Microsoft
Data Patterns

Philip Teale, Microsoft Prescriptive Architecture Guidance

Christopher Etz, Simple Fact
Michael Kiel, Simple Fact
Carsten Zeitz, Simple Fact

7))
)
&
)
O
©
-
)
od
p)
&
S
)
-+
-+
©
el

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, places or events is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2003 Microsoft Corporation. All rights reserved.
Version 1.0

Microsoft and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name, email
address, logo, person, places, or events is intended or should be inferred.

Contents

Preface
Who Should Read This BoOKo i e e e e it e e e
How This Book Is Organized. e e e e et et e e e
Documentation Conventions ittt e e e
COMMUNITY & oot e e e e e e e e e
Feedback and Support e e
ACKNOWIEOEMENTS . . . ot e e e e

Data Patterns

Patterns Document Simple Mechanisms
Patterns as Problem-Solution Pairs
Patterns at Different Levelso i e e e
Simple Refinement e e e

Common Vocabularyo e e e
Concise Solution Description i e e

SUMIMAIY « e it e et e e e e e e e

Organizing Patterns

Pattern of Patterns e e
Pattern Clusters e e e e e
Different Levels of Abstraction. i i e e

Architecture Patterns. e

DesSign Patterns . .. oo e e e e

Implementation Patterns e e
VI EWPOINTS . . e e e e e
The Pattern Frame e e e e
CoNStraints e e e e
Pattlets. . . . e e e e
SUMIMAIY « e it e e e et e e e e e e

iv Contents

Data Movement Patterns 23
Architecture: Data Movement Root Patterns 26
Architecture: Move Copy of Data Approachesc.. .. 28
Design and Implementation: Data Replication Patterns 30
Data Replication Deployment. i e e 32
Data Movement Patterns e e e e 34
Move Copy Of Datattt et e e e e e e e 38

CON X, . ot e e e 38
Problem . .. e e e e e e 38
FOICES . it e e e 38
SOIULION . e e e e e 39
Resulting Context i e 43
EXampPIEs . . o e e e e e e e 44
Related Patterns e e e e e 47
Data Replication oot e e e e e e e 48
CON X, . ot e e e 48
Problem . .. e e e e e e 48
FOICES . it e e e 48
SOIULION . e e e e e 49
EXaMPIES . .ot e e e e e 53
Resulting Context i e 56
Related Patterns e e e 58
Master-Master Replication. i i e e e e e 59
CON X, . ot e e e 59
Problem . .. e e e e e 59
FOICES . it e e e 59
SOIULION . e e e e e 60
Example: Synchronizing Laptops and a Central Database 64
Resulting Context i e 65
Related Patterns i e e e 66
ACKNOWIEAgMENTS . . . ot e 66
Master-Slave Replication i e e e 67
CON X, . ot e e e 67
Problem . .. e e e e e 67
FOICES . it e e e 67
SOIULION . e e e e 67
EXamMPIES . .ot e e e e e 69
Resulting Context i e 70
Related Patterns i e e e 72
Master-Master Row-Level Synchronization, 73
CON X, . ot e e e 73
Problem . .. e e e e e 73

FOICES . i it e e e e e 73

Contents v

SOIULION . o e e e e 74
EXamMPIE . .t e e e e e 78
Resulting Context i e 81
Operational Considerationsottt ittt e e e e e e e 81
Related Patterns e e e e 81
ACKNOWIEAgMENTS . . . ot e e 82
Master-Slave Snapshot Replication it 83
CON X, . ot e e e 83
Problem . . e e 83
FOICES . it e e e e e 83
SOIULION . o e e e e 84
EXamMPIE . .t e e e e e 85
Resulting Context i e e 86
Security Considerations. i i e e 86
Related Patterns e e e e 87
Capture Transaction Details. oo it i e e e e e e e e e e e 88
CON X, . ot e e e 88
Problem . . e e e 88
FOICES . it e e e e e 88
SOIULION . o e e e e 88
Resulting Context i e e 91
VaraNtS .. . e e e e e e 92
Related Patterns e e e e 93
Master-Slave Transactional Incremental Replication 94
CONtEXE. . ot e e e 94
Problem . . e e e 94
FOICES . i i e e e e 94
SOIULION . o e e e e 95
EXamMPIE . .t e e e 99
Resulting Context i e e 99
Security Considerations. i e e e 100
Operational Considerationso ittt it e e e e e e e 100
VaraNtS . . e e e 101
Related Patterns o e e 102
Implementing Master-Master Row-Level Synchronization Using SQL Server 103
CON X, & ot e e e e 103
BaCKgroUNd e e 103
Implementation Strategy i e e 109
EXamPle . . e e e e e e e e e e 111
Resulting Contexto e e 118
Testing Considerations i e e e 118
Security Considerations. i e e e 118
Operational Considerationso ittt it e e e e e e e 119

Related Patternso i e e e 119

vi

Contents

Implementing Master-Slave Snapshot Replication Using SQL Server
L0073 (- ¢
BacKground e e
Implementation Strategy i e
EXamMPIE . o e e e e e e e e e e
Resulting Contexto e e e e
Testing Considerations i e e e
Security Considerations. e e
Operational Considerations ittt it e e e e e e e
Related Patterns e e e e

Implementing Master-Slave Transactional Incremental
Replication Using SQL Serverttt it e e e
L0073 (- ¢
BacKground e e
Implementation Strategy i e e
EXamMPIE . e e e e e e e e
Resulting Contexto e e e e
Testing Considerations i e e e e
Security Considerations. i e e e
Operational Considerationsottt i e e e e e e
Related Patterns e e e e

Master-Slave Cascading Replication. i i
L0073 (- ¢
Problem . . e e e e e
FOrCES . o o e e e e
SOIULION . o e e e e e
EXaMPIES . e e e e e e e
Resulting Contexto e e e
Operational Considerationsottt i e e e e e e
Related Patterns e e e e

Patterns and Pattlets
Glossary

Additional Resources

171
175
183

Preface

Welcome to Data Patterns. This guide briefly introduces patterns and describes a new
organizational approach that categorizes them according to various viewpoints and
relationships. The guide then presents 12 patterns that span several of these view-
points, and explains how they can be integrated into an enterprise data solution.

Increasingly, software design professionals are using patterns to efficiently share the
important architectural tradeoffs and design decisions they make while architecting
and building enterprise solutions. Christopher Alexander first used patterns to
describe architecture and design in his book, The Timeless Way of Building; however,
his patterns were for towns, buildings, and rooms. Software design professionals
soon recognized the value of patterns as a language for sharing design experiences.

Over the past decade, the burgeoning patterns community has discovered patterns
in many areas of system architecture and software development. This book em-
braces the continuing work of the patterns community and extends it by showing
how to apply patterns using Microsoft® SQL Server™.

Early feedback from database professionals has confirmed that patterns are invalu-
able tools for sharing expertise. Patterns give developers and architects a common
language to help bridge the gap between their two disciplines. The authors hope
these patterns prove useful to you and that you will contribute to the growing
patterns community. There is much more work to be done.

Who Should Read This Book

Most readers of this book should fall into one of the following categories:

® Database designers, database administrators, data administrators, architects,
designers, and developers who are new to patterns

® Database designers, database administrators, data administrators, architects and
designers who are already experienced in using patterns to build data solutions

For those in the first group, the first two chapters are very important in helping you
understand why and how you should use patterns. These chapters are essential in
understanding these data patterns. You are likely to discover that you have imple-
mented some of these patterns before without knowing that they were patterns.

Readers in the second group are familiar with most of the content in Chapter 1,
“Data Patterns.” Chapter 2, “Organizing Patterns,” introduces new material on how
Microsoft is organizing its pattern repository. Most of the patterns in Chapters 3 will
be familiar to you; however, the implementation examples provided should help
you apply them to SQL Server.

viii Preface

How This Book Is Organized

Chapter 1, “Data Patterns,” introduces the notion of a pattern, explains how a
pattern documents simple, proven mechanisms, and shows how collections of
patterns provide a common language for developers and architects. To illustrate
these concepts, this chapter applies abbreviated versions of actual patterns to real-
life development situations.

Chapter 2, “Organizing Patterns,” explains how patterns emerge at different levels
of abstraction and across a variety of domains. This chapter explores pattern levels
in detail and outlines an organizing frame that helps you find relevant patterns
quickly. The chapter then demonstrates how patterns provide a vocabulary to
efficiently describe complex solutions without sacrificing detail.

Chapter 3, “Data Movement Patterns,” describes architecture, design, and imple-
mentation patterns related to how to create and manage copies of data to efficiently
to fulfill your solution requirements. The current set of patterns discusses the topic
of data replication as a means of meeting data needs, such as providing local copies
of data to distributed or intermittently-connected applications, or for other purposes
such as disaster recovery.

Appendix A, “Patterns and Pattlets,” lists all of the patterns and pattlets defined in
this pattern catalog. Pattlets are actual patterns to which this guide refers, but which
it does not discuss in detail. The concept of pattlets is discussed in Chapter 2,
“Organizing Patterns.”

These data patterns use many data terms the meaning of which may vary from case
to case. The Glossary is designed as a convenient reference to these terms.

Documentation Conventions

This guide uses the following style conventions and terminology.
Table 1: Style Conventions Table

Element Meaning

Bold font Objects, classes, methods, predefined functions, and events.

Italic font Names of patterns and pattlets referenced in this guide. New terminology
also appears in italics on first use.

Monospace font Code examples.

Note Alerts you to supplementary information.

Hint Alerts you to supplementary information that is helpful, but not essential

to the task at hand.

Preface ix

Community

The patterns in this guide are part of a new Patterns community on GotDotNet.
GotDotNet is a Microsoft NET Framework Community Web site that uses
workspaces in an online collaborative development environment where .NET
developers can create, host, and manage projects throughout the project life cycle.
You can also use this Patterns community to post questions, provide feedback, or
connect with other users for sharing ideas.

Access to the Patterns community is available at http://gotdotnet.com/team/architecture
/patterns.

Feedback and Support
The authors would appreciate your feedback on this material. In particular, they
would be grateful for any guidance on the following topics:
® Is the information that is presented in this guide useful to you?

® Js this information presented in the correct sequence and with the appropriate
level of detail?

® Are the chapters readable and interesting?
® Opverall, how do you rate the material?
Send your feedback to the following e-mail address: pnppatfb@microsoft.com.

Please be aware that this is not a technical support alias; to obtain technical support
for Microsoft products and technologies, visit http://support.microsoft.com.

The patterns documented here are designed to jump-start the architecture and
design of enterprise applications. Patterns are simple mechanisms that are meant

to be applied to the problem at hand and are usually combined with other patterns.
They are not meant to be plugged into an application. Example code is provided “as
is” and is not intended for production use. It is only intended to illustrate the pat-
tern, and therefore does not include extra code, such as exception handling, logging,
security, and validation. Although this deliverable has undergone testing and review
by industry luminaries, it is not supported like a traditional Microsoft product.

Acknowledgments

Many thanks to the following advisors who provided invaluable assistance:
® Ward Cunningham, Cunningham & Cunningham, Inc.

® Martin Fowler, ThoughtWorks, Inc.

e David C. Hay, Essential Strategies, Inc.

® Ralph Johnson, University of Illinois at Urbana-Champaign

X

Preface

Thanks also to the many contributors who assisted us in the production of this book,
in particular:

Mohammad Al-Sabt, Microsoft Prescriptive Architecture Guidance
Michael Blythe, SQL Server User Experience

Matthew Evans, Microsoft Prescriptive Architecture Guidance

Mike Ferguson and Colin White, Intelligent Business Strategies, Inc.
Sanjeev Garg, Satyam Computer Services

Steve Kirk, MSDN

Susan Filkins, Entirenet

Prem Mehra; Customer Advisory Team, SQL Server Development

Oliver Sims, Sims Associates

Finally, thanks to the companies that agreed to participate in our user experience test:
Subrata Biswas

Mark Carpenter and Vic Martindale

Brian Monahan and Tony Williamson, Standard Life Assurance Company

Helen Townsend, Reuters

Dave West, Barclays Bank

Data Patterns

“...since my intention is to write something useful for anyone who understands
it, it seemed more suitable to me to search after the effectual truth of the matter,
rather than its imagined one.” — Niccolo Machiavelli in The Prince, 1532

Although managing data gets less fanfare than other IT disciplines, it is crucial to
the well-being of enterprise systems. The architecture, design, and implementation
of data management systems are also very complex. The goal of data patterns is to
directly address this complexity, and provide solutions to common problems, often
using relatively simple mechanisms. These patterns are based on “the effectual
truth,” as Machiavelli called it, which means that they are based on approaches to
solving the problems that have proven successful.

Data professionals have been working with data patterns for many years, but they
have probably not explicitly recognized this. Until now, very few data patterns have
been formally captured and shared with a wider community. Instead, they continue
to be held within organizations as tacit knowledge, or expressed in the form of
internal standards or guidelines.

These patterns are about the problems faced by those who build the data services

in an enterprise class business solution. They address the need to create the database
designs and the data services that exist invisibly to the applications that use the
data; in other words, the data and services that exist within the data ecosystem.
Patterns are useful to data professionals because they:

® Document simple mechanisms that work.

® Provide a common vocabulary and taxonomy for developers and architects.

® Enable solutions to be described concisely as combinations of patterns.

® Enable reuse of architecture, design, and implementation decisions.

2

Data Patterns

The rest of this chapter introduces the notion of data patterns, explains how a
pattern documents simple, proven mechanisms, and shows how collections of
patterns provide a common language for developers and architects. To illustrate
these concepts, this chapter applies abbreviated versions of actual patterns to
real-life data situations.

Patterns Document Simple Mechanisms

A pattern describes a recurring problem that occurs in a given context and, based
on a set of guiding forces, recommends a solution. The solution is usually a simple
mechanism, a collaboration between two or more data objects, services, processes,
threads, components, or nodes that work together to resolve the problem identified
in the pattern.

Note: Although the underlying mechanisms described in these patterns are conceptually
simple, in practice their implementation can become quite complex. The implementation
requires skill and judgment to tailor general patterns to fit specific circumstances. In addition,
the pattern examples in this chapter are highly abbreviated for the purpose of introduction; the
actual patterns in subsequent chapters are much more detailed.

Consider the following example:

You are building a laptop solution which contains an application that salespeople
use to give customers quotations for orders (OrderQuote). It is important that the
applications can work in a disconnected environment. The salespeople, therefore,
require local data services on their laptops (for example, CustomerDetails,
Orders, Price, Products, and BusinessRules tables). It is important that the
quotations are as accurate as possible. It is also important that a quote given by
any particular laptop application is consistent with one that another laptop
would produce within a defined period of time. How do you structure your
design so that your local data is sufficiently current and any work done is consis-
tent within a defined time period no matter which laptop it is performed on?

A simple solution to the OrderQuote problem is to create a parameterized data
replication service that copies only the required data to a particular laptop on a
periodic basis. The parameters identify the data requirements of a particular sales-
person. The data is copied from a shared database on a server. In cases where the
same data is required on more than one laptop, a master copy of that data is taken
at a point in time and then it is copied to all laptops to ensure consistency of
application results.

Chapter 1: Data Patterns 3

It is likely that you have solved problems like this in a similar manner, as many
other designers have. If you have, you were providing data copies in a manner that
this guide identifies as the Master-Slave Snapshot Replication design pattern.

Patterns as Problem-Solution Pairs

The Master-Slave Snapshot Replication pattern does not mention an OrderQuote
process, or CustomerDetails tables. Instead, the pattern looks something like the
following abbreviated example.

Comparing the abbreviated pattern example in Figure 1.1 (on the next page) with
the solution outlined above illustrates the difference between the pattern, which is

a generalized problem-solution pair, and the application of the pattern, which is a
very specific solution to a very specific problem. The solution, at a pattern level, is

a simple, yet elegant, collaboration between data stores. The general collaboration
in the pattern applies specifically to a data replication service, which provides the
mechanism that controls the copying of the data. Clearly, you can apply the same
pattern to countless situations by modifying the pattern slightly to suit specific local
requirements.

Written patterns provide an effective way to document such simple and proven
mechanisms. Patterns are written in a specific format, which is useful as a container
for complex ideas. As Figure 1.1 shows, a pattern is defined as a three-part relation-
ship between a general problem, its context, and its solution, which is based on real-
world experience, and is documented in a consistent, formal structure.

Although pattern writers usually provide implementation examples within these
generalized patterns, it is important to understand that there are many other correct
ways to implement these patterns. The key here is to understand the guidance
within the pattern and then customize it to your particular situation. For example,
the implementation examples provided in this guide are based on Microsoft® SQL
Server™. If you need to implement the pattern using a different product, you can do
so. However, an implementation that is optimized for another database manage-
ment system might look quite different, and while these two implementations could
differ significantly, both would be correct.

4

Data Patterns

Master-Slave Snapshot Replication

Context

You are designing a replication solution for the following requirements:

= An entire replication set is to be replicated from a single source to one or
several targets.

= Changes to the target data which may have occurred since the last

transmission will be overwritten by a new transmission.

Problem
How do you move an entire replication set from source to target so that is

consistent at a given point in time?

Solution

Make a copy of the source replication set at a specific time (this is known as a
snapshot), replicate it to the target and overwrite the target data. Thereby all
changes on the target replication set are dropped and replaced by the new

source replication set.

A Snapshot Replication uses a single replication building block, consisting of
the source, the replication link with Acquire, Manipulate and Write, and the

target as shown.

