
Report of Design Patterns

Ligang Wang
lgwang@cs.concordia.ca

Wenhua Fan
wenhufa@cs.concordia.ca

Ping Wang
pollywang98@hotmail.com

Liyang Zhao
liyan zh@cs.concordia.ca

Department of Computer Science, Concordia university
1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada

Abstract

Design pattern is a term of the abstraction from a con-
crete form that keeps recurring in specific non-arbitrary
contexts. Design Patterns are devices that allow programs
to share knowledge about their designs. It seems that the
benefits of design pattern are so obvious. However, design
pattern is so complicated that it makes the software even
more difficult to be maintained. In this report, we show how
we documented patterns, and the advantages and disadvan-
tages of documenting design patterns. Finally, we get some
conclusions.

1. Introduction

Design patterns are being considered to be a promis-
ing approach to system development. The main idea be-
hind design patterns is to record experience in designing
object-oriented software, thus allowing developers to com-
municate more effectively. Design patterns make it easier
to reuse successful designs and architectures. Expressing
proven techniques as design patterns makes them more ac-
cessible to developers of new systems. Design patterns help
you choose design alternatives that make a system reusable
and avoid alternatives that compromise reusability. Design
patterns can even improve the documentation and mainte-
nance of existing systems by furnishing an explicit specifi-
cation of class and object interactions and their underlying
intent.

Design patterns are widely and increasingly recognized
as important software development methods. Their use as
software understanding tools, though generally acknowl-
edged has been scarcely explored. Patterns are most useful
in understanding software when they are well documented.
Sometimes they are described separately from code as de-
sign comments. Nevertheless they hold a strong relation-

ship to the source code and thus they should be documented
at the source level too. A pattern is not the reuse of im-
plementation. Documenting a pattern allows ideas to be
reused. However, There are many limitations and Pitfalls
when using and documenting design pattern, such as over-
engineering and the challenge of successful usage of pat-
terns. We give some study to show that kind of problem.

2. Design Patterns

2.1. Definition of design pattern

Design pattern is a term of the abstraction from a con-
crete form which keeps recurring in specific non-arbitrary
contexts. More specifically, the concrete form which recurs
is that of a solution to a recurring problem, but a pattern is
more than just a battle-proven solution to recurring prob-
lems. A design pattern is a named nugget of instructive in-
formation that captures the essential structure and insight of
a successful family of proven solutions to a recurring prob-
lem that arises within a certain context and system of forces.

In general, a design pattern has four essential elements:
the pattern name, the problem, the solution and the conse-
quences [4].

The pattern name is a handle we can use to describe a
design problem, its solutions, and consequences in a word
or two. It lets us design at a higher level of abstraction.

The problem describes when to apply the pattern. It ex-
plains the problem and its context.

The solution describes the elements that make up the
design, their relationships, responsibilities, and collabora-
tions. The pattern provides an abstract description of a de-
sign problem and how a general arrangement of elements
solves it.

The consequences are the results and trade-offs of ap-
plying the pattern. They are critical for evaluating design
alternatives and for understanding the costs and benefits of

Figure 1. Classification of Relationships

applying the pattern. The consequences of a pattern include
its impact on a system’s flexibility, extensibility, or porta-
bility.

2.2. Relationship between Design Patterns

Relationships refer to different aspects of design pat-
terns. We can classify relationships between design pattern
X and design pattern Y into into three categories: Figure 1
describes the classification of the relationship.

“X uses Y” relationship: When building a solution for
the problem addressed by X, one subproblem is similar to
the problem addressed by Y. Therefore, the design pattern
X uses the design pattern Y in its solution. Thus, the solu-
tion of Y (e.g. class structures) represents one part of the
solution of X.

“X is similar to Y” relationship : They address a similar
kind of problem (not a similar kind of solution). In several
cases, these similarities are also expressed in the classifi-
cation given in the catalogue, e.g. the catalogue classifies
both Prototype and Abstract Factory in the category “Ob-
ject - Creational”.

“X can be combined with Y” relationship : A typical
combination of design patterns is the combination of X and
Y (e.g. Iterators traverse Composite structures). In contrast
to “X uses Y”, X does not use Y in its solution (or vice
versa).

2.3. Categories of Design Patterns

Graphical notations, while important and useful, aren’t
sufficient to design patterns. To reuse the design, we must
also record the decisions, alternatives, trade-offs, concrete
examples that led to it, In addition, design patterns should
be described using a consistent format, such as pattern

name and classification, intent, also known as, motivation,
applicability, structure, participants, collaborations, conse-
quences, implementation, sample code, known uses, related
patterns.

