some of the questions you can ask to evaluate the scenarios in
the pattern include:
● Is it clearly a situation that is common?
● Is it a mundane application problem, programming, or implementation detail?

Testing Tactics
Applying the testing methodology to patterns involved testing from two different
viewpoints. The first viewpoint was to test each pattern independently. The second
viewpoint was testing the pattern within the context of other patterns, or according
to pattern clusters.

Stand-alone: Focus on the Pattern by Itself
Stand-alone testing is the place to start in testing any pattern. The stand-alone test
focuses on the pattern itself and tests each of the characteristics identified earlier (see
Figure 2).

Subject of
Pattern

Test

Figure 2
Stand-alone pattern testing focuses inward

Testing Software Patterns10

Pattern catalogs often contain pairs of design and implementation patterns. In such
cases, the stand-alone testing tactic calls for thoroughly evaluating the design
pattern first, before moving on to any related implementation patterns.

Design-Level Testing
If a pattern cannot pass the stand-alone design-level test, it is highly unlikely that it
will pass any subsequent tests. The stand-alone design-level testing consists of the
following tests described earlier under “Testing Methodology”:
● Literature comparison
● Comparison against other implementations
● Technical writing clarity

From this examination, the tester derives the main testing points for pattern imple-
mentation testing.

Implementation-Level Testing
Implementation-level testing examines one or more implementations for a given
design pattern. One of the first items to examine is the process that the designer
followed to create an implementation based on that design pattern. This
instantiation of a pattern is based on the problem domain chosen to demonstrate the
pattern usage. Does the process and problem domain make sense for this pattern?
Are there better implementations? Or should there be more than one implementa-
tion to demonstrate the particulars for the design pattern? The process that the
designer follows is a demonstration of refractoring the pattern from an abstract level
to a particular problem domain. This process gives insights into how to use the
pattern in actual operation and validate the correct usage.

At this level of stand-alone testing, a generic widget testing application is created
per pattern. The whole purpose is to code and exercise the basic qualities that form
this pattern. Figure 3 shows a pattern view of a widget testing application for a
Singleton. The widget test framework can be replaced with a generic Test Harness.

Simple Widget Factory Tester
Figure 3 shows an example Widget Factory Tester that tests singularities for
nonthreaded and threaded implementation. This basic approach can be applied to
other patterns.

Basically, the Widget Model-View-Controller (MVC) creates the main factory
which then creates the various entities as it goes through each test. The Watchdog
is normally found in real-time system to handle error conditions for threads and
processes. Using it here provides a way to build more complex testing systems.

Testing Software Patterns 11

Widget MVC

Widget Factory

Watchdog

Widget Agent
Consumer

Singleton
Widget

Widget Agent
Producer

Legend

Pattern

Instantiation

Figure 3
Simple widget test harness used for testing Singleton

The following example test runs reflect the process followed to test the Singleton
pattern by using the widget test harness:

� To ensure that there is only one instance in a single thread
1. Instantiate a Singleton.
2. Reference it from the number of stub objects.
3. Create another Singleton and then determine that it is unique.

� To ensure there is only one instance with multiple threads
1. Instantiate a Singleton Threaded Object.
2. Create consumer and producers threads of the Singleton Object. For example, the

consumers take the number off the Singleton stack, while the producers load the
stack.

3. Create another Singleton and then determine it is unique.

Testing Software Patterns12

� To test what dependencies occur with usage of this pattern in a single thread
1. Instantiate a Singleton.
2. Reference it from the number of stub objects.
3. Destroy the Singleton and then analyze the results.

� To test what dependencies occur with usage of this pattern in a multiple thread
1. Instantiate a Singleton Threaded Object.
2. Create consumer and producers threads of the Singleton Object. For example, the

consumers take the number off the Singleton stack, while the producers load the
stack.

3. Destroy the Singleton and then examine what happens to the dependencies. What
needs to be considered in implementing this pattern in a threaded environment?

Cluster Testing: Focus on the Pattern Within a Cluster or Framework
As Figure 4 shows, cluster testing focuses on how the pattern works with other
patterns, also known as the composability of the pattern.

Subject of
Pattern

Test
Pattern

Pattern

Pattern

Pattern

Figure 4
Cluster testing focuses outward on the architectural context

Testing Software Patterns 13

Like the stand-alone testing, cluster testing consists of design and implementation
stages.