Replication Building Block

MM —

Replication Link Target

Source

Figure 1.1
Master-Slave Snapshot Replication pattern, abbreviated

Chapter 1: Data Patterns 5

Patterns at Different Levels

Patterns exist at many different levels of abstraction. Consider another example, this
time at a higher level of abstraction than design:

You are architecting a common approach to be the basis for how you move
copies of data around in your organization. You have to deal with data that is
held on many different platforms, is structured in different schemas, has policies
and constraints on its relationships, has differing security requirements, has
different application uses, and has different operational characteristics. How do
you organize your data copying at a high level to be flexible, loosely coupled,
and yet sufficiently cohesive?

The Move Copy of Data architecture pattern describes a solution to this problem,
which involves using one fundamental architectural building block to solve the
problem. The block reflects that fundamentally, the solution always consists of a
source data store that contains the data to be copied and moved; a link across which
it moves and which contains the same three basic services; and a target data store
where the copy is to be held. The block is expressed as a pair-wise solution, but it
can be applied, fractal-like or in a network-structure, to solve data copy problems
of varying complexity. When you do this, you need to maintain discipline about the
knowledge of the resulting copy infrastructure so you can understand the prov-
enance of copied data and the impact of changing parts of it. Again the common
approach helps you to solve this problem, but it does not do it for you.

Data Movement Building Block

2] g

Source Data Movement Link Target
A = Acquire
M = Manipulate
W = Write

Mvmt. Set = Movement Set

Figure 1.2
Data Movement Building Block

6

Data Patterns

If you always architect data movement systems this way, then you employ this
pattern already. Even so, there are many reasons why you might want to understand
the patterns that underpin this architectural approach. You may be curious about
why systems frequently are built this way, or you may be looking for more optimal
approaches to problems that this pattern does not quite resolve. In either case, it is
worth examining the patterns and mechanisms at work here.

The reason that this approach is so commonly used is that it deals with complexity
well by using a layered approach to dividing up the problem. In this case, the layers
are instances of the source-target pairings (where the pairings are not constrained to
1:1 relationships). This simple strategy of organizing to manage complexity helps to
solve two challenges: the management of dependencies and the need for exchange-
able parts. Building environments without a well-considered strategy for depen-
dency management leads to brittle and fragile solutions, which are difficult and
expensive to maintain, extend, and substitute. Enterprise Solution Patterns Using
Microsoft .NET contains an architectural pattern called Layered Application, which
contains a more detailed explanation of the benefits of a layered approach.

Simple Refinement

As you will see in later chapters, Master-Slave Snapshot Replication is a refinement

of Master-Slave Replication, which is in turn a refinement of Move Copy of Data. This
means that the context, forces, and solution identified in Master-Slave Replication still
apply to Master-Slave Snapshot Replication, but not the other way around. That is, the
Master-Slave Replication pattern constrains Master-Slave Snapshot Replication, and the
Master-Slave Snapshot Replication pattern refines the Master-Slave Replication pattern.
This pattern relationship is useful to manage complexity. After you understand one
pattern, you must only understand the incremental differences between the initial
pattern and patterns that refine it. Another example should help to illustrate the
concept of refinement:

The laptop application that you built has been very successful and its use is
expanding. Also, the company is extending it products and services. Now you
want to copy data to more laptops and the amount of data required is larger.
Currently, you deliver all the data that the laptop application needs every time
you replicate. Continuing with your present strategy would put an unacceptable
load on the infrastructure. How do you provide the data copies to the expanded
customer base within the constraints if your infrastructure?

One solution to this problem is to extend Master-Slave Replication by adding an
additional capability: the ability to deliver only the changes that have occurred at
the server to the copied data since the last replication to the target. Any unchanged
data is not copied again. If the percentage of data that is changed between replica-
tions is relatively low, this solution works well. One solution for this is captured in
Master-Slave Transactional Incremental Replication.

Chapter 1: Data Patterns

Notice the relationships between these patterns (see Figure 1.3). Move Copy of Data
introduces a fundamental strategy for moving copies of data. Data Replication and
Master-Slave Snapshot Replication progressively refine this idea and constrain it to a
certain type of one-way replication that replaces all of the data at the target. Master-
Slave Transactional Incremental Replication refines Master-Slave Replication to different
type where only data changes are copied.

Move Copy of Data

<< refines >>

Data Replication

<< refines >>

Master-Slave
Replication

<< refines >> << refines >>

Master-Slave
Transactional
Incremental Replication

Master-Slave Snapshot
Replication

Figure 1.3
Refinement of related patterns

Adding functions to specific layers is not the only way to manage this growing
complexity. As complexity warrants, designers often create additional layers to
handle this responsibility. For example, some designers would instead choose to
adopt a layered approach to the infrastructure problem by adding intermediary
copy stores into the infrastructure. This allows the data to be copied out in waves
first to the intermediary stores and then to the set of laptops serviced by each inter-
mediary. This solution is described in the Master-Slave Cascading Replication pattern.

7

8

Data Patterns

When grouped together, these variations form part of a cluster of patterns (see
Figure 1.4) that visually represents common approaches to copying data. Clustering,
used in this context, simply means a logical grouping of some set of similar patterns
and their relationships. Usually the relationship is one of refinement, as shown
above. Other relationships can be added, however. This guide adds a relaxed rela-
tionship, which means “can use.” So Master-Master Replication can use Master-Slave
Snapshot Replication, but there is no refinement between the patterns. This notion of
a cluster is quite useful for expanding the view of patterns to encompass an entire
solution, and for identifying clusters of patterns that address similar concerns in the
solution space. Chapter 2, “Organizing Patterns,” discusses clusters in more detail.

Common Vocabulary

While considering the Move Copy of Data, Data Replication, Master-Slave Replication,
Master-Slave Snapshot Replication, Master-Slave Transactional Incremental Replication,
and Master-Slave Cascading Replication patterns, you probably noticed that patterns
also provide a powerful vocabulary for communicating software architecture and
design ideas. Understanding a pattern not only communicates the knowledge and
experience embedded within the pattern, but also provides a unique, and hopefully
evocative, name that serves as shorthand for evaluating and describing software
design choices.

For example, when designing a data copy environment, a developer might say, “I
think the pricing information should be copied using Master-Slave Snapshot Replica-
tion and deployed using Master-Slave Cascading Replication.” If another developer
understands these patterns, he or she would have a very detailed idea of the design
implications under discussion. If the developer did not understand the patterns, he
or she could look them up in a catalog and learn the mechanisms, and perhaps even
learn some additional patterns along the way.

Patterns have a natural taxonomy. If you look at enough patterns and their relation-
ships, you begin to see sets of ordered groups and categories at different levels of
abstraction. Chapter 2 further expands and refines this taxonomy.

Over time, developers discover and describe new patterns, thus extending the
community body of knowledge in this area. In addition, as you start to understand
patterns and the relationships between patterns, you can describe entire solutions
in terms of patterns.

Chapter 1: Data Patterns

9

Database

Maintain
DEVE
Copies
App-
Managed
DEVE
Copies

Architecture

Data
Replication

A Deployment

Topologies
for Data
Copies

M-M
M-S
overe) (‘snapano
ynet Repl.
ization

Capture
Transaction
Details

Incremental
Repl.

M-S
Cascading
Replication

M-M M-S
Row-Level Snapshot
Synchronization Replication
Using SQL Using SQL
Server Server

Implementation

Transactional
Incremental
Repl. Using
SQL Server

Pattlet, NOT pattern

O Pattern

Patterns have
inheritance

= =+« Patterns have relaxed
relationship

Figure 1.4
A cluster of data patterns

A = Application
| = Infrastructure

10 Data Patterns

Concise Solution Description

In this guide, the term solution has two very distinct meanings: first, to indicate part
of a pattern itself, as in a problem-solution pair contained within a context; second,
to indicate a business solution. When the term business solution is used, it refers to a
software-intensive data processing system that is designed to meet a specific set of
functional and operational business requirements. A software-intensive data pro-
cessing system implies that you are not just concerned with software and data; you
must deploy this software and data onto hardware processing nodes to provide a
holistic technology solution. Further, the software under consideration includes both
custom-developed software and purchased software infrastructure and platform
components, both of which have data needs and all of which you integrate together.

Summary

This chapter introduced the concept of a pattern, explained how patterns document
simple, proven mechanisms, and showed how patterns provide a common language
for designers and architects. Chapter 2 explains how to organize your thinking
about patterns, and how to use patterns to describe entire solutions concisely.

Organizing Patterns

“Each pattern then depends both on the smaller patterns it contains, and on the
larger patterns within which it is contained.” — Christopher Alexander in The
Timeless Way of Building

An innovation in one area of technology often fuels a breakthrough in another area.
Radar technology turned into a cooking device: the microwave oven. The Internet
itself was originally designed as a military communications network with resilience
against single points of attack and has since turned into the world’s largest reposi-
tory of knowledge. Similarly, patterns, originally applied to building and town
architecture, were quickly embraced by the software development community as

a means to describe complex software systems.

Today there are dozens of patterns related to software with more emerging daily.
This abundance of patterns creates a new set of challenges. How can a developer
identify those patterns that are most relevant to the task at hand? Is the collection
of patterns sufficient to describe complete solutions?

This chapter answers some of these questions by demonstrating how to:

Identify relationships between patterns.

Group patterns into clusters.

Identify patterns at various levels of abstraction.

Apply patterns to multiple aspects of a solution.

Organize patterns into a frame.

Use patterns to describe solutions concisely.

12

Data Patterns

Pattern of Patterns

One reason the object-oriented programming community embraced patterns so
emphatically is because patterns describe relationships. The base element of object-
oriented programming is a class. However, a single class is not very meaningful
apart from its relationship to other classes that make up the solution. In the same
way, the data world is full of elementary items and their relationships. These could
be entities and attributes, database tables related by foreign keys, original data and
copies of it, and so on.

A pattern about an elementary item is valuable in its own right. But patterns that
pull other patterns together are even more powerful. These pattern clusters turn the
sea of individual patterns into a much more manageable collection of patterns by
highlighting the relationships between the clustered patterns. For example, to
implement Master-Master Replication, you first need to build an exact copy of one of
the masters, and you could use Master-Slave Snapshot Replication to do that. Then you
would have to manage the integrity of the two masters, and you could use Master-
Master Row-Level Synchronization for this purpose. So these three patterns form at
least part of a useful cluster.

Patterns participate in other relationships, too. For example, some patterns are refine-
ments of others. Master-Master Row-Level Synchronization is a specific application of
the concept of Master-Master Replication.

To begin organizing patterns according to relationship, visualize a set of patterns as
small circles (see Figure 2.1):

If you draw a line between each pair of patterns that share some relationship, you
get a picture like the one in Figure 2.2.

The somewhat random collection of circles in Figure 2.2 becomes a connected web of
patterns. When you look at a pattern, you can now identify closely related patterns
and review those as well. You can also identify “neighborhoods” of closely related
patterns and see how they are related to other, more remote patterns.

Chapter 2: Organizing Patterns 13

O
O O o ©O

OO0 00 O O

® ®
0 00 ©

A set of patterns

Figure 2.2
Pattern relationships represented as lines

14 Data Patterns

Pattern Clusters

Charting the relationships between patterns helps you navigate from one pattern to
a set of related patterns. However, it does not yet tell you where to start. If you are
building a data replication solution, should you look at Master-Slave Snapshot Repli-
cation first or Master-Slave Transactional Incremental Replication? A cluster gives you
hints on what to read first by clearly identifying a root for the set. Pattern clusters
are groupings of patterns that relate to a specific subject area. So in this example,
you might need to read either Master-Slave Replication or Data Replication or Moving
Copy of Data depending on how much you've already thought through the issues at
the architecture or design levels.

Cluster

Cluster
Figure 2.3

Pattern clusters

This first release of Microsoft® Data Patterns identifies a Data Movement patterns
cluster, with the Move Copy of Data pattern at its root. Industry luminaries and
customers identified these patterns as having critical importance right now.

Chapter 2: Organizing Patterns 15

Different Levels of Abstraction

Dividing patterns into clusters makes them more manageable. However, recognizing
levels of abstraction by dividing the patterns in a hierarchy from general to more
specific detail is also very useful. It not only categorizes patterns so that people with
different roles can find the patterns that correspond most closely to their area of
interest, but also helps you decide which patterns to consider first. A cluster is then
a hierarchy of patterns with the root pattern at the top.

A good way to categorize the patterns is to divide the pattern graph into the three
levels shown in Figure 2.4.

Architecture

g

Implementation

Figure 2.4

Levels of abstraction

Architecture Patterns

The data architecture patterns express the highest-level design patterns for data
topics. They are completely product-independent and are not meant to be directly
implemented.

Design Patterns

The data design patterns provide a greater level of design detail, while still remain-
ing product-independent. However, they are usually detailed enough to serve as the
basis for a product-specific implementation pattern.

16 Data Patterns

Implementation Patterns

The patterns community refers to more detailed, programming-language-specific
patterns as idioms. This definition works well for software patterns. However, the
scope of this guide is not just software, but software-intensive systems, including the
deployment of the software onto hardware processing nodes to provide a holistic
business solution. Therefore, Microsoft modifies the definition of an idiom given in
Pattern-Oriented Software Architecture (POSA) [Buschmann96] to reflect the broader
scope and relabels these patterns as implementation patterns:

An implementation pattern is a low-level pattern specific to a particular platform.
In the case of the data patterns, we describe how to implement data design
patterns with SQL Server.

Viewpoints

Although the levels of abstractions help to address different user groups, they do
not reflect the fact that a software solution encompasses other viewpoints and special-
izations. Each viewpoint itself can also focus on different levels of abstraction.
Therefore, Microsoft patterns depict the following viewpoints as vertical slices
across the pattern graph: database, application, and infrastructure. There is often a
significant gap between the application and infrastructure viewpoints. Concepts,
abstractions, and skill sets are sufficiently different to warrant the insertion of a
buffer between the two that helps to bridge the divide. This viewpoint is called the
deployment viewpoint.

This line of reasoning results in the four viewpoints shown in Table 2.1.
Table 2.1: Patterns Viewpoints

Viewpoint Description

Database The database view describes the persistent layer of the application. This view
looks at such things as logical and physical schemas, database tables, relation-
ships, and transactions.

Application The application view focuses on the executable aspect of the solution. It
includes such things as domain models, class diagrams, assemblies, and
processes.

Deployment The deployment view explicitly maps application concerns to infrastructure

concerns (for example, processes to processors).

Infrastructure The infrastructure view incorporates all of the hardware and networking equip-
ment that is required to run the solution.

Figure 2.5 overlays these viewpoints as vertical lines over the pattern graph and the
levels of abstraction.

Chapter 2: Organizing Patterns 17

Database Application Deployment |Infrastructure

Dol anr’.

Design / é %{/ [
Implementation O / éé \Eﬁ\

Figure 2.5
Adding viewpoints

Architecture

Keep in mind that these four areas describe different viewpoints of the overall
solution. Therefore, unlike the levels of refinement, these viewpoints do not describe
a hierarchy, but provide four different ways of looking at the solution. You can
compare these viewpoints to different types of maps. One map of a region may
depict traffic networks such as roads and freeways, while another map of the same
area shows the topography. Still another map may show state and county borders.
Each map has its own vocabulary. For example, lines in the topographical map
represent elevations, while lines in the traffic map represent streets. Nevertheless,
all maps describe the same subject: a specific geographic region.

For the sake of simplicity, Figure 2.5 does not show the cluster boundaries. However,
the clusters, the layers of abstraction, and the viewpoints exist in parallel. They
represent different ways to access the same set of patterns.

The Pattern Frame

The combination of three levels of refinement on the vertical axis and the four
viewpoints on the horizontal axis results in a grid-like organization of the pattern
graph. Figure 2.6 on the next page shows this arrangement, which is called the
Pattern Frame.

18 Data Patterns

Database Application Deployment Infrastructure

Architecture

Implementation

Figure 2.6
The Pattern Frame

The Pattern Frame is included with each individual pattern description as a point of
reference and as a navigational aid.

Constraints

Because there are so many potential patterns in the data realm, it is necessary intro-
duce a means to constrain the set that is being developed at any point in time. Figure
2.7 shows a simple view of electronically held data in an Enterprise context.

Terminology may vary, but generally within an Enterprise there are four main types
of data stores:

® Operational data, which supports the daily customer-facing business processes.
e Informational data, which supports business reporting, analysis, and planning.

e Knowledge, which is the explicit storing of best practices and other forms of
intellectual capital.

® Metadata, which is data about data, or the knowledge of what data is stored in
the other three stores, how it is structured, and how it is used.

Chapter 2: Organizing Patterns

19

’
’
¢
’
’ Operational
’
/
1
1
1
1
I
' / \
\ Metadata
\]
\ <]
A:‘/V /
\ Knowledge Informational ,'
N ’
A V4
A3 ’
N 1N Scope of P ’
e - Enterprise Data _od
= N - - eam o ™ -
Figure 2.7

Principle enterprise data types

Different types of users interact with all these types of data stores, either to use them
for business purposes or to administer and maintain them. They do this with tools,

application packages, or customer applications.

These stores also interact as indicated by the arrows in Figure 2.7. Typically, opera-

tional data is copied to other operational stores, to informational stores, or to knowl-

edge stores. Informational data is also copied to other informational stores and to
knowledge stores.

20

Data Patterns

In the context of this overall data ecosystem, this initial data patterns release focuses
on how to move copies of data within the operational stores in Figure 2.7, and in
certain contexts, also between the operational and informational stores.

The topic of moving copies was chosen because of the complexity of the problem
today. This complexity has compounded as enterprise data processing has evolved
from a single copy of data in a centralized database with offline nighttime batch
work to distributed systems requiring constantly available data copies, and to data
warehouses, Extract, Transform, and Load (ETL) services, and Relational Database
Management Systems (RDBMS). The first set of patterns presented in Chapter 3,
“Data Movement Patterns,” is designed to help you sort out the complex choices
involved in moving data in the context of replication. These patterns were selected
based on workshops and reviews with customers, partners, and industry luminaries,
who identified this set as being of critical importance now.