Design patterns vary in their granularity and level of ab-
straction. The classification of design patterns helps you
learn the patterns in the catalog faster, and it can direct ef-
forts to find new patterns as well.

Design patterns can be classified by two criteria. The
first criterion, called purpose that reflects what a pattern
does, divided design patterns into creational, structural, or
behavioral purpose. Creational patterns such as abstract fac-
tory, builder, factory method, prototype and singleton con-
cern the process of object creation . Structural patterns such
as adapter, bridge, composite, decorator, facade, flyweight
and proxy deal with the composition of classes or objects.
Behavioral patterns such as chain of responsibility, com-
mand, interpreter, iterator, mediator, memento, observer,
state, strategy, template method and visitor characterize the
ways in which classes or objects interact and distribute re-
sponsibility.

The second criterion of classification partitions design
patterns into three semantically different layers: Basic de-
sign patterns and techniques, design patterns for typical
software problems(middle layer), design patterns specific
to an application domain(high layer).

Basic design patterns and techniques layer contains the
design patterns, which are heavily used in the design pat-
terns of higher layers and in object-oriented systems in gen-
eral [13]. The problems addressed by these design patterns
occur again and again when developing object-oriented sys-
tems. The design patterns are thus very general. When
building a system, one would often look upon them more
as basic design techniques than as patterns. The intentions
of these design patterns(Table 1) are very general and appli-
cable to a broad range of problems occurring in the design
of object-oriented systems.

Design patterns for typical software problems are the
middle layer of design patterns, which comprises design
patterns used for more specific problems in the design of
software. These design patterns are not used in design pat-
terns from the basic layer, but in patterns from the applica-
tion specific layer, and possibly from the same layer. The
problems addressed by these design patterns are not typical
of a certain application domain. Builder, Prototype and Ab-
stract Factory address problems with the creation of objects;
Iterator traverses object structures; Command objectifies an
operation; and so on.

Design patterns specific to application domain are the
high layer of design patterns. In this layer, design patterns
are the most specific and can often be assigned to one or
more application domains. The current catalogue contains
almost no application specific design patterns. To be more

2

Design pattern Purpose of the design pattern contexts
Adapter Adapting a protocol of one class to the

protocol of another class
Composite Single and multiple, recursively com-

posed objects can be accessed by the
same protocol

Glue Encapsulating a subsystem
Mediator Managing collaboration between ob-

jects.
Memento Encapsulating a snapshot of the inter-

nal state of an object
Objectifier Objectifying behaviour

Proxy Attaching additional properties to ob-
jects

Solitaire Providing unique access to services or
variables

Template Method Objectifying behaviour (primitives will
be varied in subclasses)

Table 1. Basic design patterns with their re-
spective purposes

specific, interpreter is used to parse simple languages. The
catalogue lists some of the known uses of Interpreter, e.g.
parsing constraints and matching regular expressions. Com-
piler construction is the major application domain. Figure 2
shows the Arrangement of design pattern in layers.

Most patterns are generic and applicable to a broad range
of problems. Frameworks [14] [6] can also be considered as
high-level design patterns, usually consisting of many inter-
related design patterns of lower levels.

2.4. Benefits of Application

It seems that the benefits of design pattern is so obvious,
but some time, design pattern is used in situations where
their flexibility is not needed. So the solution with design
patter is more complicated than necessary. In order to find
out whether or not design pattern is beneficial to software
maintenance, we will introduce some experiences.

In our experiment, we propose two different, function-
ally equivalent versions program. One is PAT (pattern ver-
sion),which employs one or more design patterns. The other
is ALT (alternative version), which represents a simpler de-
sign using fewer design patterns or simplified versions of
them. The experiment had two parts. At beginning, the
participants have had no pattern knowledge at all. The first
part (the pretest, PRE) was preformed at the first day. We
call it as E1. Then a pattern course was taught. After that,
the participants have significantly higher pattern knowledge
than before. Then the second part (the posttest, POST) was

performed. We call this part as E2. We also record the time
that was taken for each maintenance task.

2.4.1 Composite and Abstract Factory: Graphics Li-
brary (GR)

The graphics library contains a library for creating manipu-
lating, and drawing simple types of graphical objects on dif-
ferent types of graphical output devices [8]. Design Patterns
used in the PAT version of this program are ABSTRACT
FACTORY for the generator classes and COMPOSITE for
hierarchical object grouping. The ALT version of the pro-
gram realized the instantiation of the appropriate classes for
each graphical output device by switch-statements in but
a single generator class. The combination and manipula-
tion of graphical object groups are realized with a quasi-
COMPOSITE. The only difference is that groups are not
treated as graphical objects as in the COMPOSITE.