Design-Level Testing
Where the stand-alone emphasizes the core attributes of the pattern, the system-
level design tests emphasize its relationship with other patterns and pattern clusters.

Implementation-Level Testing
The simple widget factory used in stand-alone testing also exposes how patterns
work within clusters of other patterns as well as other patterns concepts. Again a
generic testing framework was used, which can be applied to any general testing
harness (see Figure 5).

To test a pattern in a cluster or in a framework, consider the following points:
● Know how extensive the testing framework needs to be. Is it a single system or a

distributed system?
● Testing against multiple patterns means that some of the testing on the other

patterns will not be complete yet, especially it they form part of the cluster being
tested. Hence, cluster testing may span several patterns.

● The preceding testing widget framework is a node and can form the basis for a
complex distributed processing system.

● The widget test harness enables you to add performance analyzer to this system;
hence this simple distributed system now can be used to test load balancing,
throughput, fault-tolerance, or other metrics.

● As more of these testing architectures are built. third parties could download
them and use them as basic frameworks to build upon.

Testing Software Patterns14

Widget Controler

Widget Factory

Node
Watchdog

Widget
Agent

Widget
Modeler

Node
Server

Legend

Pattern

Instantiation

Node Performance Analyzer
 ● Handle Err Routing
 ● Watch Metrics

Widget
Data

Widget
Viewer

Node
GateWay

Data

Other
Nodes

Figure 5
Widget test harness for testing a pattern for a distributed environment

Testing Software Patterns 15

Assigning Bug Severity
To determine the severity to assign a bug to a pattern, use Table 1 as a guide.

Table 1: Guide to Assigning Bug Severity

Sev.* Cases/situations Conforms to all guidelines

1 Pattern do not completely resolve the forces. User has found that it does not
Pattern fails to pass the test when validated meet the criteria.
against the test criteria. There is no workaround.
If the pattern does not give the best solution to
handle the context/problem. If any of cases is true, then it’s
Section incomplete or steps missing in a flow. a severity 1
Section is not technically correct. Otherwise, it’s a severity 2
Information within a section is not relevant in
the context.
When results or behavior of a process flow
contradicts with logically expected results.

2 Steps within a section or solution, are not in the User has no simple workaround to
correct order. mend situation.
No uniformity between different sections. User cannot easily figure out
A logical step combines two or more major steps workaround.
in one single step, unless applicable.
Two differently named bookmarks/hyperlinks point If any of these conditions is true
to the same section. then it’s a severity 2 defect,
Hyperlinks/bookmarks of the same name in two else it’s a severity 3
different locations point to two different links.
Hyperlinks/bookmarks do not load properly (this is
not a defect of the guide, but the defect of the links).
Hyperlinks in the guide are incorrect or unclear or
not relevant. Hyperlinks do not contain the said
information.
Antagonistic language.

3 Minor documentation errors and inaccuracies. User has a simple workaround to
Grammatical errors, Text misspellings, and so on. mend situation.
Document formatting is inconsistent. User can easily figure out
Acronyms not explained. Workaround.
Information is out-dated. This does not cause a bad user
Duplicate links provided to the same section. experience/interface.

Testing of other scenarios is not
affected here.

If these are true then it is a
severity 3, or it is a severity
2 defects.

4 Suggestions Clearly not a product defect.
Future Enhancements

* Sev. is an abbreviation for severity.

Testing Software Patterns16

Pattern Test Trace Matrix
The pattern test team used a trace matrix to organize and conduct systematic tests
on all patterns. The basic form of this trace matrix is shown in Table 2.

Table 2: Pattern Test Trace Matrix

Test Criteria Methodology Common Checklist [Pattern Name]
Questions

Relevance and
Completeness

Evocative Naming

Identified
Relationships

Composibility

Extensibility

Pattern Overview

Tradeoffs and
Alternatives

Reconciliation of
Forces

Applicability to .NET

Scenarios

Code Reviews

Pattern-Specific
Considerations

General
Observations

For readability, Table 2 shows the overall layout of the Test Trace Matrix without
showing the contents of each cell. Table 2 shows the test criteria identified earlier in
this document as headings to the rows of the table. As you look horizontally across
the matrix for each test criteria, you see general methodologies and common test
questions, as well as test questions that are specific to each pattern. The contents of
the Methodology and Common Checklist Questions columns are omitted here,
because the contents would repeat the information discussed in the “Test Methodol-
ogy” and “Test Criteria” sections of this guide. The contents of the other columns of
the matrix would be specific to the actual patterns you are testing.