Within this constrained view of data replication, the Pattern Frame organizes the
collection of patterns into meaningful subcategories, such as how the data is orga-
nized, how it is used by applications, how it is deployed, and what sort of infra-
structure it runs on. These subcategories can each be viewed from the perspectives
of architecture, design, or implementation.

Pattlets

A pattlet describes a solution to a problem, but does not contain a detailed descrip-
tion of the context, problem, or forces that may impact the solution. Pattlets are
required because elaborating on all patterns in the graph takes a significant amount
of effort and time. Patterns need to evolve as the collective understanding of them
evolves.

Deferring patterns until later, however, leaves holes in the pattern graph, which
could result in related patterns suddenly becoming disconnected. To preserve the
integrity of the relationships inside the pattern graph, this guide includes the pat-
terns that were not included in the first release as pattlets. Pattlets are actual patterns
that have not yet been documented in detail.

Summary

This chapter demonstrated how patterns provide a vocabulary to efficiently describe
complex solutions without sacrificing detail. Effectively, the patterns form a new
language with which architects and designers can communicate their thinking.

Because of the large number of patterns involved in building enterprise solutions, it
can seem difficult to learn this new language. The guide structures the patterns into
smaller, more closely related sets of patterns. This allows you to get started by using

Chapter 2: Organizing Patterns 21

a smaller set of patterns, depending on your specific interest or the stage of the
project.
In this chapter, four mechanisms have been introduced to help you navigate the
patterns:
® Relationships. Relationships between patterns help you to identify patterns that
are closely associated to the pattern you are using.
Clusters. Clusters group patterns that belong to a common subject area
Levels of abstraction. Levels of abstraction allow you to describe concepts in a
manner that is consistent with the level of detail of your discussion.

® Viewpoints. Viewpoints help you select the vocabulary that is relevant to a
team’s particular role.

These mechanisms are not meant to constrain your thinking, but instead are in-
tended to make looking at complex systems easier. With practice, you can naturally
switch between these mechanisms as you switch between roles, subject areas, and
levels of detail.

Data Movement Patterns

In the early days of enterprise data, data processing was highly centralized. Every-
thing existed in mainframes and data was primarily operational. A single copy of a
database or file was shared by many applications. The functions that data processing
supported were also clearly divided: online work during the day and offline (batch)
work at night.

Gradually functions blurred. Informational data began to be extracted from the opera-
tional data to provide analysis and reporting. More systems were added, including
smaller departmental systems. Although certain databases (usually still at the
center) were still designated as the systems of record, applications were increasingly
being installed on distributed systems, first on midrange computers and then on
personal computers. These distributed systems collected new data and required
access to the central data as well. This drove the need for providing the systems with
their own copies of data to work on. This also began to open the Pandora’s box of
distributed data problems, especially as metadata and then knowledge data were
introduced. It also raised the core question for multiple copies of data. Do you
manage the data integrity through distributed updates from the applications, or
update the local copy of data only and then manage the copy integrity through data
movement services?

The concept of data warehousing recognized the need to stop proliferating the
number of point-to-point informational data extracts and find a more manageable
and reusable approach. This led to the definition of Extract, Transform, and Load
(ETL) services, which has become industry-standard terminology for a certain class
of data movement services.

24

Data Patterns

Recently, Relational Database Management Systems (RDBMSs) have started to offer
facilities that make it easy to replicate data. This is a valuable addition, but questions
remain about how replication and ETL differ, and how both of these differ from the
previous concept of creating an extract.

The result of this evolution is that the problem of moving data copies has become
extremely complex. This set of data movement patterns addresses a subset of the
problems involved with maintaining copies of data. The pattern graph in Figure 3.1
shows the full set of patterns currently provided. These patterns were selected based
on workshops and reviews with customers, partners, and industry luminaries, who
identified this set as being of critical importance now.

The patterns start at a high-level abstract architectural viewpoint. They then elaborate
through increasing levels of detail, down to detailed design patterns. Both the
architecture and design-level patterns are independent of the technology that you
will choose to implement the patterns. Product considerations are introduced only
at the implementation level. The implementation patterns provide best-practices
guidance for implementing the designs indicated by using Microsoft® SQL Server™.

Figure 3.1 shows the data movement pattern cluster in the patterns frame.

Notice that four pattlets are named, as well as twelve patterns. A pattlet is a
placeholder for a pattern that is believed to exist, but that has not yet been written.
It is important to be clear that this is not a comprehensive set of pattlets. These are
merely the pattlets that are key to establishing the context for the Data Movement
patterns. Many more pattlets could have been named, for example Incremental Row-
Level Replication. These pattlets are omitted to avoid overburdening Figure 3.1 and to
focus on delivering high quality in the set of patterns that our guiding customers
and partners identified as key.

Also notice that this view of the Pattern Frame uses two kinds of lines: solid and
dotted. Each line indicates either an inheritance relationship, where a pattern inherits
concepts from a previous one, or a more relaxed relationship, which indicates that
one pattern can use another. For example, Master-Master Replication can use Master-
Slave Snapshot Replication for its initial setup. And Master-Slave Replication can use
Master-Slave Cascading Replication as a deployment design.

Chapter 3: Data Movement Patterns

25

Database

Maintain
DEVE
Copies
App-
Managed
DEVE
Copies
Data
Replication

Architecture

A Deployment

Topologies
for Data
Copies

M-M
Row-Level
Synchron-

ization

M-S
Snapshot
Repl.

Capture
Transaction
Details

Incremental
Repl.

M-S
Cascading
Replication

M-M
Row-Level
Synchronization
Using SQL
Server

Implementation

M-S
Snapshot
Replication
Using SQL

Server

Transactional
Incremental
Repl. Using
SQL Server

Pattern

inheritance

relationship

Figure 3.1

Patterns have

Pattlet, NOT pattern

Patterns have relaxed

Data Movement patterns cluster

A = Application
| = Infrastructure

26 Data Patterns

Architecture: Data Movement Root Patterns

Figure 3.2 shows the root patterns of Data Movement cluster, which address the
issue of how to maintain the overall integrity of a set of data copies. These patterns
presume that you already have or are about to have more than one copy of the same
data in more than one place. They also assume that when an application makes a
change to the original data, you want that change to be reflected in some other
place. You might want to have the changes reflected within the same application
unit of work; or you might want them to be reflected after that unit of work
completes. You might also want the changes reflected as soon as possible or
according to some other schedule.

Note: Making changes may include writing a copy of the change to an intermediary mechanism
that the application recognises such as a user-created change log, or a messaging system.
However, this is still within the application’s local scope and changes will still be moved
asynchronously.

The root pattlet, Maintain Data Copies, sets the context for the overall patterns cluster,
which is that you want to create more than one copy of the same data. Your problem
is how to serve the applications that will use all the copies and maintain the required
state of integrity between the copies. The general solution is either to write synchro-
nously to the copies from the originating transaction, or to post data synchronously
to a local cache for later movement by an asynchronous service. The timeliness is
given by the requirements of the applications.

The Application-Managed Data Copies pattlet shows that there is a cluster of patterns
in the topic that are not yet addressed. These patterns would address the situation
where the application ensures that copies of the data or derived data are updated
during the same transaction which changed the original data.

The Move Copy of Data pattern is the root of the Data Movement patterns cluster.
This architectural pattern is the root pattern for any type of asynchronous writing
of copies of data. The pattern presents the fundamental data movement building
block consisting of source, data movement link, and target. The data movement link
consists of Acquire, Manipulate, and Write services. Transmissions in such a data
movement building block are done asynchronously some time after the source is
updated. Thus, the target applications must tolerate a certain amount of latency
until changes are delivered. The rest of the Data Movement patterns follow from
this pattern.

Chapter 3: Data Movement Patterns

27

Database

Maintain
DEVE
Copies
App-
Managed
DEVE
Copies
Data
Replication

Architecture

A Deployment

Rowzllylevel M-S Capture
Snapshot Transaction

Synchron- Repl. Details
ization

M-M M-S
Row-Level Snapshot
Synchronization Replication
Using SQL Using SQL
Server Server

Implementation

Pattlet, NOT pattern

O Pattern

Patterns have
inheritance

= =+« Patterns have relaxed
relationship

Figure 3.2
Root patterns for the Data Movement cluster

A = Application
| = Infrastructure

28 Data Patterns

Architecture: Move Copy of Data Approaches

The Move Copy of Data pattern just introduced identifies and distinguishes between
two key architectural approaches to moving copies: ETL and Data Replication. Both of
these approaches refine the architectural approach described in Move Copy of Data.
The difference between them is in the complexity of the Acquire, Manipulate, and
Write services described in the data movement building block. Figure 3.3 highlights
the pattern and pattlet representing these two approaches to moving copies.

Data Replication applies the data movement building block to solve problems
where the data copies involved are basically identical. The Acquire service gets the
replication set from the source. Acquiring the data is straightforward and requires
almost no manipulation before sending it on to the copies. The writing of the data
(performed by the Write service) may also be simple, but if there are complexities
they occur in the write stage. The complexities often arise due to the common data
in the copies being updatable at any of the copies, and the consequent need to
update conflicts across the copies.

ETL takes its name from the industry standard term Extract, Transform, and Load.
This pattern applies when acquiring the data for copying is very complex due to
the number and technical variety of the data stores involved. The Acquire service
is therefore called Extract to distinguish it from the simple Acquire used in Data
Replication. The pattern also applies when the data requires complex manipulation,
such as aggregation, cleansing, and related-data lookup for enrichment, before it
can be sent on to the copy. This complex form manipulation is called Transform to
distinguish it from the simple Manipulate service described in Data Replication.
Writing the data (called Load to distinguish it from the Write service described in
Data Replication) is simple, because only one copy of the data is ever updatable, and
typically the copies are simply overwritten with new data. ETL is commonly used
to provision a data warehouse which has a radically different schema to the oper-
ational databases that provide it with data, and to clean up and clarify the data
for users before it is put into the warehouse.

Chapter 3: Data Movement Patterns 29

Database A Deployment |

Maintain
Data
Copies

App-
Managed
Data
Copies

Architecture

Data
Replication

M-M
Row-Level
Synchron-

ization

M-S
Snapshot
Repl.

Capture
Transaction
Details

Incremental
Repl.

M-M
Row-Level
Synchronization
Using SQL
Server

Implementation

M-S
Snapshot
Replication
Using SQL

Server

Incremental
Repl. Using
SQL Server

Pattern

inheritance

relationship

Figure 3.3
Move Copy of Data root

Patterns have

Pattlet, NOT pattern

Patterns have relaxed

A = Application
| = Infrastructure

30 Data Patterns

Design and Implementation: Data Replication Patterns

The remainder of the Data Movement cluster focuses on refining Data Replication
through various design and implementation patterns, which are highlighted in

Figure 3.4.

Database

Maintain
Data

Architecture

Replication

A Deployment |

Master- Master-
Master Slave
Repl.

M-M
M-S
Row-Level :
Synchron- Snapshot Incremental

ization A Repl.

M-M M-S .

Row-Level Snapshot Transactional
Synchronization Replication Incremental
Using SQL Using SQL Repl. Using
Server Server SQL Server

Implementation

Pattlet, NOT pattern

O Pattern

Patterns have
inheritance

= = = Patterns have relaxed
relationship

Figure 3.4
Data Replication patterns

A = Application
| = Infrastructure

Chapter 3: Data Movement Patterns 31

The first key distinction, when refining Data Replication, is whether the replication is
a master-master or master-slave type of replication.

The Master-Master Replication pattern describes the situation in which the same
data can be updated in more than one copy (including the original); this creates the
potential for different versions of the same data to exist. Any conflicts must be
detected when the next replication occurs, and the conflicts have to be resolved
according to some set of defined rules to maintain integrity. A common scenario here
is when laptops work offline and make data changes, then need to synchronize the
data changes with a shared server database which has been updated by other
applications in the meantime.

Note: Do not confuse the term master with the term prime. Master means that the copied

data is updateable in that location, and that those changes must persist locally and must

be replicated to some other copy. Prime means that this is the originating source of the data,
which provides the system of record for the particular instance of the data. If you want to know
the true state of the data, in a business sense, at any point in time, you go to the prime copy.
It is possible for data to have the attributes of both prime and master; however, these terms
describe different aspects of the data relationships.

The Master-Slave Replication pattern describes a one-way flow of data from the
master to the slave copy or copies. In addition, the master data is seen as having
priority over the other copies; that is, if any changes have been made to any of the
slave copies since the last replication, these can be overwritten by the next repli-
cation from the master to the slaves. However, there are cases in which slave changes
persist after a replication: for example when replication only adds to the slave data,
rather than updating or replacing it.

An additional design pattern that takes context from Master-Master Replication is
Master-Master Row-Level Synchronization. This pattern synchronizes a pair of master-
master copies that have common data that is updatable at either copy. It describes
how to detect and resolve conflicts at a row level. The second of the master copies
must be created in a state that is consistent with the original master copy. You can use
Master-Slave Snapshot Replication for this one-time need. This “can use” relationship
is indicated by the dotted line in the Pattern Frame (see Figure 3.4). Master-Master
Row-Level Synchronization Using SQL Server shows how to implement the Master-
Master Row-Level Synchronization design pattern by using SQL Server.

The other design and implementation patterns take context from Master-Slave
Replication. Master-Slave Snapshot Replication is a pattern for creating a point-in-
time copy of defined data. The copy consists of the entire set of data that is to be

32

Data Patterns

replicated, not just the changes since the last replication. The Capture Transaction
Details pattern shows how to capture application changes made to the master data
when either you do not have a DBMS-provided transaction log or you do not want
to use that log for some reason. The result is a cache of data changes that can be used
by Master-Slave Transactional Incremental Replication. This is a pattern for solving how
to update copies by sending only the transactional data changes that have occurred
in the master to the slave copies (rather than using the entire set of all row
information). The pattern ensures that replicated data is available to applications
only after dependent operations of the same transaction have been replicated.

As their names suggest, Implementing Master-Slave Snapshot Replication Using SQL
Server and Implementing Master-Slave Transactional Incremental Replication Using SQL
Server show SQL Server implementations of the respective design patterns.

Data Replication Deployment

The patterns highlighted in Figure 3.5 (on the next page) provide deployment
guidance for Data Replication.

Currently, only a pattlet is provided at the architecture level. Topologies for Data
Copies indicates that deploying a complex topology for moving redundant data
involves a multistep use of the data movement building block described in Move
Copy of Data.

The Master-Slave Cascading Replication pattern describes how to replicate data from
one copy to many other copies, all of which require the same data. Figure 3.5 indicates
that this deployment pattern is suitable for master-slave deployments only (not for
master-master deployments). It also indicates that you can use Implementing Master-
Slave Transactional Incremental Replication Using SQL Server to implement the
Master-Slave Cascading Replication pattern.

Chapter 3: Data Movement Patterns

33

Database

Maintain
Data
Copies

App-
Managed
Data
Copies

Architecture

Data
Replication

A Deployment

Topologies
for Data
Copies

M-M
Row-Level
Synchron-

ization

M-S
Snapshot
Repl.

Capture
Transaction
Details

Incremental
Repl.

M-S
Cascading
Replication

M-M
Row-Level
Synchronization
Using SQL
Server

Implementation

M-S
Snapshot
Replication
Using SQL

Server

Transactional
Incremental
Repl. Using
SQL Server

Pattern

inheritance

relationship

Figure 3.5

Patterns have

Pattlet, NOT pattern

Patterns have relaxed

Data Replication Deployment patterns

A = Application
| = Infrastructure

34 Data Patterns

Data Movement Patterns
The following table lists all of the patterns and pattlets identified in the Data Move-

ment patterns cluster.

Table 3.1: Data Movement Patterns Cluster

Pattern or Pattlet
Name

Maintain Data Copies
(pattlet)

Application-Managed
Data Copies (pattlet)

Move Copy of Data

Problem Description

What proven architectural
approach should you follow
to maintain the content of
data that exists in more than
one place?

What proven architectural
approach should you follow to
design synchronous data
management services when
you have data held in more
than one data stores that are
serving applications?

What proven architectural
approach should you follow to
design data movement services
when you have data held in
data stores that are serving
applications, and now you want
other applications to use
copies of that data?

Solution Description

This root pattlet sets the context
for the pattern cluster overall. The
context is that you have, or are
about to create, more than one
copy of some data. The general
solution is to either synchronously
write to the copies from the
originating application, or to
synchronously post data to a local
cache for later movement by an
asynchronous service. The time-
liness of that movement is given
by the requirements of the
applications.

In this case, when a particular
application makes a change to its
copy of the data, it should then
also make changes to the other
copies. The application ensures
that copies of the data and/or
derived data are updated in the
same transaction that changed
the original data.

This is the root pattern for any type
of asynchronous writing of copies
of data. The pattern presents the
fundamental data movement
building block, which consists of
source, data movement set, data
movement link, and target. Trans-
missions in such a data movement
building block are done asynchro-
nously (or eventually) after the
update of the source. Thus, the
target applications must tolerate
certain latency until changes are
delivered.

Pattern or Pattlet
Name

Data Replication

Extract-Transform-
Load (ETL) (pattlet)

Master-Master
Replication

Master-Slave
Replication

Master-Master Row-
Level Synchronization

Chapter 3: Data Movement Patterns 35

Problem Description

What proven architectural
approach should you follow to
create nearly-identical copies
of the data, and possibly also
allow the copies to be updated
at either the source or target
with changes being reflected in
each other?