Our work task is to add a third type of output de-
vice. Subjects maintaining the Pat program had to intro-
duce a new concrete factory class, extend the factory selec-
tor method, and add two concrete product classes. Subjects
in the Alt groups had to enhance the switch statements in all
methods of the generator class. The appropriate classes of
graphical objects for the new output device had to be added
as for Pat.

Regarding the maintenance task, the time for finding the
changes and additions is expected to be almost equal for the
Pat and the Alt groups. So the main difference in time re-
quired for this task will be caused by program understand-
ing. Here we expect the simpler Alt program to be easier
to understand, at least in the pre-test. Pattern knowledge
will help both groups because of the Composite structure in
both programs. The pattern group may profit a little more
from the pattern course, because it eases understanding the
structure of the Abstract Factory.

Finally, the results support both expectations. Both
groups maintaining the Alt program were faster than the
corresponding Pat groups with the same pattern knowledge
level, supporting E1 (15% faster, 32 minutes vs. 37.5 min-
utes, total significance p = 0:10). The improvement from
Pre to Post (E2) is 17.3% (40.5 minutes vs. 33.5 minutes,
significance p = 0:17) for the Pat group and 22.8% (36.4
minutes vs. 28.1 minutes, significance p = 0:031) for the
Alt group. That is 21.2% overall (38.6 minutes vs. 30.4
minutes, significance p = 0:021).

2.4.2 Decorator: Communication Channels (CO)

Communication Channels is a wrapper library. A com-
munication channel establishes a connection for transpar-
ently transferring arbitrary-length packets of data and one
can turn on additional logging, data compression, and en-
cryption functionality. The library does not implement the

3

Figure 2. Arrangement of design pattern in layers

functionality itself, but only provides a Facade to a system
library. However, this application of the Facade pattern is
irrelevant to the experiment.

The Pat version is designed with a Decorator for adding
the functionality to a bare channel, having the classes for
logging, data compression, and encryption as decorator
classes. The program consists of 365 lines in six classes.

The Alt version comprises but a single class, that uses
flags and if-sequences for turning functionality on or off;
the flags can be set when creating a channel. It consists
of 318 lines. Communication channels is the only pro-
gram where the Alt program has a structured (as opposed
to object-oriented) design.

Now our work task is to enhance the functionality of
the program such that error-correcting encoding (bit redun-
dancy) can be added to communication channels.” The un-
derlying functionality is again provided by a given class, so
the subjects only had to integrate the new functionality into
the program.

The Pat subjects had to add a new Decorator class while
the Alt subjects had to make additions and changes at vari-
ous points in the existing program.

We expect two influences of the Decorator on the sub-
jects’ behavior. First the Alt version is easier to understand
because its behavior is not delocalized as in the multiple
decorator classes. This would lead to the conclusion that
the Alt groups are faster than the Pa t groups, especially
in the pretest. Second, a counter-influence results from the
structure of the Decorator : the functionality is encapsu-

lated in classes and one need hardly care about mutual in-
fluences. In particular, in the Alt version the subjects have
to ensure they add the new functionality at the correct places
in the program for proper sequencing of the various switch-
able functionalities; this will consume time and may lead
to omissions and mistakes. We expect the second influence
to be stronger than the first and hence the Pa t version to be
preferable (E1), especially at higher levels of pattern knowl-
edge (E2).

Finally, The result is that the Pat groups are indeed sig-
nificantly faster than Alt groups (38% faster, 28.8 minutes
vs. 46.2 minutes, significance p<0:001), confirming E1.
The pattern-solution is clearly preferable. There is no sig-
nificant difference between Pre - Alt and Post - Alt as ex-
pected (46.5 minutes vs. 45.9 minutes, significance p =
0:46), but also none between Pre-Pat and Post-Pat (27.5
minutes vs. 29.8 minutes, significance p = 0:29), thus re-
jecting E2. This means the positive effect of pattern use is
even independent of pattern knowledge in this case! The
pattern-solution is also superior in terms of correctness: Er-
rors were made by 7 out of 8 Pre - Alt subjects and by 6 out
of 7 Post - Alt while in the Pat group no errors occurred at
all.

From the above, we can see that it is usually but not
always useful to use a design pattern if there are simpler
alternatives. And a thorough understanding of specific de-
sign patterns often helps when maintaining programs using
them, even if these programs are neither very large nor very
complicated.