Testing Software Patterns 17

Contents of the Test Trace Matrix for the Observer Pattern
The following list shows the actual contents (organized by row) of the [Pattern
Name] cell of Table 2 during testing of the Observer pattern. The data was reformat-
ted to fit within this document. The contents of the Methodology and Common
Checklist Questions Columns would remain unchanged as the test team added more
columns for each individual pattern being tested. As might expect, the complete
version of the matrix became very large.

Relevance and Completeness
Problem: The content in the problem section should be relevant to what the pattern
is attempting to solve.

Test Case: Does the literature address how to notify the state change of one object
(source) to all its dependents in one to many relationships ensuring maximum
decoupling?

Result: Addressed.

Forces: The content in the forces section should be relevant and should include all
possible forces that influence the given pattern.

Test Cases:

Does the section address:
1. Maximum amount of decoupling between the source and dependent objects in

one to many relationships to ensure reusability of the objects?
2. Easy plug-in and plug-out of the dependent objects without affecting the source

object?
3. Minimal changes to the dependent objects if the source object is changed and

minimal changes to the source object if the dependent objects are changed?

Results:
1. Addressed.
2. Addressed.
3. Addressed.

Pattern Overload
Context: The context section should determine key decisions that have to be made
when evolving architecture or design models for a business problem. Context
should not be defined around recurring problems in environments such as technolo-
gies, programming languages, and so on.

Testing Software Patterns18

Problem: The problem section should describe potential technical or business
problems that impact your architecture and design decisions. Any attempt to
describe a mundane platform or programming related problem result in pattern
overload. Examples are attempting to build a linked list, which is a programmatic
problem that does not influence the architecture or design.

Solution: Solution should be aligned with providing architectural or design
elements (such as interaction diagrams or sequence diagrams) that lead to architec-
ture and design models, instead of solutions to programming or environment-
related problems.

Test Cases:
1. Is the business problem that the pattern defines relevant to the problem and

forces driving the pattern?
2. Is the recurring problem inherent to the application, technology, or programming

language?
3. Are the key decisions required for making architecture and design choices evident?
4. Does the solution consist of elements that can be used in the architecture or

design for the problem being addressed?
5. Does the solution consist of implementation (programmatic) sequences to use for

addressing the problem being addressed?

Results:
1. Problem is related to the pattern.
2. It is a recurring problem related to an application.
3. They are evident.
4. Yes.
5. Sequence diagrams are provided.

Evocative Naming
Name and Alias: The pattern name should represent what the pattern intends to
achieve and should be descriptive without being verbose. This name should use a
metaphor or terminology that is meaningful to the audience and that quickly encap-
sulates the problem-solution pair in the minds of readers. The pattern may have an
alias by which the pattern is commonly known. Any alias names for the pattern
should pass the same tests as the pattern name itself.

Test Cases:
1. Is the pattern name representative of what the pattern intends to achieve?
2. Is the pattern name ambiguous or verbose (longer than a few words)?
3. Does the pattern have an alias?
4. Is the alias name descriptive without being verbose?

Testing Software Patterns 19

Results:
1. Pattern name is relevant.
2. Not ambiguous.
3. No.
4. Not applicable.

Tradeoffs and Alternatives
Solution: The solution should clearly discuss the tradeoffs when reconciling the
forces that have been described in the pattern. Tradeoffs refer to the choice of recon-
ciling one force over another if they are in conflict with each other.

Test Case: Does the pattern address the tradeoffs between the Push and Pull model
of notification?

Result: Addressed.

Extensibility
Overall Content: The pattern should be open for extension or parameterization by
other patterns so that they can work together to solve a larger problem.

Test Cases:
1. Is the solution generic enough to enable it to be applied to specific business

application scenarios having the relevant context?
2. Is the solution open to enable parameterization and hence generate variants of

itself to apply to specific business application scenarios with the relevant context?

Results:
1. Pattern is generic.
2. Pattern is open to extension and parameterization.

Composability
Overall Content: The pattern must be formulated in such a way that it can be used
with other patterns to compose an overall solution to a larger problem. The pattern
itself should help to build a model architecture or design for a specific problem
related to a specific context.