What proven architectural
approach should you follow to
create copies of the data when
data flows one-way to the target,
but getting the data is complex
and it needs to be changed a
lot before it can be written to
the target?

How do you design a replication
where the replication set is
updateable at either end, the
changes need to be transmitted
to the other party, and any
conflicts need to be detected
and resolved?

How do you design replication
when the copy is read-only, or
it may be updated but changes
to the copied data are not
transmitted back, and they may
be overwritten on a later
replication transmission?

How do you design a replication
to transmit data from the source
to the target and vice versa,
when the same replication set
is updateable on both sides

and you want to resolve conflicts
at the row level?

Solution Description

This pattern presents a special
type of data movement (replication)
with a simple acquisition and
manipulation of the data, but
possibly a complex write. The
complexity of the write generally
arises from the need to update
both source and target and to
eventually exchange the changes
to the counterpart.

ETL is a type of data movement
with possibly a complex acquisition
from heterogeneous sources, and/
or a complex manipulation with
aggregation and cleansing, but
always a simple write by overwriting
any changes on the target

This is bidirectional data replication
between source and target. This
includes conflict detection and
resolution in order to handle
concurrent updates to different
copies of the same data in the
same transmission interval.

This is unidirectional data replica-
tion from a source to a target, with
overwrite of the target data by the
transmission.

A specific master-master replication
where conflict detection and
resolution are done at a row level.

(continued)

Data Patterns

Pattern or Pattlet
Name

Master-Slave Snap-
shot Replication

Capture Transaction
Details

Master-Slave
Transactional
Incremental
Replication

Implementing Master-
Master Row-Level
Synchronization
Using SQL Server

Implementing Master-
Slave Snapshot
Replication Using
SQL Server

Implementing Master-
Slave Transactional
Incremental
Replication Using
SQL Server

Problem Description

How do you design a master-
slave replication to copy the
entire replication set so that it
is consistent at a given point
in time?

How do you design a recording
of transactional information for
all changes to a data store so
you can use these as a source
for replication?

How do you design a replication
link to support the transmission
of changes using transactional
details and replaying them on
the target while meeting all
integrity constraints?

How do you implement this
design using Microsoft SQL
Server?

How do you implement this
design using SQL Server?

How do you implement this
design using SQL Server?

Solution Description

A specific master-slave replication
where the complete replication set
is acquired from the source,
possibly manipulated and written to
the target. This design is also used
for incremental replications and
synchronizations to create the first
copy of the data to be maintained.

Design of recording transactional
information by means of
handcrafted artifacts to be used in
an incremental replication using
transactional changes. Required if
there is no database management
system (DBMS) transaction log or
if the transaction log cannot be
used for any reasons.

A specific master-slave replication
that transmits transactional
information from the source and
applies it to the target. This
ensures that changed data is
available to applications only after
dependent operations of the same
transaction have been replicated
as well.

Guidance to implement synchroniza-
tion with row-level conflict detection
and resolution by means provided

with SQL Server merge replication.

Guidance to implement snapshot
replication by means provided with
SQL Server snapshot replication.

Guidance to implement incremental
replication using transactional
information by means provided with
with SQL Server transactional
replication.

Pattern or Pattlet
Name

Topologies for Data
Copies (pattlet)

Master-Slave
Cascading Replication

Problem Description

What are the proven
architectural approaches for
creating a topology of data
copies for deployments?

How can you optimize the
replication of a set of targets
in a master-slave environment,
and minimize the impact on
the source?

Chapter 3: Data Movement Patterns

Solution Description

The architectural approaches to
deploying data copies on several
platforms.

A deployment design for master-
slave replications, where the
replication from a single source to
several targets uses a concatena-
tion of replication links with
intermediary databases serving
both as target and source. The
copies are all related by a need
for data from the source replica-
tion set.

37

38

Data Patterns

Move Copy of Data

Context

You have data held in data stores that are serving applications and now you want
other applications to use that data. You have decided that:

® You do not want the other applications to access the source data.

® You want to provide these other applications with a redundant copy of the data.
In other words, you want to move a copy of the data to the other applications.

The structure of the data required by the other applications may be exactly the same
as that of the existing data or it may be completely different.

Note: The term data store refers to a collection of data that is managed by a database
management system (DBMS) or is held in a file system.

Problem

What proven architectural approach should you follow to design the data move-
ment services?

Forces

Any of the following compelling forces would justify using the solution described
in this pattern:

® Data availability no longer matches requirements. For example, your existing
centralized data stores were designed to support regular business hours of 08:00
to 18:00, and these data stores must be taken offline for after-hours maintenance
and reporting. Your other applications, however, must support customer-direct
self-service, which requires 24-hour availability. Another example is you are
writing applications that are going to be installed on laptops for a mobile field
force that requires the data to be available while working offline. This requires
copying the data to the laptops and synchronizing changes later when the
laptops reconnect to the network.

® Network or application platform is unreliable. For example, your network
fails frequently or is shut down for significant periods of time so that your new
applications cannot deliver the required levels of service.

® Your other applications require differently structured data. The existing data
store uses a structure that is suitable for the existing applications. If the other
applications, however, require the data to be stored in a different structure, you
may have to store the data redundantly in both structures.

Chapter 3: Data Movement Patterns 39

® Network bandwidth does not support real-time data access performance
requirements. In this case you may need to avoid the real-time problem by
making a local data copy available.

Hint: This force can lead to disaster if you misjudge it. Your early requirements, bench-
marks, or prototyping might lead you to believe that the bandwidth is acceptable. However,
a new or rapidly growing application can degrade performance quickly. The redundant data
approach can minimize the effects of these changes. This approach carries its own risk,
though, if the volume of data to be copied increases significantly, if latency requirements
change, or if network bandwidth drops at the time you need to copy the data.

The following enabling forces facilitate the adoption of the solution, and their
absence may hinder such a move:

® Latency tolerance. The other applications must be able to tolerate the wait that is
associated with moving the data.

® Data changes are generally non-conflicting. Often the business use of the data
makes it relatively easy to isolate changes to the original data and its copies. For
example, if you are providing a new application on a laptop for a client manager
to use when making customer calls, the manager may update client data during
the call. It is highly unlikely that the customer will call the company and request
changes to an existing copy of the data during the same time period.

® Other applications require only read access or do not require updates to the
target to persist. In these circumstances, the process of providing these applica-
tions with a copy of data to use locally can be much simpler, and hence easier to
implement. Do not assume, however, that because providing a copy is simpler in
these circumstances, it is the best solution.

Solution

Create a basic architectural building block and use it alone, or in combination with
other such blocks to assemble a solution of greater complexity. The basic architec-
tural building block is called a data movement building block.

The data movement building block consists of the following items:

® A movement set in a source data store

® A data movement link that provides a path from source to target and contains the
Acquire, Manipulate, and Write services

® A target data store

Figure 3.6 on the next page illustrates a data movement building block.

40

Data Patterns

Data Movement Building Block

Al g

Source Data Movement Link Target
A = Acquire
M = Manipulate
W = Write

Mvmt. Set = Movement Set

Figure 3.6
Data movement building block

In the figure, the arrows represent the directional flow of the movement set. This
does not mean that these are the only data actions. For example, in other data
patterns, the Write service gets data from the target.

Source

The source is a data store that contains a set of data to be copied. One data store can
be the source for many data movement building blocks. The source data store can
also serve as the target for another data movement building block. For example, in
the Master-Master Replication pattern, the same pair of data stores swap roles (source
becomes target, and target becomes source) for a common movement set that can be
updated in either data store.

Movement Set

A movement set is an identified subset of data that is copied from a single source and
sent across a data movement link to one or more targets. In the course of the copy
operation, the movement set may change its content and form as it is acquired,
manipulated, and written. For example, if you want to copy data from a server to
laptops for salespersons to use in making daily calls, each person needs a movement
set containing the details of the clients that they are going to call on that day. Thus

a movement set is the name for the subject of a data copy operation at all stages of
that operation. In the course of the copy operation, the movement set may change
its content and form as it is acquired, manipulated, and written.

Chapter 3: Data Movement Patterns 41

Variant: Composite Movement Set

An application may require redundant data from more than one existing database.
A composite movement set comprises all the data you intend to replicate for any
particular application. The application’s requirements are what binds this grouping
of data together and gives it a purpose.

Figure 3.7 illustrates a composite movement set composed of data from two sources.

Source 1

r-—=-= - = = =1
I I
I I
I I
I I
| Composite |
| Movement Set |
I I
I I
I I
| Mvmt |
| Set |
Source 2
Figure 3.7

Composite movement set

As the figure shows, a composite movement set is a collection of one or more move-
ment sets. For example, the application on your salesperson’s laptop needs client
data, which might all come from Source 1. The application, however, also needs the
contract data related to the clients from Source 2. Each movement set is part of a
data movement building block. Both movement sets must be acquired together to
select those contracts that are related to the clients.

42

Data Patterns

Data Movement Link

A data movement link is a connection between the source and target along which the
relevant movement set can be moved from one data store to another with appropri-
ate security. Moving this data across the link is called a transmission.

The data movement link includes:

® The method of data transmission at each step that moves data (which includes
any intermediary transient data stores). For example, the transmission method
might be shared data storage, FTP, or a secure electronic link with managed row
transmission.

® The Acquire, Manipulate, and Write data movement services.
Acquire

The Acquire service gets the movement set from the source data store. Acquisition
may be a simple one-step process, or it may be a multi-step process, for example if
the movement set is in several tables in the data store.

Acquire may enrich the data by adding details, such as the time the data was
acquired, to allow for management of the overall data integrity.

Acquire can obtain the movement sets from the data store rows directly, or it may
acquire them from data caches where only data changes are stored. Typically these
are either DBMS log record stores or user-written caching data stores. In this case,
these stores should be considered the sources.

When acquiring data from these stores, Acquire must either collect all transactional
changes or collect the net change, which is the final result of all changes that have
occurred to this row since the last transmission.

Hint: If Acquire collects all transactional changes, the ordering of the changes is vital so that
the Write service can follow the correct change sequence. This correct order can be difficult to
establish across a composite movement set being acquired through multiple data movement
building blocks. You may decide to acquire the composite movement set from one Acquire
service so you can order the set. Even then you may have problems with time-clock inconsis-
tencies across platforms. On the other hand, if Acquire collects the net change instead, you
have to define rules to resolve the conflicts that arise (for an example, see the Master-Master
Row-Level Synchronization pattern).

Manipulate

The Manipulate service changes the form of the data in some way and passes it on in
a format that can easily be written to the target. Manipulate can vary in complexity
from a null event (where it does nothing to change the data) to very radical data
alternations. More detailed architectural patterns discuss this topic.

Chapter 3: Data Movement Patterns 43

Write

The Write service writes the data that Manipulate prepared to the target. If Write
finds that the target has changed the data that it got from the last data movement,
then Write must conform to the attributes on the data movement link regarding how
to behave; it must either force the new data over the target data, write the new data
somewhere else, and raise an error, or it must take some conflict resolution action.
These issues are discussed in the replication design patterns.

Target

In a data movement building block, the target is the data store where the acquired
and manipulated data is written. As noted earlier, sometimes the target can be
several data stores.

If the data that you move to the target can be updated by applications there, and if
the changes must be reflected back into the source, you should have a second data
movement link returning so that the roles of source and target are exchanged on this
link. This relationship must be explicit because of the data integrity issues; it is a data
movement link attribute and is described in the Master-Master Replication pattern.

Resulting Context

This pattern results in the following benefits and liabilities:

Benefits

® Target data store optimization. The Target data stores can be configured and
optimized in different ways to best support their different types of data access.
For example, one case might be about manipulating individual rows, while
another might be about reports on many records.

® Data autonomy. When the data stores are relatively independent of each other
and can have different owners, the content of the source data store can be pro-
vided as a product, and it is then the responsibility of the target owner to operate
on its data.

® Data privacy. By restricting the movement set to an agreed subset of the source
data store, Move Copy of Data can provide only data that the application (or users)
at the target may see.

® Security. Source data stores are not accessed by the target applications and hence
are more secure.

44

Data Patterns

Liabilities

Administration complexity. This pattern may introduce additional operational
tasks for data store administrators. For example, the ongoing transmissions have
to be checked to ensure that they are running smoothly. Also, administrators
must monitor the impact of the involved resources, such as the growth of cached
changes, log files, and so on.

Potential increased overhead on the sources. Every acquisition of data loads a
certain overhead on the source. It is important to properly plan the additional
load caused by extracting snapshots or by logging transactions that will repli-
cated. The additional load has to be compared to the load that would occur if all
applications were connected to a single data store. You can use this pattern to
optimize the operational load.

Potential security exposure. The target data stores must not allow access to
source data that the source would not permit. This is another administration
challenge.

Next Considerations

After you have decided to implement the data movement solution, the next chal-
lenge is to decide between the Data Replication and Extract-Transform-Load (ETL)
patterns. The distinguishing criterion is the complexity of the data movement link,
which essentially translates to one of the following options:

ETL is appropriate if Acquire and Manipulate are complex, but Write is rela-
tively simple. An ETL process can handle complex acquisition, such as merging
data from heterogeneous sources. ETL also allows for complex manipulations,
such as cleansing of the acquired data or aggregations.

Replication is appropriate if Acquire and Manipulate are simple, and Write is
also either simple or it is complex because of conflict detection and resolution.
A replication process generally reads a single source only and the manipulations
are restricted to calculations on a current record, such as data type conversions,
concatenating, or splitting strings. Write can detect changes in the target that
have occurred since the last transmission and resolve any resulting conflicts by
defined rules.

Examples

The following examples illustrate how to use the data movement building block to
solve common data movement problems of differing complexity. Some of these
examples reappear in later patterns in this cluster.

Chapter 3: Data Movement Patterns 45

Simple Data Movement for Reporting Purposes

The simplest use of this pattern moves data to a data mart or warehouse when the
schema of the mart or warehouse is very similar to the counterparts in the opera-
tional data store. In this example, you need to build a new system that provides
online transaction processing (OLTP) transactions and summarized reports based on
the information of the previous day. The summary reports are not updatable; they
are management reports and are not used for what-if analysis. You do not want the
platform that hosts the operational data store to bear the additional load of the
reporting and the additional complexity for accessing the previous day’s data.

The solution is to implement a data movement link with target overwrite between
the operational source data store and a reporting target data store as shown in
Figure 3.8. (In this data movement, the applications on the target data store are
either read-only or any updates to the movement set are not to be moved back to
the source data store.)

2] g

Operational Data Movement Link Data Mart or
Database Warehouse
Figure 3.8

Simple data movement from an operational data store to an informational data store

The operational data store remains available for the ongoing transactions. Every
night a snapshot from the operational data store is taken and transferred to the
reporting data store. Because all elements of the data movement link are simple,
the implementation can follow the Data Replication pattern.

Complex Data Movement for Reporting Purposes

Frequently, the mart and warehouse schemas are very different, or the manipulation
is very complex.

Suppose you have three source data stores, two of which are independent databases
and one of which is a flat file. You plan to merge the contents of the data stores, which
have partially overlapping information. Analysis shows that the data acquired from
the different data stores contains some contradictions. Thus, you must do some data
cleansing in the movement process. In addition, the target does not present the
information on the same detailed level as the source, but it does aggregate the raw
data and write these summaries to the target only.

The solution is to apply the ETL pattern because the Write is still simple. Figure 3.9
on the next page shows a sketch of the solution with the complex parts highlighted.

46 Data Patterns

Source 1

Dat;base

&= A —

Source 2

Data Mart or
Warehouse

Dat;base

Source 3

Flat File

Figure 3.9
Complex data movement from several data stores to an informational data store

Master-Master Data Movement

In a master-master data movement, any changes that the target makes to the copied
data are sent back to the source so that the source can stay synchronized with the
target. Figure 3.10 illustrates this type of data movement.

{00

Related Data Movement Links

Figure 3.10

Master-master data movement

Chapter 3: Data Movement Patterns 47

This particular source-target relationship is two-way, and this is implemented by a
pair of related data movement links. Write must include logic for conflict detection
and conflict resolution. That is, it must check to see if the data has changed since the
last transmission. If so, any conflicts must be resolved according to defined rules.

The solution is to apply Data Replication because Acquire and Manipulate are simple,
but Write is complex. Then use the Master-Master Replication pattern, which deals
with the conflict detection and resolution issues.

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

® Maintain Data Copies. This pattern may have led you to Move Copy of Data, based
on your requirements and the complexity of your environment.

Patterns That You Can Use Next

® Data Replication. As mentioned in “Resulting Context,” Move Copy of Data leads
naturally to Data Replication, depending on the level of complexity of the data
movement link. Data Replication presents the architecture of a data movement,
where Acquire and Manipulate are relatively simple, but Write might be complex.

® Extract-Transform-Load (ETL). As mentioned in “Resulting Context,” Move Copy of
Data leads naturally to ETL, depending on the level of complexity of the data
movement link. ETL describes the architecture of a data movement, where Acquire
and Manipulate may by complex, but Write is always simple.

Other Patterns of Interest

® Publisher-Subscriber. The data movement building block is an instance of the more
general Publisher-Subscriber pattern where a publisher offers a content publication
service and subscribers subscribe to all or parts of the publication service.

48 Data Patterns

Data Replication

Context

You have decided to follow the Move Copy of Data pattern. Furthermore:
® You want to move data between two identical or very nearly identical data stores.

® You may have to allow the data involved to be updated by applications at either
the source or the target, and if so you must manage the integrity of those
changes.

Note: For simplicity, this pattern describes replicating between relational databases. The
concepts, however, apply to other types of data stores as well.