4

3. Documenting Design Pattern

A pattern is not the reuse of implementation. Document-
ing a pattern allows ideas to be reused. Patterns can be seen
as a literary form used to document ideas and concepts that
are in common use. Patterns are not invented, that is, they
are discovered. A pattern gives us a vocabulary to better
express ourselves. Documenting using patterns allows for
reuse of documentation. Simply refer to a previously docu-
mented pattern. Patterns catalogues are not simply listings
of solutions to problems. The pattern documents the context
the of the problem, the forces involved and gives a rationale
for the solution.

The usefulness of patterns for software understanding
purposes has been scarcely investigated. There is only one
empirical study that is described in [3]. This work sug-
gests that there is empirical evidence of such usefulness.
The work of Prechelt and colleagues has the merit of stress-
ing two important aspects of design patterns. First they can
be used as a mean to understand a system (or to ”explain it”
using Coplien’s perspective [2]). Second the mere presence
of patterns is not enough; they should be documented to be
effective in understanding.

What lacks in their work is an analysis of how patterns
are used in software system and how they can be docu-
mented. There is no agreement on how to document pat-
tern use. And is such pattern documentation helpful for un-
derstanding a program more quickly and designing better
solutions for given maintenance tasks? The following will
address these drawbacks by providing four main contribu-
tions:

• An analysis of the use of pattern

• A proposal of how to document the use of pattern, im-
plemented by means of a standard code documentation
system

• If pattern documentation helpful for understanding a
program

• Fallacies and Pitfalls for the use of design patterns and
documentation

3.1. Documenting

How to document the pattern well? There is the stan-
dard solution that is an English description structured us-
ing a template and collected together into a catalogue. In
fact, the template-based documentation strongly resembles
one form of knowledge representation technique from the
AI/Cog Science communities: knowledge schemas (which
are logic analogues of data schemas in databases). Design
pattern forms are similar to essay structures. When you
write an essay, you try to structure the text (introduction,

conclusion, etc.) so that it is easier to read. The design pat-
tern forms are similar: they provide standard places for you
to pour your pattern descriptions into. The important part is
the pattern description: the pattern form merely helps in the
writing and reading. Obviously having standardized forms
makes writing and reading patterns easier, hence the reason
for the attention paid to pattern forms.

3.1.1 Pattern Language

In The Timeless Ways of Building (Alexander, 1979),
Alexander identified three essential elements that should ex-
ist within any pattern, they are:

1. A rule to identify the relationship between the pattern
and its context.

2. A system of forces which arises within the context.

3. A solution or configuration to resolve the forces within
the context.

In the software engineering community, a different for-
mat that had been used to describe patterns, depending
on the author of different ”patterns handbook”. Appleton
(1997) had highlighted the following elements.

1. Name - A unique and meaningful name to identify
the pattern. The pattern name should form a vocab-
ulary for communication among software engineers; it
should also reflect the structure or knowledge that the
pattern describes. Patterns writers should be aware of
other aliases commonly used in the industry and docu-
ment them too.

2. Problem - statement to describe the intention of the
pattern, such as its aims, objectives and motivation.

3. Context - a description of the environment in which
the pattern is applicable; this may be viewed as the
preconditions for applying the solution.

4. Forces - the notion of force generalizes the kind of cri-
teria that software engineers use to justify designs and
implementations (Lea, 1997). This component con-
tains a description of the forces within the context and
how they affect each other. Evaluating the effect of
these forces, software engineers would consider vari-
ous trade-offs for applying the solution.

5. Solutions - Patterns describe solutions as a collection
of static and dynamic rules that should be applied
for solving the problem while maintaining a balance
among all forces. The pattern should describe not only
the static structure but also the dynamic behavior of
the solution. It is possible that variants of the solution
exist, which should be described in the pattern too.

5

6. Examples - Examples of how to apply the pattern
would help pattern users understand the pattern’s use
and applicability better, this is especially important to
new pattern users.

7. Resulting Context - Applying solutions onto an exist-
ing context would transform the system into a result-
ing context; pattern users should understand the conse-
quences of applying the solution, as well as other prob-
lems or patterns that might arise in the new context. In
another word, this component captures the post- condi-
tions and side effects (Appleton, 1997) of the pattern.

8. Rationale - Since patterns exist together with a set
of forces within a particular context, there must be a
rationale to justify the use of the proposed solution
as well as the way the solution resolves these forces.
This component tells why a solution works, why it is
“good” and how it works.

9. Related Patterns - this element identifies any dynamic
or static relationship with other related patterns. These
relationships may exist because of similar initial or
resulting context, sequence of applicability, similar
forces, or dependence among the patterns.