Test Cases:
1. Does this pattern, or its context, provide a solution that could form a part of the

solution to a larger problem?
2. Does this pattern, while helping to solve a larger problem, exclude the usage of

any other patterns?
3. Does this pattern work with other patterns to provide a solution to a larger

problem, apart from solving the problem it is intended for?

Testing Software Patterns20

Results:
1. Yes.
2. No.
3. Yes. It can work with other patterns, based on the application requirements.

Reconciliation of Forces
Solution: The solution should clearly explain how the forces are reconciled.

Test Case: Does the solution address each force that the pattern mentions?

Result: All forces are addressed.

Identified Relationships
Solution: The solution should describe subsystems, components, their responsibili-
ties and relationships. Relationships should be captured through architecture or
design elements in the form of interaction and sequence diagrams.

Test Cases:
1. Does the solution provide clear relationship between Subject, Concrete Subject,

Observer and Concrete Observer?
2. Is a visual representation of the interaction amongst the classes and interfaces

provided?

Results:
1. Addressed.
2. Addressed.

Guidelines and Best Practices
Solution: Solution should clearly provide guidelines and best practices from exter-
nal sources such as comments from experts in the pattern, URL links to patterns,
which will enable audience to understand and apply the patterns to build architec-
ture/design models in the best manner

Test Cases:

Does the pattern provide guidelines for:
1. Performance optimization of the update operation? (For example, reducing

unnecessary calls to the Observer.) This can be done if the Observer subscribes to
the specific events (interests) of the Subject.)

2. Avoiding exceptions or undesirable conditions such as deadlocks, or dangling
references of the Subject or Observer, when the observer is located remotely?

3. Adopting the Push and Pull model of notification?

Testing Software Patterns 21

Results:
1. They are provided, but are not very evident. [Bug 01]
2. Addressed.
3. Addressed.

Contents of the Test Trace Matrix for the Observer Implementation
Pattern
The following list shows the actual contents (organized by row) of the [Pattern
Name] cell of Table 2 during testing of the Implementing Observer in .NET pattern.
The data was reformatted to fit within this document. The contents of the Methodol-
ogy and Common Checklist Questions Columns would remain unchanged as the
test team added more columns for each individual pattern being tested. As might
expect, the complete version of the matrix became very large.

Applicability to Target Technologies
Solution: The solution can provide key information points in terms of how a given
pattern can be applied to the target technologies (in this case, Microsoft .NET).

Test Case: Does the solution provide details on how this pattern can be applied in
.NET?

Result: This is a design pattern. This can be applied to .NET.

Scenarios
Scenario: An application is monitoring the stock changes throughout the day. It
needs to display the stock’s current price and a graph for the fluctuation.

Problem: Illustrates the problem section of the scenario.

The current implementation enforces a tight coupling between the presentation
object and the data object. This leads to the following issues:
1. Implementation changes in data objects result in changes in the presentation

object and changes in the presentation object result in changes in the data objects.
2. It is not possible to reuse the presentation object or data object in any other part

of the application because they are too tightly coupled.
3. Addition or deletion of a presentation object enforces changes in the data object.

Solution: Illustrates how the given pattern attempts to solve the problem depicted
in scenario.

With the new solution in place we have a Stock class and StockDisplay and
StockGraph classes. The instance of the Stock class is the data object that contains
the current price of the stock. This instance acts as the Subject and with this the

Testing Software Patterns22

instance of the StockDisplay and the StockGraph subscribe as Observers. Now,
when the Stock object receives any change in current stock price it notifies the
instances of the StockDisplay and StockGraph to update themselves.

Reconciliation of Forces: Illustrates how the specified forces are reconciled in the
solution using the pattern. With the implementation of the Observer pattern:
1. The StockDisplay and StockGraph classes can be reused if needed in the applica-

tion because the are loosely coupled.
2. Addition or removal of any other kind of presentation object can be performed

very easily without affecting the Stock.
3. If the implementation of the Stock changes to cope with the changes in the data

source, the presentation objects (StockDisplay and StockGraph) are not affected.

Code Review
Test Case: Does the code adhere to Microsoft naming conventions?

Result: The variables do not have meaningful names. But it is a partial code snippet.