Problem

What proven architectural approach should you follow to create nearly-identical
copies of the data and to manage the integrity of the copies if they can be updated at
both the source and target within a replication interval?

Forces

Most of the forces that were described in the Move Copy of Data pattern apply in this
context and there are no additional ones. The relevant forces are repeated here for
convenience.

Any of the following compelling forces would justify using the solution described
in this pattern:

® Data availability no longer matches requirements. For example, your existing
centralized data stores were designed to support regular business hours of 08:00
to 18:00, and these data stores must be taken offline for after-hours maintenance
and reporting. Your other applications, however, must support customer-direct
self-service, which requires 24-hour availability. Another example is you are
writing applications that are going to be installed on laptops for a mobile field
force that require the data to be available while working offline. This requires
copying the data to the laptops and synchronizing changes later when the
laptops reconnect to the network.

® Network or application platform is unreliable. For example, your network fails
frequently or is shut down for significant periods of time so that your new
applications cannot deliver the required levels of service.

Chapter 3: Data Movement Patterns 49

® Network bandwidth does not support real-time data access performance
requirements. In this case, you might need to avoid the real-time problem by
making a local data copy available.

Hint: This force can lead to disaster if you misjudge it. Your early requirements, bench-
marks, or prototyping might lead you to believe that the bandwidth is acceptable. However,
a new or rapidly growing application can degrade performance quickly. The redundant data
approach can minimize the effects of these changes. This approach carries its own risk,
though, if the volume of data to be copied increases significantly, if latency requirements
change, or if network bandwidth drops at the time you need to copy the data.

The following enabling forces facilitate the move to the solution, and their absence
may hinder such a move:

® Latency tolerance. The other applications must be able to tolerate the wait that is
associated with moving the data.

® Data changes are generally non-conflicting. Often the business use of the data
makes it relatively easy to isolate changes to the original data and its copies. For
example, if you are providing a new application on a laptop for a client manager
to use when making customer calls, the manager may update client data during
the call. It is highly unlikely that the customer will call the company and request
changes to an existing copy of the data during the same time period.

Solution

Build on the data movement building block as described in Move Copy of Data by
adding refinements that are appropriate to replication. To focus the terminology, the
base building block for this pattern is called a replication building block. Also, in the
special circumstances of the Master-Master Replication pattern, the building block
will have a pair of related replication links to handle the two-way nature of the
replication.

For the same reason, the data movement link is called replication link; the replication
link transmits a replication set across the link. In the link, the Acquire and Write
services are always simple, and the Write service may be simple (as in the Master-
Slave Replication pattern) or complex (as in the Master-Master Replication pattern).

Figure 3.11 on the next page illustrates a replication building block.

50

Data Patterns

Replication Building Block

Al g

Source Replication Link Target
A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.11
Replication building block

The following paragraphs describe the elements of the replication building block in
comparison to the more generic elements of the data movement building block.

Source

In a replication building block, the source is generally a database that contains
data to be replicated. One database can be the source for many replication building
blocks. The source database can also serve as the target for another replication
building block. For example, in the Master-Master Replication pattern, the same pair
of data stores swap roles (source becomes target, and target becomes source) for a
common movement set that is updateable in either data store.

Replication Set

A replication set is an identified set of data that exists within a single source, and it
corresponds to the movement set. It is the subset of the particular database that you
want to acquire for replication. For example, if you want to replicate data to a laptop
for salespersons to use in making daily calls, each person needs a replication set
containing the details of the clients that they are going to call on that day.

A replication set is made up of a group of replication units. A replication unit is the
smallest amount of data that can be identified in a transmission. The replication unit
can be any one of the following:

The complete replication set

A table of the replication set

A transaction

A row (from a table of the replication set)

A column (from a row of a table of the replication set)

Chapter 3: Data Movement Patterns 51

Replication Link

The replication link corresponds to the data movement link with specific refine-
ments for replication.

A replication link is a connection between the source and target along which the
relevant data is replicated from one database to another with appropriate security.
Movement of a replication set across the link is called a transmission.

The replication link includes:

® The method of transmission of data at each step that moves data (which includes
any intermediary transient data stores). For example, the method of transmission
may be shared data storage, FTP, or a secure electronic link with managed row
transmission.

® The Acquire, Manipulate, and Write replication services.
Acquire

The Acquire service gets the replication set from the source. Acquisition may be a
simple one-step process, or it may be a multi-step process, for example if the replica-
tion set is in several tables in the data store, which could be a multistep process to
acquire a composite movement set.

Hint: The Data Replication pattern works when you are dealing with composite movement sets
for a single platform, but when multiple database management systems (DBMSs) and/or
operating systems are involved, you probably need to use the Extract-Transform-Load (ETL)
pattern.

Acquire can enrich the data by adding details, such as the time the data was ac-
quired, to allow for management of the overall data integrity.

Acquire can obtain the replication sets from the database rows directly, or it can
acquire them from data caches where only data changes are stored. Typically these
are either DBMS log record stores or user-written caching databases. In this case,
these stores should be considered the sources.

When acquiring data from these stores, Acquire must either collect all transactional
changes or collect the net change, which is the final result of all the changes that
have occurred to this row since the last transmission.

52

Data Patterns

Hint: When you want to acquire a composite movement set, and you need to decide whether to
follow the pattern and have a replication building block for each source, or to write a variant of
Acquire that gets the whole set. This is the classic reusable modular code versus monolithic
code question. Both approaches are valid in certain circumstances. In general, you can:

1. Use the multiple replication building block approach as your default. It is the most flexible and
reusable, but you must evaluate whether it is efficient enough.

2. Use a composite movement set when the target set has a simple aggregated view of the
source data. For example, you want to assemble a single view of customer data, and to do that
you need extra customer data from many product databases. In the banking industry, this view
could show that this customer has a current account, a savings account, and two mortgages.
In the target, this is held in a single aggregated record. In the source, these are all held in
separate Product databases on the same platform. There is a common identifier for Customer
in all the databases. Acquire then fetches the customer details from each database, and
Manipulate stitches them together for Write to write to the target. (If the situation is any more
complex than this, though, you are getting into ETL).

Manipulate

The Manipulate service changes the form of the data in a simple way and passes it on
in a format that can easily be written to the target.

The essence of replication is that manipulation is simple and can be performed
either within the database language (SQL) or by a simple tool provided usually by
the DBMS vendor. Manipulate should not contain complex logic of the sort that
would require you to write applications to implement it. The simplest manipulation
is a mapping to the target structure by using the tool or SQL. This may include
semantic changes such as mapping to a date data type. Other valid manipulations are:

® Splitting or combining data elements or rows

® Code page translations

® Elementary data integrity checks, such as type validation

® Aggregation functions that can be performed simply within the technology

Note: The Manipulate service differs from the Transform service of ETL in the complexity of the
change it performs. Although this difference can be difficult to characterize precisely, the goal
is to differentiate Data Replication from ETL, which is another pattern.

Write

The Write service writes the data that the Manipulate service prepared to the target.
If the target has changed the replication data since the last replication transmission,
the Write service must check its rules to see whether it must resolve conflicts or not.

Chapter 3: Data Movement Patterns 53

If it does not have to resolve the conflicts, then it has to decide whether to:
® Overwrite the target with the new transmission data.

® Append the new transmission data, in which case Write must handle row
versioning.

If it does have to resolve the conflicts, the Master-Master Replication pattern applies
for conflict detection and resolution.

Target

In a replication building block, the target is the database where the data is written.
The structure of the target is very similar or identical to the source. The target could
be several databases.

If the data that you replicate to the target can be updated by applications there, and
if the changes need to be reflected back into the source, you should have a second
replication link returning so that the roles of source and target are exchanged. This
relationship must be explicit because of the data integrity issues; it is a replication
link attribute and is described in the Master-Master Replication and Master-Master
Row-Level Synchronization patterns.

Examples

The following examples illustrate how to use the replication building block.

Feeding Management Information Reports

You need to build a new system that provides online transaction processing (OLTP)
transactions and summarized management information reports based on the infor-
mation of the previous day. The summary reports are not updatable; they are man-
agement reports and are not used for what-if analysis. There are many reports that
constitute a significant workload. You do not want the platform that hosts the
operational database to bear the additional load of the reporting, and the additional
complexity of accessing the previous day’s data.

The solution is to implement a master-slave replication link between the operational
source database and a reporting target database. For more information, see the
Master-Slave Replication, Master-Slave Snapshot Replication and Master-Slave Transac-
tional Incremental Replication design patterns.

54

Data Patterns

2] g

Operational Replication Link Reporting
Database Database
Figure 3.12

Replication from an operational database to a reporting database

Provisioning a Mobile Sales Force and Synchronizing Their Work

Sales forces must have product and customer information available during their
visits. They want to update customer information such as addresses immediately.

The solution is to implement a master-master replication link between the central
customer source database and the sales force laptop target databases. For more
information, see the Master-Master Replication and Master-Master Row-Level Synchro-
nization patterns.

In a master-master replication, any changes that the target makes to the replicated
data are sent back to the source, so that the source can stay synchronized with the
target. Figure 3.13 illustrates this type of replication.

-«

Related Replication Links

Figure 3.13
Master-master replication

Every sales representative gets an extract of an operational source database on his
or her laptop. This target database can be updated while the laptop is disconnected
from the master database. The next time the laptop is connected to the central
database, any changes to the laptop target customer data are sent to the operational
source database.

Chapter 3: Data Movement Patterns 55

Provisioning a Large Number of Targets

Airline companies need a high volume of data for the computation of optimal flight
routes for every individual flight. The data consists of weather information, fuel
prices, flight rights on territories, and other restrictions. The data is only partially
accessible in a machine-readable manner. One airline offers the service of maintain-
ing this data in a database and provides the data to customers as a product. The
customers can update the received data, but these updates are not sent back.

The solution is to implement the Master-Slave Cascading Replication pattern to pro-
vide the data to a large number of targets. For more information, see the Master-Slave
Replication and Master-Slave Cascading Replication patterns.

The airline uses a central source database for data maintenance. From there, the data
is replicated to an intermediary target database, which in turn serves as the source
for replication to the customer sites. The replication is invoked immediately after

every transaction.
-

Cascade End
Target 1

-

D pug

Source Cascade End
Intermediar Target 2
Target/Source
A —
Cascade End
Target 3
Figure 3.14

Cascading replication

56 Data Patterns

Resulting Context

This pattern results in the same benefits and liabilities described in the Move Copy of
Data pattern:

Benefits

® Target data store optimization. The Target data stores can be configured and
optimized in different ways to best support their different types of data access.
For example, one case might be about manipulating individual rows, while
another might be about reports on many records.

® Data autonomy. When the data stores are relatively independent of each other
and can have different owners, the content of the source data store can be pro-
vided as a product, and it is then the responsibility of the target owner to operate
on its data.

® Data privacy. By restricting the movement set to an agreed subset of the source
data store, Move Copy of Data can provide only data that the application (or users)
at the target can see.

® Security. Source data stores are not accessed by the target applications and hence
are more secure.

Liabilities

® Administration complexity. This pattern might introduce additional operational
tasks for data store administrators. For example, the ongoing transmissions have
to be checked to ensure that they are running smoothly. Also, administrators
must monitor the impact of the involved resources, such as the growth of cached
changes, log files, and so on.

® Potential increased overhead on the sources. Every acquisition of data loads a
certain overhead on the source. It is important to properly plan the additional
load caused by extracting snapshots or by logging transactions that will be
replicated. The additional load has to be compared to the load that would occur if
all applications were connected to a single data store. You can use this pattern to
optimize the operational load.

® Potential security exposure. The target data stores must not allow access to
source data that the source would not permit. This is another administration
challenge.

Chapter 3: Data Movement Patterns 57

Next Considerations

Use the pattern to build your own solution by following this simple process:

1.

Analyze the other application’s data requirements to identify the existing source
databases that the solution will use.

. Within these source databases, identify the actual data required by the other

applications and map this set of tables/columns to the target.

. Define the operational requirements for the target and match these requirements

to the source capabilities to deliver the data.

. Define the functional requirements on Acquire, Manipulate, and Write (AMW) for

each replication building block, and hence design the end-to-end AMW process.

. Determine how many replication building blocks your architecture will require

by considering the overall topology that is required to deliver the operational
requirements for both source and target. Hence, divide the AMW functions
amongst these building blocks.

. Define the replication links between databases, their attributes, and their relation-

ships and hence plan the full replication deployment that meets the combined
functional and operational requirements.

. Understand the operational considerations for each of replication link, match

them to the overall replication operational requirements, and thus create the
schedule for each replication link.

To apply this process, you must consider the following design issues:

Replication set size. Decide whether to replicate an entire table, a subset of a
table, or data from more than one table. This is a tradeoff among the amount of
data that changes, the overall table size, and the complexity of the link.

Transmission volume. Choose the right amount of data to transmit. The decision
between sending all changes for any one row, or just the net effect of all the
changes, is a key one.

Replication set data changes at the target. If these have to occur and if the source
wants to see the changes, then try to make the changes naturally non-conflicting
to avoid the need for conflict detection and resolution.

Replication frequency. Decide the appropriate timing of the replication for the
requirements and optimize the use of computing resources.

Replication unit. As defined earlier, a replication set consists of a group of
replication units. Identify the unit of data that will be transmitted from the source
to the target. In the extreme requirements, this will be a transaction as it has been
executed on the source. A less precise but easier to achieve requirement is to
move a changed row. For environments with a high risk of conflicts, it can also be
an individual change in a cell within a record.

58

Data Patterns

Initiator. Decide whether the source pushes the data or the target pulls it, and
make sure that throughout your replication topology these decisions do not cause
later replication links to have problems meeting their operational requirements.

Locking issues. Verify that you can accept the locking impact of the replication
on the source. If not, verify that a slight decrease in consistency at a point in time
is acceptable for the targets so you can avoid lock conflict.

Replication topology. Identify the players, their roles, and the overall integrity.

Security. Ensure that the replicated data is treated with the right level of security
at the target given the source security conditions. Also, verify that your replica-
tion link is secure enough in the overall topology requirements.

Key updates. Verify whether the source allows updates to the key of records
belonging to the replication set. If so, special care must be taken for a consistent
replication of such operations.

Note: Key updates are SQL updates to the columns of the physical key within a replication
set. Such key updates must be handled specially by the replication.

Referential integrity. Verify whether the target has implemented referential
integrity. If so, you need rules to prevent changes from the replication link being
applied twice if the change triggers a target change in another replicated table.

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

Move Copy of Data. The Move Copy of Data pattern describes the fundamental
architecture building block from which Data Replication inherits basic concepts.

Patterns That You Can Use Next

Master-Master Replication. This pattern discusses a situation in which changes
occur to a common set of data at either source or target, and the other party
wants such changes replicated to it.

Master-Slave Replication. This pattern presents the solution for a replication where
the changes are replicated to the target without taking changes of the target into
account. It will eventually overwrite any changes on the target.

Other Patterns of Interest

Master-Slave Cascading Replication. This pattern discusses a replication deploy-
ment where many targets want to subscribe to the replication set that is being
replicated

Extract-Transform-Load (ETL). This pattern is an alternative to Data Replication, if
the Acquire or the Manipulate service is complex, but the Write service is simple.

Chapter 3: Data Movement Patterns 59

Master-Master Replication
Context

You are about to design a replication between a source and a target. Your require-
ments are:

® Replication set is updateable at either end.
® Updates need to be transmitted to the other party.
® Conflicts need to be detected and resolved.

Problem

How do you design a replication to transmit data from the source to the target and
from the target to the source when the common replication set is updateable on both
sides during the replication interval?

Forces

Any of the following compelling forces would justify using the solution described
in this pattern:

® Need for updateable copies when not connected. The application at the target
has to be able to update data even if the source database is not reachable.

® Optimistic concurrency control. You have chosen to allow updates to a replica-
tion set without attempting distributed data updates to the corresponding repli-
cation set to keep it consistent (for example, because the computers are not
permanently connected to each other). This is called optimistic concurrency
control because it assumes that conflicts will arise but that these conflicts will be
kept to a minimum. For this reason, conflict detection and resolution is necessary.

If you cannot afford the risk of conflicts, you may choose to use the Pessimistic
Concurrency Control pattern. (Both Optimistic Concurrency Control and Pessimistic
Concurrency Control are patterns described in Patterns of Enterprise Application
Architecture [Fowler03].)

The following enabling forces facilitate the adoption of the solution, and their
absence may hinder such a move:

® Tolerance of latency. The applications on both source and target can cope with
the fact that changes by other applications may not be visible immediately.

® Network efficiency. Network characteristics, such as reliability, bandwidth, and
network latency (responsiveness), allow the participating databases to exchange
replication data with sufficient speed. The expected rate of transmissions will not
saturate the network connection.

60

Data Patterns

® Low likelihood of conflicts. If the copies of the same item are updated on both
source and target within the same transmission interval, the conflict has to be
resolved, which results in one update overruling the other. Performing this
conflict resolution consumes processing resources. If this additional workload is
likely to be a problem for the target, then to use this pattern the likelihood of
such conflicts should be fairly low.

Solution

Copy data from the source to the target and detect and resolve any update conflicts
that have occurred since the last replication (due to changes to the same data on the
source and target).

The solution consists of a replication building block with two replication links
between the source and the target in opposite directions. Both replication links
transmit the same replication set in both directions (see Figure 3.15). Such a pair of
replication links is referred to as related links in the more detailed patterns.

Replication Building Block

Replication Link 1

Change
Role

Replication Link 2

A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.15
Master-Master Replication with related links

Before describing the elements of the replication building block in detail, some
definitions and background are presented.