10. Known Uses - The Rule of Three (Hohmann, 1998)
says that unless the solution described in the pattern
has been used in at least three systems, it is rarely con-
sidered a pattern. Since patterns are “proven solutions
to solve recurring problems”, it is very important to
document known uses to prove that the solution pro-
posed is indeed proven; on the other hand, such docu-
mentation would serve as examples too.

This will allow a broader range of people within your or-
ganization to consume, contribute, and create new patterns,
ultimately growing your design knowledge base. A com-
mon approach to documenting patterns will be emerging
using a “common pattern language”. Currently, the most
common language has been based on working by architect
Christopher Alexander and his book.

3.1.2 Pattern use

We are interested in investigating how an intentional and
documented use of design patterns can help to understand
a software system. In particular we will focus on the doc-
umentation of patterns at the source code level. Our work
addresses the use of patterns in the Java programming lan-
guage, Javadoc tool and to generate HTML documentation.
However the proposed approach can be adapted to other
programming languages, such as C++, using a suitable code
documentation application [12]. Design patterns usually de-
scribe an idea at a high level of abstraction. Although sam-
ple reference implementations are usually provided, there

Figure 3. Composite Pattern and its Roles

are several possible variations in a pattern implementation.
In addition, often patterns must be modified and adapted to
serve the needs of the software system where they are used.

Often a design pattern is described by means of a class
diagram. For instance Figure 3 shows the composite design
pattern described in [4]. This pattern is used to represent
part-whole hierarchies while minimizing the difference be-
tween composite and leaf objects.

3.1.3 Javadoc

We focus now on the problem of documenting Java pro-
grams. The standard documentation of all the class libraries
in the Java environment conforms to the Javadoc format.
Thus we investigate this tool and its customization capabil-
ities.

Javadoc [9] is a tool that parses the declarations and doc-
umentation comments in a set of source files and produces
a group of cross linked HTML pages describing the classes,
inner classes, interfaces, constructors, methods, and fields.
The documentation produced by Javadoc can be customized
using tags. A tag is a special keyword within a doc com-
ment that Javadoc can process. Javadoc has standard tags,
which appear as @tag, and in-line tags, which appear within
braces, as @tag.

As of version 1.4, the Javadoc tool can be customized in
two ways: using doclets or using taglets. It is possible to use
doclets to customize Javadoc output. A doclet is a program
written with the doclet API that specifies the content and
format of the output to be generated by the Javadoc tool.
Doclets allow to define the overall structure and format of
the documentation, for instance they can be used to produce
documentation is other formats than HTML.

6

/**
* This class purpose is&
* @pat.name Composite {@pat.role Leaf}
* @pat.task it represents a variable,
* {@link #evaluate()} gives the value
*/ class Variable { }

Figure 4. Code Example

3.1.4 Pattern Taglets

Pattern in Java code are documented by means of additional
tags. The programmer can use these new tags in addition to
the standard ones. The tags we propose to document the use
of patterns are the following:

• @pat.name: the name of the pattern. This is a standard
tag that applies to an element of a pattern instance. For
the time being only the patterns described in the GoF
book [4] are valid. The name will be represented in
the documentation as a link to online description of
the pattern.

• @pat.role: pattern role. This is an in-line tag that de-
scribes the role played by the element of the pattern
instance; it must be nested inside a @pat.name tag.

• @pat.task: pattern task. This is a standard tag that is
used to describe the task performed by and instance of
a pattern of by one of its parts.

• @pat.use: pattern use. This is a standard tag that is
used to describe the use of a pattern instance by one of
its clients.

The following code(see Figure 4), is an example of doc-
umentation of a class that plays the role of Leaf in the Com-
posite pattern.

The above fragment of comment, when processed by the
Javadoc tool enhanced with the proposed pattern specific
tags produces the following documentation(see Figure 5):

The first sentence in the documentation is used as the
generic class description. Then the pattern specific tags gen-
erate their output. The Composite link brings to an online
description of the composite pattern. The evaluate () link,
obtained through the default in-line tag link, brings to the
documentation of the method evaluate within the current
class [12].

Our proposal is based on a simple extension of a widely
used standard; therefore it can be easily adopted. The over-
head required to document pattern is very low: a few lines

The class purpose is&
Pattern:

Pattern task:
Composite, role: Leaf

It represents a variable, evaluate() gives the
value.

Figure 5. Comments

in addition to the usual documentation. The resulting docu-
mentation is well structured and is linked to pattern descrip-
tion, thus making it easy to understand the program.

3.2. Documenting Design Patterns in Code Eases
Program Maintenance

Most of the people documenting patterns are motivated
by the following values: The longer a pattern has been used
successfully, the more valuable it tends to be, because new
techniques are often untested. Finding a pattern is a mat-
ter of discovery and experience, not an invention. A new
technique can be documented as a pattern, but its value is
known only after it has been tested.