Pattern-Specific Considerations
Solution: Solution should bring out pattern specific-concepts that influence the
overall composition of the pattern itself

Test Cases:
1. Does the literature explain the dependency, degree of coupling or decoupling

between Subject and Observer?
2. Does the literature indicate the relationships and responsibilities of Subject and

Observer clearly?
3. Does the literature address complex cases such as multiple (and complex) interim

updates before a consistent state is reached in the Subject?
4. Is the usage and applicability of the pattern explained clearly?
5. Are the benefits of using Observer explained clearly?
6. Are the key issues addressed, such as:

a. Who initiates the “Update”
b. When to initiate the Notify”
c. Subject-Observers mapping

7. Is the push/ pull model of notification addressed?
8. Does it address the case if multiple inheritance is not supported?

Results:
1. Addressed.
2. Addressed.

Testing Software Patterns 23

3. Addressed.
4. Addressed.
5. Addressed.
6. Addressed.
7. Addressed.
8. Addressed.

General Observations
The content is well-presented.

Additional Testing Tactics Specific to Data Patterns
Testing for Data Patterns, included the following additional tactics:
● Confirm that the logical model is not United States based only.
● Confirm that the logical model is normalized.
● Confirm that a physical model is presented:

● Check the issues affecting the physical model are adequately discussed.
● Check that appropriate indices, foreign keys, and so on are defined in the

physical model
● Check that appropriate triggers are implemented in the physical model

Patterns Tested
The following patterns currently published on MSDN were tested according to the
patterns testing methodology, criteria, and tactics described in this document:

Enterprise Solution Patterns Using Microsoft .NET
The following patterns are included in Enterprise Solution Patterns Using
Microsoft .NET:
● Model-View-Controller
● Implementing Model-View-Controller in ASP.NET
● Page Controller
● Implementing Page Controller in ASP.NET
● Front Controller
● Implementing Front Controller in ASP.NET Using HTTP Handler
● Intercepting Filter
● Implementing Intercepting Filter in ASP.NET Using HTTP Module

Testing Software Patterns24

● Page Cache
● Implementing Page Cache in ASP.NET Using Absolute Expiration
● Observer
● Implementing Observer in .NET
● Layered Application
● Three-Layered Services Application
● Tiered Distribution
● Three-Tiered Distribution
● Deployment Plan
● Broker
● Implementing Broker with .NET Remoting Using Server-Activated Objects
● Implementing Broker with .NET Remoting Using Client-Activated Objects
● Data Transfer Object
● Implementing Data Transfer Object in .NET with a DataSet
● Implementing Data Transfer Object in .NET with a Typed DataSet
● Singleton
● Implementing Singleton in C#
● Service Interface
● Implementing Service Interface in .NET with an ASP.NET Web Service
● Service Gateway
● Implementing Service Gateway in .NET
● Server Clustering
● Load-Balanced Cluster
● Failover Cluster

Data Patterns
The following patterns are included in Data Patterns:
● Move Copy of Data
● Data Replication
● Master-Master Replication
● Master-Slave Replication
● Master-Master Row-Level Synchronization
● Master-Slave Snapshot Replication
● Capture Transaction Details
● Master-Slave Transactional Incremental Replication

Testing Software Patterns 25

● Master-Slave Cascading Replication
● Implementing Master-Master Row-Level Synchronization Using SQL Server
● Implementing Master-Slave Snapshot Replication Using SQL Server
● Implementing Master-Slave Transactional Incremental Replication Using

SQL Server

Summary
The testing of software patterns is still a developing engineering field. This is cer-
tainly evident from the amount of formalization that this methodology represents
compared to the original rule of three. By going utilizing this testing approach with
the stated criteria brought the developers and testers to another level of understand-
ing about patterns.

Now it is time to review and extend the work done. To evolve the work further,
deeper understandings of the mathematics that form patterns will help mature the
formalization. One of the items that stand out is to incorporate the pattern developer
grid into forming a more rigorous pattern language. Another item is to incorporate
some repository tools to help organize patterns and assist engineers to find the best
solution.

References
This document references the following sources:
● http://asusrl.eas.asu.edu/papers/Design-Pattern-Testing.htm
● http://www.enteract.com/~bradapp/docs/patterns-intro.html
● http://www.jguru.com/faq/Patterns
● http://www.hillside.net
● http://patterndigest.com
● http://hillside.net/patterns
● http://www.cs.wustl.edu/~schmidt/patterns.html
● http://www.martinfowler.com/eaaCatalog/
● Alur, Crupi, and Malks. Core J2EE Patterns: Best Practices and Design Strategies.