Chapter 3: Data Movement Patterns 61

Replication Unit

A replication unit is the smallest amount of data that can be discretely recognized in
the transmission set. The replication unit can be one of the following:

Complete replication set

Table of the replication set

Transaction

Row

Column

For Master-Master Replication, the replication unit is almost always an individual
row. In rare cases, it can also be a single column in a row, or it can be a complete
transaction that has been executed on the source as well. The replication unit should
not be the complete replication set or complete tables for a master-master replication.

Conflicts

During a transmission, special care has to be taken before the acquired and manipu-
lated data is written to the target. Because the target can also be written to by appli-
cations, the data on the target may have been changed since the last transmission.

A conflict occurs when data of a replication unit is also updated on the target since
the last transmission. Before actually writing the replication unit to the target,
conflicts must be detected and resolved.

Conflicts belong to one of the following categories:

® Update conflicts occur when the target data to be updated or deleted was up-
dated after the last transmission.

® Delete conflicts occur when the target data to be updated or deleted was deleted
after the last transmission.

® Uniqueness conflicts occur when the target data to be inserted or updated causes
a violation of a uniqueness constraint, such as a duplicate key or a violation of a
unique secondary index.

® Business conflicts occur when the data can be transmitted to the target, but the
overall integrity of the target database would be violated by the written data.

The following is an example of a business conflict:

The database contains information about citizens, such as name, address, age, and
driver’s licenses. The business constraint states that all holders of driver’s licenses
must be at least 18 years old. Originally, both databases contain a record for John
Smith, 20 years old, with no driver’s license. Before the next transmission, both

62 Data Patterns

databases are updated by applications. In the source database, John is assigned

a driver’s license, which is acceptable because he is over 18 years old. In the target
database his age is changed to 15 years, which is acceptable because he has no
driver’s license. Hence, both individual transactions meet the business constraint.
After exchanging the updates, both databases would hold an entry for John Smith,
15 years old, with a driver’s license. This violates the business constraint.

Conflict Detection

Before the transmitted data is actually written to the target, the corresponding
data in the target has to be checked for potential conflicts. This conflict detection is
always done on a row or column level, even if the replication unit is a complete
transaction.

After a conflict has been detected, it must be resolved before writing the transmitted
data.

Conflict Resolution

Methods for resolving conflicts may be simple or complex, depending on the busi-
ness needs. Table 3.2 lists possible conflict resolution methods.

Table 3.2: Conflict Resolution Methods

Conflict Method Description

Update, Priority Every database has a priority assigned to it. The replication unit
delete based from the database with the higher priority prevails.

Update Value based | Rules defined on the values decide the winning replication unit.

For example, if the data contains a timestamp, the more recent
timestamp prevails.

Update Merge The values of both source and target are merged by operations
such as:
min, max
sum, average

Update, Overwrite The data in the target database is overwritten in every case.

delete Unlike the priority-based method, this method does not require
conflict detection.

All Manual After a conflict is detected, the replication is suspended until the
conflict is resolved manually.

Uniqueness Discard If you try to insert data that exists in the target database, the
new data is ignored.

Uniqueness Append If you try to insert data that exists in the target database, the

sequence key value is changed to a new value. Such data must be merged

manually later.

Chapter 3: Data Movement Patterns 63

In general, business conflicts cannot be resolved automatically. Instead, there are
two ways to handle such conflicts:

® The data violating the business constraints are accepted temporarily in the target
database. Usually, such data is marked during the transmission and must be
cleansed manually.

e [f temporary violations of business constraints are not acceptable, the replication
must be suspended until the conflict is resolved manually.

Elements of Master-Master Replication

This section presents the elements of a Master-Master Replication solution in more
detail.

Source and Target

Both source and target are databases containing a replication set. In general, the
schemas of the source replication set and the target replication set may differ
slightly, as long as the manipulate service can convert the data as described in the
architectural replication pattern. However, for Master-Master Replication, the
schemas are usually identical.

Hint: You should avoid using referential integrity in a Master-Master Replication scenario
because it can give you major problems. You must ensure that the replication data is written to
the databases without side effects, such as double updates due to referential integrity. This is
very complex when you have referential integrity on both masters because of the two-way data
exchange for the same set of data.

To ensure integrity, the source and target databases must not fire any follow-up operations,
such as triggers or cascade deletes, during the replication (if the transmission from the source
includes those changes as part of its change information). However, if you must have referen-
tial integrity constraints or triggers for other updates, then you have to prevent the transmis-
sion from triggering these operations. You can achieve this by using a dedicated user or role
for the transmission and implementing the triggered operations so that they do not perform
follow-up operations for the given user or role.

Acquire

Master-Master Replication does not overwrite the data in the target but tolerates
changes in both databases. Thus, the transmission will send only the data changes,
instead of the complete content of the replication set. That is, it performs an incre-
mental replication, either as described in the Master-Slave Transactional Incremental
Replication pattern, or an incremental replication on a row level. However, Master-
Slave Snapshot Replication is not suitable for a master-master replication. Hence, the
Acquire service will read only the changes to the replication set at the source.

64

Data Patterns

Manipulate

The Manipulate service receives the data from Acquire. It can manipulate the data by
performing operations on the fields of the current row and assign the result to an
output field.

Typical uses of these expressions are:
® Data type conversions

® Concatenation of fields, for example first name and last name, into a single name
field

® Splitting fields, for example extracting first name and last name from a name field

Because there is another replication link in the opposite direction, all manipulations
of the data must be reversible; for example, the opposite replication link must
perform complimentary manipulations of this service.

Write

The Write service receives the data to be written from the Manipulate service. Before
actually writing a replication unit, it must check whether the corresponding target
data has also changed since the last transmission. Therefore Write reads the appro-
priate data and performs the conflict detection. If a conflict has been detected, an
appropriate conflict resolution method must be called, which either returns the
winner or a new replication unit is written instead of the original one. If the changes
from the source are accepted by the conflict resolution, or if a modified replication
unit has been returned, this replication unit is to be written to the target. However,
if the conflict resolution rejects the replication unit from the source, it must be
discarded and not written to the target.

Example: Synchronizing Laptops and a Central Database

For example, you have a central database with customer data. Sales forces have all
or parts of the database contents on their laptops to permit access to the data while
disconnected from the network.

Both the central database and laptop databases can update customer data, such as
addresses. When the sales force is back in the office, they synchronize the changes in
their databases with any changes made to the central database since they were last
connected.

Master-Master Replication allows the exchange of changes in both directions. An
appropriate conflict resolution must be defined, for example the most recent change
should overrule any older changes.

A similar scenario is described in more detail in the pattern Master-Master Row-Level
Synchronization.

Chapter 3: Data Movement Patterns 65

Server Connected Disconnected
Laptop Laptop

Figure 3.16
Central database and laptop databases

Resulting Context

As described in the previous section, the main problem in a master-master replica-
tion is the handling of conflicts. The complexity of the conflict resolution depends,
among other things, on the replication unit.

If the replication units are complete transactions, it may be hard to resolve the
conflicts automatically because non-trivial transactions might affect different tables
in a manner such that no definite winner can be determined. In most cases, you will
be forced to use the overwrite method or a manual resolution.

Hint: Use a replication unit of rows, if possible. Use columns only when absolutely necessary.

The replication refresh policy for a master-master replication will be an incremental
replication because you have to be able to identify the changes at both source and
target.

This pattern inherits the benefits and liabilities from Data Replication and has the
following additional benefit and liabilities:

Benefits

® Backup. Master-Master Replication can be used as a means of backup. If one of the
databases crashes, only changes made to this specific database since the last
transmission will be lost.

Liabilities
® Consistent conflict resolution methods. The conflict resolution methods of both

replication links must agree on the same result. For example, if you are using a
priority-based conflict resolution where the priority for the source is 1 and for the

66

Data Patterns

target is 2, the value of the source will prevail. This same priority schema must be
applied to each replication link.

® Surveillance of conflict resolution. The conflict resolution method should log its
actions. This log must be checked regularly to ensure that the conflict resolution
works correctly and the frequency of conflicts does not increase dramatically.

Next Considerations
During a more detailed design, the parameters of the replication have to be speci-
fied, for example:

® Transmission frequency. What is the appropriate timing of the transmission for
the requirements?

® Initiator. Should the source push the transmission or should the target pull the
transmission?

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

® Move Copy of Data. This pattern is the root pattern of this cluster; it presents the
overall architecture to maintain redundant data by asynchronous writing of
copies of data eventually after the data has been updated.

® Data Replication. This pattern presents the architecture of a replication.

Patterns That You Can Use Next

® Master-Master Row-Level Synchronization. This pattern presents a design for
Master-Master Replication, which detects and resolves any conflicts at the row
level.

Other Patterns of Interest

® Master-Slave Replication. This pattern presents an alternative to Master-Master
Replication, where applications must not write to the target; otherwise, such
updates will be overwritten by a later transmission.

® Master-Slave Snapshot Replication. This pattern presents a design for transmitting a
complete replication set. This can be used to equalize both databases as a starting
point before establishing a master-master replication.

Acknowledgments

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003

Chapter 3: Data Movement Patterns 67

Master-Slave Replication
Context

You are about to design a replication building block with a source and a target that
meet the following requirements:

® Replication set at the source is being updated by applications.

® Replication set at the target is either read-only or updateable; however, any
changes made to the target replication set will not be transmitted back to the
source and may be overwritten by a subsequent replication.

Problem

How do you design the replication building block to transmit data from the source
to the target and apply appropriate overwrite rules on the target?

Forces

Any of the following compelling forces would justify using the solution described

in this pattern:

® Simplicity. You have no reason to use a more complex solution, and you avoid
any potential referential integrity problems.

The following enabling forces facilitate the move to the solution, and their absence

may hinder such a move:

® Tolerance of overwrites. If some data has been updated by an application on the
target, it might eventually be replaced by data from the source.

® Stability. The target applications require data that is stable over a predictable
period, and may only change at defined points in time.

Solution

Copy data from the source to the target without regard to updates that may have
occurred to the replication set at the target since the last replication.

Master-Slave Replication uses a single replication building block, as shown in
Figure 3.17 on the next page.

68

Data Patterns

Replication Building Block

Al g

Source Replication Link Target
A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.17
Master-Slave Replication

The replication link reads the data or its changes from the source, manipulates them
for the target structure, and then writes them to the target.

Source

The source database contains the replication set to be copied.

Acquire

The Acquire service reads the contents of the replication set from the source to get
the data to be transmitted. The source is either the data itself or a log of its changes.
A replication that transmits only the changes is called an incremental replication. A
replication that transmits the entire replication set on every transmission is called
a snapshot replication. For a detailed description, see the corresponding patterns.

Hint: Acquiring only the changes is preferred when the following conditions are true:

® The average number of changes during a transmission interval is relatively small compared
to the size of the replication set.

® Appropriate means to detect or record the changes on the source are present or can be
implemented.

If these conditions are not true, transmission of the entire replication set is preferred.

Manipulate

The Manipulate service receives the data or its changes from Acquire. It can manipu-
late the data by performing operations on the fields of the current row, and then
assigning the result to an output field.

Chapter 3: Data Movement Patterns 69

Typical uses of such operations are:
® Data type conversions

® Concatenation of fields, for example first name and last name, into a single name
field

® Splitting fields, for example extracting first name and last name from a name field

Write

The resulting rows of Manipulate are used by the Write services to update the target
database in one of the following manners:

® In a one-way replication with overwrite, any existing data on the target can be
replaced by the new data.

® In a one-way replication with no overwrite, the existing data on the target are
compared to the new data. If they differ, the new data is appended as a new
version. If they are identical, no write is needed.

Hint: Master-Slave Cascading Replication is the typical deployment of Master-Slave Replication.

Target

The target is the database, where the transmitted and possibly manipulated data or
changes are written.

Hint: You must ensure that the data is written to the target without side effects, such as
double updates due to referential integrity. Hence, the target database must not fire any follow-
up operations, such as triggers or cascade deletes, during the replication (if the transmission
from the source includes those changes as part of its change information). However, if you
need referential integrity or triggers for application updates that affect the replication set, you
must prevent the replication from triggering these operations. You can achieve this, for ex-
ample, by using a dedicated user or role for the transmission and by implementing the trig-
gered operations so that they do not perform follow-up operations for the given user or role.

Examples

The following paragraphs show two examples of Master-Slave Replication. The first
example deals with slow network connections and the second one shows how to
divide operational and reporting databases.

Remote Read-Only Access Across a Low Bandwidth Connection

Some of your applications need read-only access to the data, but the network con-
nection does not have enough bandwidth capacity to meet the required response
times for user queries.

70

Data Patterns

The solution is to replicate the database to a server in a network segment that can
provide a higher bandwidth service for these applications. Because the applications
only read the data, a master-slave replication will keep the target up-to-date. The
replication should be designed as an incremental replication that transmits the
changes from the source to the target as soon as possible.

The Master-Slave Transactional Incremental Replication pattern presents the design of
such a particular master-slave replication.

Operational Database and Reporting Database

You have an operational database with ongoing updates by applications, and you
need a stable view on last day’s state of the database for reporting purposes. You
decided to have two separated databases, one for the ongoing operations and one
for reporting.

Master-Slave Replication allows you to transmit the data from the operational data-
base to the reporting database every night. On the following day, the reporting
database reflects the state of the operational database of the previous day. It will not
change until the next transmission.

The transmission from the source to the target can be done with snapshots if the
time period reserved for the transmission is sufficient to extract the snapshot from
the source and to transfer it and write it to the target. The design of Snapshot Replica-
tion is presented in its own pattern.

Resulting Context

Because of the nature of a master-slave replication, changes to the target that have
been made by applications exist until they are overwritten by a later transmission.
If the replication only transmits the changes from the source, local changes on the
target might remain even after a transmission. This occurs if the corresponding data
has not been changed on the source, and thus the data is not transmitted and does
not replace any data on the target.

After you decide to apply the Master-Slave Replication pattern, the following consid-
erations will lead you to a more detailed design:

® Transmission frequency. Define the appropriate timing of the transmission to
meet the requirements.

® Transmission volume. Define the right amount of data to transmit. For example,
you could send all individual changes for a particular record, or just the aggre-
gated result of them over the period, or the entire replication set.

Chapter 3: Data Movement Patterns 71

Replication Unit. Define the smallest updating operation that will be transmitted
from the source to the target. In very strong requirements, this will be a transac-
tion as it has been executed on the source. A weaker but easier to achieve require-
ment is to move a changed record. For environments with a high risk of conflicts,
it might also be an individual change of a column within a record.

Initiator. Decide whether the source will push the transmission or the target will
pull it.

The use of this pattern inherits the benefits and liabilities from Data Replication and
has the following additional benefits and liabilities:

Benefits

Simplicity. Master-Slave Replication is substantially easier to design and imple-
ment than Master-Master Replication, which allows applications to update the
target, but which has to cope with conflicts.

Stable view on the database contents. For a stable view on the data, you can
transmit the data to dedicated target database, which will not experience any
updates, as long as you need the data to be frozen. This allows you to investigate
the stable data in the target database, while ongoing operations change the
contents of the source database. Without a master-slave replication, you would
have to enrich the schema to access historical data.

Backup. Master-Slave Replication with an automatic transmission to the target can
be used as a means of backup. If the source needs to be recovered, the content of
the target can be moved back to the source. Only the changes since the last
transmission will be lost.

Liabilities

Growing storage needs with one-way replication with no target overwrite.
Because this variant creates new versions whenever the transmitted data differs
from the existing data on the target, space requirements constantly grow. You
must monitor the storage consumption and eventually delete old versions,
possibly after archiving them.

72

Data Patterns

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

Move Copy of Data. This is the root pattern of this cluster; it presents the overall
architecture to maintain redundant data by asynchronous writing of copies of
data after the data has been updated.

Data Replication. This pattern presents the architecture of a replication.

Patterns That You Can Use Next

Master-Slave Snapshot Replication. This pattern presents a solution that transmits
the whole replication set from the source to the target on each transmission.

Master-Slave Transactional Incremental Replication. This pattern presents a solution

that transmits only the changes from the source to the target on a transaction-by-
transaction basis.

Other Patterns of Interest

Master-Master Replication. This pattern presents an alternative to Master-Slave
Replication, where the target may be written by applications, and such updates are
transmitted back to the source.

Master-Slave Cascading Replication. This pattern shows how Master-Slave Replica-
tion can be applied iteratively in more complex topologies.

Chapter 3: Data Movement Patterns 73

Master-Master Row-Level Synchronization
Context

You are about to design a replication between a source and a target, as described in
Master-Master Replication. Your requirements are:

® The replication set is updateable at either end of the replication.
® Updates need to be transmitted to the other party.

e Conflicts need to be detected and resolved at defined points in time, following
defined data integrity rules.

® Dotential conflicts in the changes are to be resolved at the row level.

Note: This pattern uses relational database terms to discuss the solution, but the solution will
work in other contexts. The pattern also assumes the existence of relational database man-
agement system (RDBMS) services, such as change logging.

Problem

How do you design a replication to transmit data from the source to the target and
vice versa, when the same replication set is updateable at either end of the replica-
tion and you want to resolve conflicts at the row level?

Forces

All of the forces that were described in the Master-Master Replication pattern apply in
this context, and there is one additional one. The relevant forces are repeated here
for convenience.

Any of the following compelling forces would justify using the solution described
in this pattern:

® Need for updateable copies when not connected. The application at the target
has to be able to update data even if the source database is not reachable.

® Optimistic concurrency control. You have chosen to allow updates to a replica-
tion set without attempting distributed data updates to the corresponding repli-
cation set to keep it consistent (for example, because the computers are not
permanently connected to each other). This is called optimistic concurrency
control because it assumes that conflicts will occur but that they will be few in
number. This type of concurrency control requires that you use conflict detection
and resolution methods.