The idea of design patterns is appealing and practition-
ers report subjectively that design patterns simplify com-
munication between designers by providing a concise com-
mon vocabulary, can be used to record and reuse best prac-
tices, and “capture the essential parts of a design in compact
form” [7].

However, no rigorous test has yet been presented that
design patterns are useful. Now, we decide to reference the
experiment that investigates the benefits obtained from ex-
plicit use documentation of design patterns, which is de-
scribed in [10]. You will find an extensive description and
evaluation of the experiment in [10]. (See table 6)

As we see, pattern documentation helped to improve ei-
ther task completion time or solution quality, depending on
the kind of task and program. In a quantitative sense, these
results are not dramatic. But given the conservative design
of experiment [10], they indicate that documenting design
patterns in software can improve program maintenance.

It is unclear how these results will scale to more experi-
enced software engineers and to programs of industrial size
and complexity, but we believe that in situations where de-
sign patterns are relevant during maintenance, one would
see benefits from pattern documentation that are at least as
large as in the experiment.

Therefore, from this experiment, we recommend that
when design patterns are used they should be explicitly doc-
umented in the program code. In addition, we also may

7

Figure 6. Table1

find other widely cited benefits gained by using patterns and
document design patterns are [11]:

• Improved communication between (and within)
project teams: The improvements in communication
come at two levels: (1) when discussing designs,
developers can speak in terms of the patterns they
wish to use, rather than in terms of the specifics
of the implementation; (2) because the patterns are
language-independent, experience gained by one
project team can potentially be reused by another
in a different context. Thus, an organization that
has integrated design patterns into its development
strategy can expect improved communication because
of a shared vocabulary and concepts.

• Better design documentation: Patterns facilitate design
documentation by providing a high level of abstrac-
tion.

• Since pattern descriptions explicitly enumerate conse-
quences, they serve to record engineering tradeoffs and
design alternatives: One of the intrinsic benefits of de-
sign patterns is that they not only document good de-
signs, but also why the designs are good and explicitly
what consequences result from its implementation.

• Patterns explicitly capture knowledge that experienced
developers understand implicitly: Because of patterns
written by developers knowledgeable in a given area,

they provide a means whereby the knowledge gained
can be disseminated to others. This leads to many of
the other advantages, including aiding new developers
to get up to speed, and eliminating some of the loss of
knowledge as team members leave the group.

• Standardized solutions to recurring design problems:
Code maintenance is potentially easier on code devel-
oped using design patterns because the same strategies
are used to resolve recurring problems.

• Documentation of successful software: Design pat-
terns have the potential to accomplish much more than
merely document how to design software. Because
they are the result of actual experiences, they serve as
documentation of successful software projects - which
has been sorely missed in the traditional computer sci-
ence literature. While studying patterns trains devel-
opers to design quality software, merely reading them
has an equally significant benefit - providing an inter-
esting perspective into a successful software project.

• Developing and maintaining a list of patterns: Many
of the advantages discussed in the previous section re-
quire that all developers in a project team (or organi-
zation) share the same set of patterns. This entails that
someone (or some group of people) be responsible for
selecting which patterns to start with - and over time
maintain this list by adding and removing patterns as
needs change.

8

Therefore, the use of design patterns has the potential to
deliver some significant benefits to the development envi-
ronment. Design patterns are a form of high-level reuse,
mainly the reuse of design. By reusing proven designs, de-
signers need not solve every problem from first principles.
They need not design all solutions from scratch; thus, it is
possible to reduce time required for design. Reusing proven
designs also helps to maintain characteristics of good design
too.

3.3. Limitations and Pitfalls

3.3.1 Over-engineering

Commonly, most of people believe that design pattern can
help them to develop flexible frameworks and build ro-
bust and extensible software systems. Hence, the system
developer will make their code more flexible or sophisti-
cated than system needs to be. As a result, they are over-
engineering their work. So they waste development time
and money.

Over-engineering tends to happen quietly: Many archi-
tects and programmers aren’t even aware they do it. And
while their organizations may discern a decline in team pro-
ductivity, few know that over-engineering is playing a role
in the problem [1].