Prentice Hall, 2001.
● Burbeck, Steve. “Application Programming in Smalltalk-80: How to use Model-

View-Controller (MVC).” University of Illinois in Urbana-Champaign (UIUC)
Smalltalk Archive. Available at: http://st-www.cs.uiuc.edu/users/smarch/st-docs
/mvc.html.

Testing Software Patterns26

● Buschmann, Frank, et al. Pattern-Oriented Software Architecture. John Wiley & Sons
Ltd, 1996.

● Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

● Fowler, Martin. “To Be Explicit.” IEEE Software, November/December 2001.
● Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley,

2003.
● Fowler, Martin; Rice, David; Foemmel, Matthew; Hieatt, Edward; Mee, Robert;

Stafford, Randy. Catalog of Patterns of Enterprise Application Architecture. Available
at: http://martinfowler.com/eaaCatalog/.

● Hay, David. Data Model Patterns: Conventions of Thought. Dorset House, 1996.
● Herzum, Peter and Sims, Oliver. Business Component Factory. John Wiley & Sons,

Inc., 2000.
● Larman, Craig. Applying UML and Patterns. Prentice-Hall PTR, 2002.
● Meyer, Bertrand. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,

2000.
● Nock, Clifton. Data Access Patterns. Addison Wesley Professional, 1st edition,

2003.
● patterns & practices, Microsoft Corporation. “Application Architecture for .NET:

Designing Applications and Services.” MSDN Library. Available at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

● Pree, Wolfgang. Design Patterns for Object Oriented Software Development.
Wokingham: Addison-Wesley/ACM Press, 1995.

● Purdy, Doug; Richter, Jeffrey. “Exploring the Observer Design Pattern.” MSDN
Library, January 2002. Available at: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/observerpattern.asp.

● Reilly, Douglas J. Designing Microsoft ASP.NET Applications. Microsoft Press, 2002.
● Reingruber, Michael C.; Gregory, William W. The Data Modeling Handbook:

A Best-Practice Approach to Building Quality Data Models. John Wiley & Sons, 1994.
● Schmidt, et al. Pattern-Oriented Software Architecture, Vol 2. John Wiley & Sons,

2000.
● Silverston, Len. The Data Model Resource Book, Vol. 1 and 2. John Wiley & Sons,

2001.

Testing Software Patterns 27

Community
This guide and patterns it describes are part of a new Patterns community on
GotDotNet. GotDotNet is a Microsoft .NET Framework Community Web site that
uses workspaces in an online collaborative development environment where .NET
developers can create, host, and manage projects throughout the project life cycle.
You can also use this Patterns community to post questions, provide feedback, or
connect with other users for sharing ideas.

Access to the Patterns community is available from the following Web site:

http://gotdotnet.com/team/architecture/patterns

Feedback and Support
Questions? Comments? Suggestions? For feedback on this guide, please send e-mail
to pnppatfb@microsoft.com.

The patterns discussed here are designed to jump-start the architecture and design
of enterprise applications. Patterns are simple mechanisms that are meant to be
applied to the problem at hand and are usually combined with other patterns. They
are not meant to be plugged into an application. Example code is provided “as is”
and is not intended for production use. It is only intended to illustrate the pattern,
and therefore does not include extra code such as exception handling, logging,
security, and validation. This deliverable, however, has undergone testing and
review by industry luminaries and support is available through Microsoft Product
Support for a fee.

Collaborators
Many thanks to the following advisors who provided invaluable assistance:
Rick Maguire, Shaun Hayes, Mike Kropp, and Ken Perilman; Microsoft Platform
Architecture Guidance.

	Front Cover
	Contents
	Testing Software Patterns
	Introduction
	Who Should Read This Guide
	History

	Test Methodology
	Test Criteria
	Microsoft Pattern Form
	Common Pattern Characteristics
	Characteristics Specific to Implementation Patterns

	Testing Tactics
	Stand-alone: Focus on the Pattern by Itself
	Cluster Testing: Focus on the Pattern Within a Cluster or Framework
	Assigning Bug Severity
	Pattern Test Trace Matrix
	Contents of the Test Trace Matrix for the Observer Pattern
	Contents of the Test Trace Matrix for the Observer Implementation Pattern
	Additional Testing Tactics Specific to Data Patterns

	Patterns Tested
	Enterprise Solution Patterns Using Microsoft .NET
	Data Patterns

	Summary
	References
	Community
	Feedback and Support
	Collaborators