If you cannot afford the risk of conflicts, you may choose to use the Pessimistic
Concurrency Control pattern. (Both Optimistic Concurrency Control and Pessi-
mistic Concurrency Control are patterns described in [Fowler03].)

74

Data Patterns

The following enabling forces facilitate the adoption of the solution, and their
absence may hinder such a move:

® Tolerance of latency. The applications on both source and target can cope with
the fact that changes by other applications may not be visible immediately.

® Network efficiency. Network characteristics, such as reliability, bandwidth, and
network latency (responsiveness) allow the participating databases to exchange
replication data with sufficient speed. The expected rate of transmissions will not
saturate the network connection.

® Low likelihood of conflicts. If the copies of the same item are updated on both
source and target within the same transmission interval, the conflict has to be
resolved, which results in one update overruling the other. Performing this
conflict resolution consumes processing resources. If this additional workload is
likely to be a problem for the target, then to use this pattern the likelihood of such
conflicts should be fairly low.

® Well-defined synchronization times. There are well-defined points in time
where the relevant parts of the databases can be brought into consistency. For
example, whenever a laptop is connected to the corporate network, the replica-
tion process is started automatically or manually.

Solution

Create a pair of related replication links between the source and target as described
in the Master-Master Replication pattern. Additionally, create a synchronization
controller to manage the synchronization and connect the links. This solution
describes the function of one of these replication links. The other replication link
behaves the same way, but in the opposite direction. To synchronize more than two
copies of the replication set, create the appropriate replication link pair for each
additional copy.

Hint: When designing the replication link, it is important to know what types of conflicts can
occur and how to handle them so that the integrity of replicated data remains intact. The
design of conflict detection and conflict resolution is described in the Master-Master Replication
pattern.

Figure 3.18 shows the use of the replication building block and its elements to
design the solution for master-master synchronization, and the added services to
manage the relationship between the pair of links.

Chapter 3: Data Movement Patterns 75

Synchronization Building Block

Replication Link 1

A
'r init end ¢

Synchronization
Change Controller @ Change

Role Repository Role

'Pend
]2

Replication Link 2

A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.18

Master-Master Synchronization using two related replication links

Controller

The synchronization building block is an extension of the replication building block
and consists of two replication links and a synchronization controller. The controller
manages the synchronization and relates the replication link pair.

The controller uses a small repository to keep track of the transactions. This reposi-
tory contains information about the replication links and the transmissions on each
of them. Figure 3.19 on the next page shows a data model for this repository.

76

Data Patterns

Replication link Transmission
PK | Rp_link_id PK | Tr_id
Source | O < Rp_link_id
Target Start_time
Data_set
Figure 3.19

Database design for handling synchronization data

At the start of every transmission, the controller reads the start time of the last
synchronization for this replication link from the repository. It then invokes the
Acquire service to get the replication set from the source. The controller waits until
the Write service notifies it that it has written the replication set to the target, and
then the controller invokes the Acquire service of the second replication link to get
the target’s replication set. This replication set now serves as the source for the
second link, and the source for the first link now serves as the target for the second
link. When the transmission is complete, the Write service of the second link notifies
the controller. Finally, the controller writes the start time for this synchronization
into the repository, which shows that the synchronization is complete.

Source/Target

To use this pattern, you must ensure that the following is true on the source and
target:

® Every table in the replication set has a replication key. A replication key is either
the unique key that identifies the table or a combination of columns that uniquely
identifies each row.

® Any rows that have been updated are marked as such. To mark a row, you
typically use a timestamp, which indicates the date and time of the change. If the
change is a DELETE, you do not actually delete the source row yet. Instead, you
add a delete flag either on the row itself, or in an additional table (see the Hint
following this list) with the same keys. If you store the keys of deleted rows in an
additional table, you can delete the rows from the main table and synchronize on
the shadow tables. You must ensure that applications never read rows with the
delete flag set.

® Clocks of the participating computers are nearly synchronized. To avoid prob-
lems caused by different time zones, all timestamps should use the same time
zone.

® The application does not change the unique key that the synchronization uses;
instead, the application deletes the row with the old value and inserts a row with
new values.

Chapter 3: Data Movement Patterns 77

Hint: Marking updates requires that you add columns to the existing tables. If you cannot add
these columns, then you need to create a shadow table for every table in the replication set.
These have the same primary keys as the main tables and they store the date/timestamps,
and delete flags. Changes to these tables need to be synchronized too.

When the application makes changes to the rows of the source, it also writes infor-
mation for the replication link to use, as Table 3.3 shows.

Table 3.3: Additional Application Actions to Identify the Replication Set

Operation Action

INSERT The new row is marked for transmission by the next transmission.

UPDATE The updated row is marked for transmission by the next transmission.
DELETE The deleted row is marked and logged, and is kept for the next transmission.

If you are using an RDBMS, you can use one of the following means to mark and log
the rows without changing the application:

® The logging system of the underlying RDBMS (in this case, no changes to data-
base schemas are required)

e Additional artifacts in the database, such as triggers (this requires database
schema changes)

Acquire

In this pattern, the Acquire service is invoked by the controller module and is passed
its context. It reads the replication set to get the rows that have been changed or
marked as deleted since the last transmission.

Manipulate

There are no special considerations for the Manipulate service in a synchronization
environment other than all manipulations of the data must be reversible. This is
because the related replication link must perform the complementary manipulations
of this service. For example, if you concatenate a bank code number and an account
number in the first transmission, then you must be able to split this string on the
reverse transmission.

Write

Since the solution uses optimistic concurrency control, the Write service must check
for conflicts before writing to the target. Methods for conflict detection and resolu-
tion are presented in the Master-Master Replication pattern.

78

Data Patterns

If a conflict has been detected, an appropriate conflict resolution method must be
called, which either returns the winner or a new row to be written instead of the
original one. If the conflict resolution method accepts changes from the source, or

if it returns a modified row, this row is to be written to the target. However, if the
conflict resolution rejects the row from the source, it must be discarded and must not
be written to the target.

Hint: Use of DELETE flags leads to a need for cleanup, which means that at some point you
need to physically delete these rows from all the copies that they exist in. To do this, each copy
needs to know the synchronization times for all directly related replications so that it can use
these times to know which rows can safely be deleted. Rows whose timestamp is older than
any of the related synchronization times can be deleted.

Example

This example outlines a common implementation of the Master-Master Row-Level
Synchronization pattern. The replication unit is a row. The rows in the replication set
are marked with a timestamp and a delete flag. Hence, every table has two addi-
tional columns. The applications must not read any rows that are marked as deleted,
and it should never read the additional columns (that is, do not use statements such
as SELECT * FROM).

Figure 3.20 shows the algorithm for detecting and resolving conflicts when
timestamps and delete flags are used. In this case, the most recent timestamp wins.
If the row in the transmission has the most recent timestamp, it is written to the
target. If it doesn’t, the target row is left untouched and the transmission row is
discarded. Overall integrity will be restored when the related replication link runs.

Chapter 3: Data Movement Patterns

79

Figure 3.20

1. Get last
synchronization
time

A

2. Acquire
a row

v

3. Conflict
detection

Y

4. Potential

conflict?

YES

A4

5. Conflict
resolution

Y

6. Source
row win?

9. Write
synchronization
start time

YES —P>

Y

7. Write row

Synchronization algorithm for most recent timestamp wins

80

Data Patterns

The following list provides more information about each step in the algorithm
shown in Figure 3.20.

Algorithm using timestamps for conflict detection
1.
2.
3.

Get the last synchronization time from the Controller.
Acquire a row from the replication set.

Contflict detection: Check the corresponding target row to see if it has been
changed since the last synchronization by comparing the target timestamp with
the synchronization timestamp.

. Potential conflict?

No: If the timestamp of the target row is older than the synchronization timestamp,
the row has not changed and you can write the UPDATE; skip to step 7.

If there is no corresponding target row, then assume this is an INSERT and skip to
step 7.

Yes: If the target row has changed, use conflict resolution.

. Conflict resolution: Apply the conflict resolution rules. This example uses the

“latest timestamp” rule, so compare the target row timestamp and the transmis-
sion row timestamp.

. Source row win?

Yes: If the timestamp on the transmission row from the source is more recent,
proceed to step 7.

No: Discard the transmission row and skip to step 8.

. Write the transmission row to the target.

8. More changed rows?

9.

Yes: If there are more changed rows, repeat the sequence beginning at step 2.
No: If there are no more changed rows, proceed to step 9.
Write the start time of the synchronization into the Controller metadata.

An implementation of a synchronization with row-level conflict resolution based on
the services of Microsoft® SQL Server™ is presented in Implementing Master-Master
Row-Level Synchronization Using SQL Server.

Chapter 3: Data Movement Patterns 81

Resulting Context

This pattern inherits the benefits and liabilities of the Data Replication and the
Master-Master Replication patterns, which are not repeated here. It also has one
additional liability.

Additional Liability

Cleanup after synchronization of DELETE operations. During synchronization you
must not physically delete the rows until the information about the deletion is
transmitted to targets. Eventually, after all transmissions are complete, you should
physically delete the rows.

Operational Considerations

When using Master-Master Row-Level Synchronization, you must ensure that the
transmissions do not interfere with normal operations. This can be achieved by one
of these alternatives:

® Lock the participating databases to prevent any other update activity.

® Perform the whole synchronization within a database transaction, and thereby
isolate it from any other activity.

® Store the timestamp of when the synchronization started. This ensures that
changes made by transactions that run concurrently with the synchronization are
not missed. Changes made by those transactions are sent by the next synchroni-
zation.

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

® Move Copy of Data. This pattern is the root pattern of this cluster; it presents the
overall architecture for maintaining copies of data.

® Data Replication. This pattern presents the architecture of data replication, which
is a particular way of moving copies of data.

® Master-Master Replication. This pattern presents the high-level solution for a data
replication where there is bidirectional data movement between source and
target. This includes conflict detection and resolution to handle concurrent
updates to different copies of the same data in the same transmission interval.

82 Data Patterns

Patterns That You Can Use Next

® [mplementing Row-Level Synchronization Using SQL Server presents the pattern for
implementing a row-level synchronization by using SQL Server.

Other Patterns of Interest

® Master-Slave Snapshot Replication. This pattern presents a design for transmitting a
full replication set (not just changes). This can be used to equalize the source and
target sets as a starting point before establishing a synchronization relationship.

Acknowledgments

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003

Chapter 3: Data Movement Patterns 83

Master-Slave Snapshot Replication
Context

You have to design a replication solution for these requirements:

® Areplication set is to be copied from a single source to a target, and possibly to
more than one target. The replication set consists of entire rows, not just changes
that have occurred to rows since the last replication.

® Any changes made to the replication data at the target that may have occurred
since the last transmission will be overwritten by a new transmission. Hence, the
snapshot replication is a master-slave replication.

Problem

How do you move an entire replication set from source to target so that it is consis-
tent at a given point in time?

Forces

All of the forces described in the Master-Slave Replication pattern and its parent
patterns apply in this context, and there are additional forces that apply. The rel-
evant Master-Slave Replication forces are repeated here for convenience.

Any of the following compelling forces justify using the solution described in this
pattern:

® Simplicity. You have no reason to use a more complex solution, and you avoid
any potential referential integrity problems.

e High ratio of changes. The ratio of replication set changes to overall volume of
the replication set content is substantial. On every transmission, most of the
replication set has changed. Therefore, it makes more sense to transmit the whole
replication set, rather than just parts of it. In this case, operational resources are
saved by performing a snapshot replication.

The following enabling forces facilitate the move to the solution, and their absence
may hinder such a move:

® Tolerance of overwrites. If some data has been updated by an application on the
target, it might eventually be replaced by data from the source.

® Stability. The target applications require data that is stable over a predictable
period, and may only change at defined points in time.

® Initial database load. You need to perform an initial population of a target
database; therefore, the whole source replication set must be transmitted. For this
reason, it makes sense to use a snapshot replication before using other types of
replication.

84

Data Patterns

Solution

Make a copy of the source replication set at a specific time (this is known as a
snapshot), replicate it to the target, and overwrite the target data. In this way, any
changes that may have occurred to the target replication set are replaced by the new
source replication set.

Master-Slave Snapshot Replication uses a single replication building block, consisting
of the source, the replication link with Acquire, Manipulate, and Write, and Figure
3.21 shows the target.

Replication Building Block

Al g

Source Replication Link Target
A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.21
Snapshot replication
Source

The source database contains the replication set to be transmitted.

Acquire

In the Master-Slave Snapshot Replication pattern, the replications set that is acquired
consists of the full set of complete rows that are to be copied to the target (not just
the changes that were made to the data at the source).

Manipulate

The dimension of possible data manipulations in a Master-Slave Snapshot Replication
environment depends on the implementation.

Chapter 3: Data Movement Patterns 85

Hint: The snapshot replication between databases can be performed either by a direct connec-
tion with SQL statements or by the use of an extract tool. If the snapshot replication uses a
tool, a separate manipulation service needs data in an accessible structure to read and
change the replication set. Thus, manipulations can be done if the format of the extracted file
is documented (for example, extracts to text files). Binary files cannot be used by this service.

Write

The replication set is written to the target by the Write service without checking for
updates to the target. To write the replication set, the service can use one of the
following options, depending upon the circumstances at the target:

® The relevant target tables are dropped and new ones are created before inserting
the replication set.

e All data in the existing tables is overwritten. The tables are truncated before the
replication set is written.

® The service deletes the old replication set on the target and writes the new repli-
cation set.

The first and the second option can be used if the target mirrors the source. The last
option is appropriate if data exists in addition to the replication set, and this data
must not be affected by the replication.

Hint: The Master-Slave Snapshot Replication does not depend on a network connection between
the source and the target. If no such connection exists, or its characteristics, such as band-
width, are not sufficient, the acquired snapshot can be written to removable media. Removable
media, such as compact discs, are then transported to the target, where the snapshot is
written to the target.

Target

The target is the database where the transmitted replication set to be written.

Example

A common use of Master-Slave Snapshot Replication is to establish a starting point for
other replications, for example, incremental replication or synchronization. In this
case, an identical state of the content of the replication set is needed on the source
and the target to ensure data consistency when transmitting changes.

86 Data Patterns

Resulting Context

The pattern inherits the benefits and liabilities from the Master-Slave Replication and
it has the following additional benefits and liabilities:

Benefits

Provides data at a well-defined point in time. All data of the replicated replica-
tion set is assigned to an exact point in time. This information can be used for
historical or analytical issues. In these cases, a snapshot replication provides you
with a consistent, nonvolatile data basis.

Low resource consumption during operational work. Master-Slave Snapshot
Replication does not check for updates to the data. Hence, during the Write, this
type of replication requires fewer resources than incremental replication.

Independence of network connections. If you have to replicate a large data
volume, and the infrastructure provides only a low-speed communication link,
snapshot replication using removable media allows you to bypass these restric-
tions.

Liabilities

High resource consumption during transmission. Because the whole replication
set is transmitted even if only small parts of the source replication set changed
during the replication interval, a higher network load occurs and more working
disk space is needed. The pressure of this problem grows with the volume of
replicated data.

Need a time frame to apply the snapshot. Especially if you replicate a large
volume of data, it takes a certain time to acquire the snapshot from the source.
To keep the replication set on the source consistent, it must not be changed by
running applications during this time period. You can achieve this either by
avoiding write operations from the application or by locking the data so that the
replication set cannot be updated during the snapshot transmission. Otherwise,
the data consistency cannot be guaranteed.

Security Considerations

Snapshot data can reside in places other than the source and target data. Snapshot
data requires security standards that are as high as the security standards used for
the source and the target.

Chapter 3: Data Movement Patterns 87

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

Move Copy of Data. This pattern is the root pattern of this cluster. It presents the
fundamental data movement building block, which consists of source, data move-
ment set, data movement link, and target. Transmissions in this kind of data
movement building block are done asynchronously, sometime after the update
of the source. Thus, the target applications must tolerate a certain amount of
latency until changes are delivered.

Data Replication. This pattern presents the architecture of a replication, which is a
specific type of data copy movement.

Master-Slave Replication. This pattern describes design considerations for trans-
mitting data from the source to the target by overwriting potential changes in the
target on a higher level than the Master-Slave Snapshot Replication.

Patterns That You Can Use Next

Implementing Master-Slave Snapshot Replication Using SQL Server. This pattern
shows how to implement Master-Slave Snapshot Replication by using Microsoft®
SQL Server™,

Patterns of Interest

Master-Master Replication. This pattern presents the design of a replication be-
tween a source and a target, where the common replication set is updateable at
either end.

Master-Slave Transactional Incremental Replication. This pattern also describes a
master-slave replication at a design level. It differs from the Master-Slave Snapshot
Replication in that it transmits only changes of data from the source to the target
using transactions.

88

Data Patterns

Capture Transaction Details

Context

You are about to design a replication link using Master-Slave Transactional Incremental
Replication. For this purpose, you need access to transactional information on the
source, and a logging system will not fulfill this need for one of the following
reasons:

® There is a logging system available at the source database but for some good
reasons you do not want to use it.

® You do not have access to a logging system.

In these cases, you need to design the recording of transactions on the source with
your own artifacts.

Note: This pattern presumes knowledge of the concepts, terms, and definitions of the Data
Replication architectural pattern, from which this pattern inherits concepts and terms.

Problem

How do you design a recording of transactional information for all changes to a
source replication set?

Forces

Any of the following compelling forces justify using the solution described in this

pattern:

® No access to transactional information. You cannot access transactional informa-
tion in the logging system because either you are not using a database system at
the source, or the database system does not provide access to the transaction log.