We give the following example about over-engineering.
Suppose that a man have a program to do is: validation
on user input, checking whether the input value is numeric
value. One of team member considered which patterns
could help. Building a class for the handle validation came
to mind, and he suggested build a class for each different
type of validation. For example, user id validations have a
class, validation on email address or numeric have a class.
His partner’s response with this suggestion: ”Building a
class for validation here would be like applying a big and
heavy hammer when a few light taps with a small hammer
would do.” His solution was to create a common class to
group all validation functions together. Building a com-
mon class for validation took no time to program, since it
was less than 20 simple lines of code. If we build a dif-
ferent class for different type of validation, it would have
involved creating more than 50 lines of code. Actually, two
approaches can solve the problem. But, the latter approach
do some repetitive code on the program, it is unnecessary
to do much on this stage. Therefore, this approach is over-
engineering ring the works.

Therefore, we give the following solution to over-
engineering. To compensate for triggering problem af-
ter learning pattern, two methods should be carried out to
avoid over-engineering: Test-first programming and merci-
less refactoring.

Test-first programming and merciless refactoring, which
are two of the many excellent Extreme Programming(XP)

practices, can dramatically improved the way people us-
ing design pattern in software development. Test-first pro-
gramming is that you start with a small test, then write just
enough code to implement it, and continue with the next test
until the code is done. This test-first programming enabled
us to make a primitive piece of behavior work correctly be-
fore evolving it to the next necessary level of sophistication.
Merciless refactoring can help us to weed out inessentials,
clarifying ambiguities and consolidating ideas. When we
mercilessly refactor, you relentlessly poke and prod your
code to remove duplication, clarify and simplify.

The above two ideas have ability to keep track what we
are going on and what are the next step in software devel-
opment cycle.

3.3.2 Limitation of Documenting Patterns

We found out that only a very small fraction of projects use
design patterns for documenting the changes in the source
code. And, design patterns are more likely to be used in
projects with bigger developer teams (¿7 developers). This
is due to design pattern can facilitate communication be-
tween developers.

For the number of different design patters used in a
project and their position in the software life-cycle only a
very small correlation was found. Therefore, in the projects
in our data set we found no evidence that design patterns
are widely used for refactoring. Additionally, we found ev-
idence that developers who mainly develop new functional-
ity are more likely to use patterns than developers who spe-
cialize in modifying existing code. Reasons for this behav-
ior could be that the analyzed projects are still too early in
their life-cycle to make major restructuring necessary. An-
other reason could be that open source development favors
more flexible design by frequent modifications and expan-
sion of the code and therefore does not need explicit refac-
toring as some custom-made systems do [5].

This first study of the application of design patterns in
real-world software development projects has many limita-
tions, e.g. it does not include additional information on the
quality of the produced code, the code itself is not analyzed
using object-oriented metrics and the actual effort used for
the projects is unknown. Also the projects are open source
projects which means that the development process differs
significantly from industrial projects. But even with this
limitation the quantitative results confirm the most impor-
tant claim of design patterns, namely that design patterns
are used to facilitate communication between developers
which, without doubt, is also vital for industrial software
development.

9

3.3.3 Fallacies and Pitfalls (Patterns are dead?)

How do you know that you have a new pattern to document?
You don’t unless you read through all the pattern literature
to see if it’s already there or not. That’s onerous. Patterns
are often misapplied. I don’t know how many design specs
I’ve seen now that treat them as clipart. They don’t work as
clipart, but people who apply them that way soon lose the
desire to pursue them any further.

One of the major threats to successful usage of patterns
is that like almost all hot topics, it is over hyped. Design-
ers should not treat design patterns as ”must have” and use
patterns regardless of applicability. This leads to the mis-
use of patterns in situations where designers do not know
when to use or not to use patterns. An organization needs
to have an organizational-wide design pattern program in
order to enjoy the full potential of patterns. If one of the
benefits of using patterns is to provide a common vocabu-
lary for communication among designers, then all designers
should be well verse with the vocabulary. In order to fulfill
this benefit, all developers have to be familiar with the same
collection of patterns to a certain degree. This leads to an-
other concern: there is not yet a methodological support for
organizational-wide use of patterns. Issues like documenta-
tion, training, and assessment for the development team has
to be dealt with.

The methodological support is imperative in a multi-
designer environment, where a uniform level of knowledge
is preferred. Imagine if an organisation has fifty develop-
ers but only eight of them know patterns. The method de-
scribes processes and methods required to achieving such
environment. However, there is not yet a methodologi-
cal support for using patterns which also deals with pat-
terns mining, documenting and the use of patterns. Suc-
cessful organisational-wide patterns program such as those
in AG Communication Systems (Goldfedder and Rising,
1996, Rising, 1996) are mainly due to very well planned
approaches.

Recent rush to patterns causes increasing effort to pat-
terns mining. One possible consequence will be the increas-
ing number of patterns discovered. The problem that de-
signers will face is getting familiar with design patterns and
choosing which one to use. One solution is to select and use
only a few common design patterns and learn more slowly
over time.

Designers have to keep in mind that patterns are not de-
sign strategies. The aim of design patterns is to solve a de-
sign problem concerning a particular context. For exam-
ple, ”Reduce coupling among classes” (which is a design
strategy) is not a design pattern. One most important thing
that all pattern users should be aware of - patterns are not
the long-sought-after silver bullet. While patterns are good
ways of experience reuse, they are still too high-level to
support direct code reuse, a good pattern may still rendered

useless when implemented wrongly. In addition, the issue
of choosing the right pattern depends on the judgement of
designers.

4. Conclusions

Design patterns are widely recognized as important soft-
ware development methods. Patterns are most useful in un-
derstanding software when they are well documented. In
this report, we first classify the design pattern and indicate
the relationship between different design pattern. We also
give some examples of applying design pattern in projects.
Furthermore, we introduce that how we document the de-
sign pattern well. Finally, we make some investigation on
the limitations and pitfalls on using and documenting design
pattern.

5. Future Work

What can you do if you are interested in patterns? Use
them and look for other patterns that fit the way you design.
Moreover, look for patterns you use, and write them down.
Make them a part of your documentation. Show them to
other people. In fact, finding relevant patterns is nearly im-
possible if you don’t have practical experience.

A body of literature on design patterns has emerged.
These patterns identify, document, and catalog successful
solutions to common software problems. The patterns cap-
tured by this literature have already had a significant impact
the construction of commercial software. In these systems,
patterns have been used to enable widespread reuse of com-
munication software architectures, developer expertise, and
object-oriented framework components.

Over the next few years, we think a wealth of software
design knowledge will be captured in the form of patterns
and frameworks. These patterns and frameworks will span
domains and disciplines such as concurrency, distribution,
organizational design, software reuse, real-time systems,
business and electronic commerce, and human interface de-
sign.

Focus in the future:

• Integration of design patterns with frameworks and
other design paradigms.

• Integration of design patterns to form pattern lan-
guages.

• Integration with current software development meth-
ods and software process models.

References

[1] S. Chan. Design pattern: concept and application.

10

[2] J. Coplien. Software design patterns: Common questions
and answers.in The Patterns Handbook: Techniques, Strate-
gies, and Applications, L. Rising, Ed. New York: Cambridge
University Press.

[3] A. Cornils and G. Hedin. Statically checked documentation
with design patterns.in Proc. of 33rd International Confer-
ence on Technology of Object-Oriented Languages (TOOLS
33), Mont-Saint-Michel, France, 2000.

[4] R. J. J. V. Erich Gamma, Richard Helm.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison
Wesley Longman, Inc., Addison Wesley Longman, One Ja-
cob Way, Reading, MA 01867, 1995.

[5] M. Hahsler. A quantitative study of the application of design
patterns in java.

[6] R. E. Johnson and V. F. Russo. Reusing object-oriented
designs. Technical Report Technical Report UIUCDCS
911696. , University of Illinois, May 1991.

[7] R. C. L. D. G. M. F. P. K. Beck, J.O. Coplien and J. Vlis-
sides. Industrial experience with design patterns.In 18th
Intl. Conf. on Software Engineering, Berlin, IEEE CS press,
pages 103–114, March 1996.

[8] W. F. T. P. B. e. a. Lutz Prechelt, Barbara Unger. A con-
trolled experiment in maintenance comparing design pat-
terns to simpler solutions.IEEE Transactions on Software
Engineering, 2000.

[9] S. Microsystem. In one task the average time reduced
from 55 to 47 javadoc tool home page.available at
http://java.sun.com/j2se/javadoc/, 2002.

[10] L. Prechelt. An experiment on the usefulness of design
patterns: Detailed description and evaluation.Technical
Report,Fakultat fur Informatik, Universitat Karlsruhe, Ger-
many, ftp.ira.uka.de/pub/techreports, September 1997.

[11] D. T. S. Ross A. McKegney. Patterns for pattern integration.
Queen’s University, Kingston, Ontario Canada, 2000.

[12] M. Torchiano. Documenting pattern use in java programs.
Norwegian University of Science and Technology (NTNU),
Sem Slands vei 7-9, N-7491 Trondheim, Norway.

[13] B. P. Walter Zimmer, Forschungszentrum Informatik. Rela-
tionships between design patterns.In J. O. Coplien and D.
C. Schmidt, editors, Pattern Languages of Program Design,
page 345364, 1995.

[14] R. J. Wirfs-Brock and R. E. Johnson. Surveying current
research in object-oriented design.CACM, 33(9), page
105123, September 1990.

11