® Transactional information is not suitable. The information provided might be
usable in the originating database only, for example, because it contains physical
addresses instead of key values and thus cannot be applied on the target.

The following enabling force facilitates the adoption of the solution, and its absence
might hinder such a move:

® Recording for other purposes. Recording of transactions is required for other
purposes, for example, auditing.
Solution

The solution is to create additional database objects, such as triggers and (shadow)
tables, and to record changes of all tables belonging to the replication set.

Chapter 3: Data Movement Patterns 89

The details of the solution are separated into:
® Prerequisites for recording transactional information
® Designing your own recording of transactions

Note: This pattern uses the terms “transactions” and “operations” with the following meanings:

A transaction is a collection of SQL commands that form a unit of work. Depending on the
relational database management system (RDBMS), a transaction is started explicitly by a
command like Begin Transaction, or implicitly by the first SQL command outside of a transac-
tion. The transaction is ended either explicitly by a commit or a rollback, or implicitly at the end
of every SQL command in autocommit mode.

An operation is the change (INSERT, UPDATE, or DELETE) of an individual row within a transaction.

Prerequisites

This pattern depends on two features that the database management system (DBMS)
must provide, and on a prerequisite for the data model:

® Fine-grained clock. The order in which transactions are executed on the source
must be the same as the order in which they are replayed on the target. Thus, the
source clock must provide a sufficiently fine resolution to preserve the order. A
clock grain of a millisecond is generally sufficient; many systems provide even
microseconds. A clock that only has a resolution of whole seconds definitely
prevents the use of this pattern.

® Transaction Identifiers. The RDBMS must provide a means to identify the
operations that belong to the same transaction. This is called a Transaction Identi-
fier throughout the remaining discussion. It is typically an opaque data type, and
is generally provided to handle distributed transactions.

® Unique key. All tables of the replication set must have either unique keys or
another combination of columns that identifies every row uniquely. The unique
identifier of every row is referred to as the Replication Key throughout this docu-
ment.

Designing Your Own Recording of Transactions

Since you cannot access the logging system of the source to acquire the transactional
information, you have to implement the recording of the transactions using other
DBMS services, such as triggers. Triggers are schema objects that perform additional
operations on behalf of an initial operation. Triggered operations are also part of the
initiating transaction and are logged in the same way as any other operation.

Hint: It is also possible to record transactions by changing the application to write a copy of
the operation to a user-defined database, but this is very unusual.

90

Data Patterns

The triggered function has to collect the following information for every committed
transaction:

® Transaction Identifier

® Tables written to by the transaction

® For every table, the rows that have been written must be recorded. The data to be
stored includes the current timestamp, the type of operation (INSERT, UPDATE,
or DELETE) and additional information depending on the type of operation:

For INSERTS, the values of all fields must be recorded.

For UPDATEs that do not change the Replication Key, the new values of all
changed columns, including the column names, must be recorded.

For UPDATE:s that do change the Replication Key, the old and new values of
the Replication Key must also be saved. Alternatively, you might record this as
a DELETE of the old row followed by an INSERT of the new row, unless this
approach violates integrity constraints.

For DELETEs, only the Replication Key of the deleted row is needed. If the
DELETE fires cascade deletes of related rows, these additional deletes are
recorded by further trigger invocations on those rows.

® Timestamp of when the transaction has been completed on the source. If you
cannot fire a trigger on the COMMIT, you can use the timestamp of the last
operation within the transaction instead.

To store the above information, you need a table for the transactions and three
additional shadow tables for each table that belongs to the replication set. The
shadow tables store the inserted, updated, and deleted rows. The three shadow
tables can be combined into one by adding a column to store the type of operation;
depending on the type of operation, some of the columns will be empty. Figure 3.22
shows the corresponding data model.

Transaction ShadowTable Table

TransactionlD TransactionlD KeyColumns
EndTimestamp —|—O< Timestamp >O—|— NonKeyColumns
TypeOfOperation

OldKeyColumns
NewKeyColumns

NonKeyColums

Figure 3.22
Data model to store transactional information

Chapter 3: Data Movement Patterns 91

When an INSERT, UPDATE or DELETE is triggered, the following steps must be
taken:

® Retrieve the Transaction Identifier of the current transaction.

® UPDATE the current date and time in the EndTimestamp for the current transac-
tion in the Transaction table. If the UPDATE statement returns no updated row,
the transaction is new. Thus, INSERT a new row with the Transaction Identifier
and the current date and time.

® INSERT these values into the shadow table that corresponds to the table being
written:

® Transaction Identifier

Current date and time

Type of operation (INSERT, UPDATE, or DELETE)
Operation values:

® For an INSERT: the value of all columns

® For an UPDATE: the old and new key values plus the values of the remain-
ing columns

e For a DELETE: the old key values

Transactions that are rolled back do not affect the source, and consequently must not
affect the target. For this reason, you do not want to store information about rolled
back transactions. The recording of the transaction details should be done within the
same transaction that is being recorded. Then if the transaction is rolled back, the
recording of the transaction is rolled back as well. Thus, information about rolled-
back transactions is not recorded.

Resulting Context
The use of this pattern has the following benefit and liability:

Benefit

® Other useful services. Recording transactions is very similar to other services,
such as auditing. If the recorded information is enriched with data, such as
current user or role, it can be the basis for auditing too.

Liability

® Increasing space requirements. Recording transactions writes new information
into the transaction table and the shadow tables. Thus, the space requirements of
these tables are constantly increasing. You should design and schedule a house-
keeping process that removes the transactional information from these tables
once they have been transmitted to the targets.

92

Data Patterns

Next Considerations

The transactional information recorded by the use of this pattern can be used by
Master-Slave Transactional Incremental Replication, which is a separate pattern.

Variants

If you feel that the resolution of your clock is fine enough to correctly order the
transactions, but you do not trust the resolution to order the operations within the
transaction, you can still use this pattern by following this variant. This variant also
increases the efficiency of replaying the transactions on the target.

Combining Operations

The concept behind this variant is that the result of a transaction does not depend

on the order of its operations, but rather upon the net effect on any particular row
within the transaction. So if an application on the source writes the same record
twice within a transaction, the operations on that row can be aggregated to a single
operation to be applied to the target. If the source application writes more than twice
to the same row in a transaction, each of the other rows again aggregate with the
previous aggregation to create a new aggregated row.

The following table presents the aggregated operation that has to be stored to
achieve the correct net effect of two operations on the same row identified by the
replication key in a single transaction:

Table 3.4: Net Effects of Two Operations on the Same Row

Second operation

INSERT UPDATE DELETE
INSERT Impossible Insert Do nothing
First operation UPDATE Impossible Update Delete
DELETE Update Impossible Impossible

The design of recording transactions on the source must now add these steps when
storing the operation:

® Determine if there is an earlier operation on the same row within the same
transaction.

® Determine the aggregated operation if an earlier operation is found.
® Store the recorded or combined operation.
When applying this variant you must not have any referential integrity constraints

on the target because the operations of the transaction might be executed in a differ-
ent order. This would violate such constraints temporarily.

Chapter 3: Data Movement Patterns 93

When combining several operations on the same row into a single operation, up-
dates of the Replication Key might become a problem. However, because the target
does not have referential integrity constraints for the reason just given, an update of
key values can be converted into a delete of the old row, followed by an insert of the
new row.

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

Move Copy of Data. This pattern is the root pattern of this cluster. It presents the
fundamental data movement building block consisting of source, data movement
set, data movement link, and target. Transmissions in such a data movement
building block are done asynchronously some time after the update of the source.
Thus, the target applications must tolerate a certain amount of latency until
changes are delivered.

Data Replication. This pattern presents the architecture of a replication, which is
a specific type of data copy movement.

Master-Slave Replication. This pattern presents the high-level design for a replica-
tion where changes at the source are transmitted to the target by overwriting
potential updates of the target.

Patterns That You Can Use Next

Master-Slave Transactional Incremental Replication. This pattern uses transactions to
transmit changes from the source to the target. These changes might have been
recorded using the Capture Transaction Details pattern.

94 Data Patterns

Master-Slave Transactional Incremental Replication
Context

You are about to design the handling of transmissions on a replication link. Your
requirements are:

® The replication set that you are sending to the target consists only of changes
made to the source data, so you are designing an Incremental Replication.

® All needed data must be available to the target applications at any point in time;
this includes related data such as reference data in other tables.

You have decided to achieve this by replicating the changes on a transactional level.
Thus, you must retrieve transactional information from the source by either by
accessing the transaction log of the database system or by preparing the source
database as described in the Capture Transactional Details pattern. Since the granular-
ity of a transmission is a transaction, both source and target have to be database
management systems (DBMSs), which we will describe in relational DBMS
(RDBMS) terms.

Note: This pattern uses concepts, terms, and definitions that are introduced in the Data
Replication architectural pattern. It uses the services described in the Capture Transaction
Details pattern as well.

Problem

How do you design a replication link to support the transmission of transactional
changes, and to replay them on the target while meeting all integrity requirements?

Forces

Any of the following compelling forces justify using the solution described in this
pattern:

® Availability of consistent data on a complex target schema. When applications
read data from the target, all related data (for example, referenced data in other
tables) must be available and consistently up-to-date. This requires that each
transaction that updates the source be transmitted to the target as one transaction.

The following enabling forces facilitate the adoption of the solution, and their
absence may hinder such a move:

® Small volume of changes compared to the volume of the replication set. The
size of the changes being moved from the source to the target on each transmis-
sion is significantly smaller than the size of the replication set. Thus, the changes
will be transmitted faster than a new snapshot of the replication set.

Chapter 3: Data Movement Patterns 95

e Similarity in the replication sets. The schemas of both source and target must be
nearly identical, although you can tolerate the following types of differences:

e Different data types for corresponding columns at source and target.

® One column of the source table can be split into different columns in the target
table.

® Several columns of the source table can be combined into a single column of
the target table.

Solution

The solution is to acquire the information about committed transactions from the
source and to replay the transactions in the correct sequence when they are written
to the target.

Note: This pattern uses the terms ‘transactions’ and ‘operations’ with the following meanings:

A transaction is a collection of SQL commands that form a unit of work. Depending on the
RDBMS, a transaction is started explicitly by a command like Begin Transaction, or implicitly by
the first SQL command outside of a transaction. The transaction is ended either explicitly by

a commit or a rollback, or implicitly at the end of every SQL command in autocommit mode.

An operation is the change (INSERT, UPDATE, or DELETE) of an individual row within a transaction.

Figure 3.23 shows the replication building block for this type of replication.

Replication Building Block

Al g

Source Replication Link Target

The replication set contains only transactional
changes that have occurred to the source data rows.

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

Figure 3.23

Replication building block for Master-Slave Transactional Incremental Replication

96

Data Patterns

Depending on the features of the RDBMS and on the requirements of the replication
link, the transactional information can be acquired either from the logging system of
the source or from additional schema objects on the source. In both cases, the effects
of the transaction are acquired as a collection of operations on the rows being up-
dated by the transaction. The transmission to the target results in the corresponding
rows being updated by transactions of the same size and in the correct sequence
(according to their completion time at the source).

The detailed description of this pattern is separated into:

® Background

® Prerequisites for this pattern

® Recorded transactions executed on the target

Background

Before starting to describe the design of a transactional replication link, here are two
considerations of more general nature:

® Transaction order for replay

e Handling triggers, if the Write service uses standard SQL

Transaction Order for Replay

When replaying the transactions on the target, you do not have to mirror the data-
base connection environment on the target to achieve data integrity. As concurrent
transactions are isolated from each other, you can execute the transactions on the
target sequentially instead. Thus, you can use a single database connection to replay
all transactions of the current transmission. However, you must execute the indi-
vidual transactions in the correct sequence, which is given by the time of their
completion on the source.

The following example shows why the transactions must be ordered by their
completion time, not their start time.

Two tables are written by two concurrent transactions. Figure 3.24 shows how both
transactions are running in parallel.

tableA.colA =5 tableB.colB = 20

Transaction 1 [B e E—

tableB.colB =10

Transaction 2 Oo—T—0

time
Figure 3.24
Two concurrent transactions

Chapter 3: Data Movement Patterns 97

Transaction 1 starts first and updates tableA. Then Transaction 2 starts, updates
tableB, and completes with a commit. Finally, Transaction 1 also updates tableB.
After both transactions, colB of tableB has a value of 20.

If the ordering were done on the transaction start time, the update of Transaction 2
would be the last one. Thus, colB of tableB would have a value of 10 at the end,
instead of 20. However, if the ordering is done on the end time of each transaction,
colB of tableB has a value of 20 at the end, which is the correct value.

If Transaction 1 had written tableB before Transaction 2 (for example, instead of
tableA), then Transaction 2 would have been blocked until the end of Transaction 1.
Transaction 2 would have been executed after Transaction 1, and colB of tableB
would have a value of 10. Here again the transactions have to be ordered on their
completion, which produces the correct result.

A sufficiently precise timestamp is needed to distinguish the completion time of any
two transactions and thereby correctly order the transactions.

Handling Triggers, If the Write Uses Standard SQL

Triggers are schema objects that perform additional operations on behalf of an initial
operation. Triggered operations are also part of the initiating transaction and are
logged in the same way as any other operation.

There is an issue around how the RDBMS behaves when logged changes get applied
to the target database. If you can apply the log information to the target without
ever triggering a secondary operation, then you are fine. But if a trigger could be
tired by applying a log record, then you have to be concerned.

This applies to either triggers that match source ones, or totally different triggers at
the target.

For example, a source table has a trigger that is fired on every UPDATE. This would
INSERT the old state of the row into a history table. There is a similar trigger on the
target table. An UPDATE of the row in the source log is recorded, and the triggered
INSERT into the history table is also recorded as part of the transaction. When
executing this transaction on the target, the UPDATE of the table is performed first.
This fires the trigger on the target, which causes an entry into the history table. But
the source also recorded an INSERT into the history table. When replaying the next
operation, a second INSERT into the history table is performed. Thus, the history
table would have two new entries instead of one.

Hence, if you don't take special precaution around the handling of triggers, you
might perform more operations on the target than you performed on the source.

To solve the problem, you must eliminate the effect of the trigger on the target
during transmissions. To achieve this, the replication link should connect to the
target database with a dedicated user or a dedicated role that is only used for trans-
missions, but not by any other applications. Additionally, the trigger has to be
defined in a manner (depending on the SQL dialect of the RDBMS) that does not
perform any operations if the database connection uses this special user or role.

98 Data Patterns

Prerequisites

This pattern depends on two features that the DBMS must provide and on a prereq-
uisite for the data model:

® A fine-grained clock. The order in which transactions are executed on the source
must be the same as the order in which they are replayed on the target. Thus, the
clock must provide a sufficiently fine resolution to preserve the order. A clock
grain of a millisecond is generally sufficient; many systems provide even micro-
seconds. A clock with a resolution of whole seconds only will definitely prevent
the use of this pattern.

® Transaction Identifiers. The RDBMS must provide a means to identify the
operations that belonging to the same transaction. This is called a Transaction
Identifier throughout the remaining discussion. It can be an opaque data type, and
is generally provided to handle distributed transactions.

® Unique key. All tables of the replication set must have either unique keys or
another combination of columns that uniquely identifies every row. The unique
identifier of every row is referred to as the Replication Key throughout this docu-
ment. After the Manipulate process, the resulting Replication Key must also
identify every row in the target uniquely.

Elements of the Replication Building Block

The following paragraphs describe the elements of the replication building block for
this type of replication.

Source

The source contains the replication set, which is a log of all changes that you want to
acquire.

Acquire

The steps of Acquire are:

1. Connect to the source.

2. Find the transaction pending for transmission to the target that has the oldest
completion timestamp.

3. Find the first operation of this transaction.

4. Pass the Transaction Identifier, the table name, the type of operation (INSERT,
UPDATE, or DELETE) and the names and values of the columns to Manipulate.

5. Continue with step 4 until all operations for the current transaction are read.

6. Delete the record of the transmitted transaction, unless it is needed for other
replication links.

7. Continue with step 2 until all transactions are read.

Chapter 3: Data Movement Patterns 99

Manipulate

This service performs the following steps:
1. Get the first row from Acquire.

2. If the table needs some manipulation, perform the appropriate action, such as
converting data types, and combining or splitting fields of the row.

3. Pass the Transaction Identifier, the table name, the type of operation (INSERT,
UPDATE, or DELETE) and the names and values of the columns to the Write
service.

4. Get the next row from Acquire and continue with step 2 until all rows are
processed.
Write

The Write service performs the following steps:
1. Get the first row from Manipulate.

2. If the Transaction Identifier differs from the Transaction Identifier of the previ-
ously handled row, COMMIT the transaction.

3. Depending on the remaining attributes, build a SQL statement that INSERTS,
UPDATEs, or DELETEs a single row in the target.

4. Get the next row from the Manipulate service and continue with step 2 until all
rows are processed.

Target

The target is the database where the transactions are replayed. You must ensure that
no triggered operations are executed, as described above.

Example

The Implementing Master-Slave Transactional Incremental Replication Using SQL Server
pattern presents an implementation of the design pattern by the means provided
with Microsoft® SQL Server™,

Resulting Context

The use of this pattern inherits the benefits and liabilities from Master-Slave Replica-
tion and has the following additional benefit and liability:

Benefit

® Basis for other useful services. Other services might have a similar need to use
transactional information. For example, spin off the transmission data to a his-
torical store, such as a data warehouse.

100 Data Patterns

Liability

® Dependencies of schemas. This pattern depends greatly on the similarity be-
tween the source and the target schemas. If one of them changes, the other must
change accordingly. (For minor changes, it could be sufficient to adapt Manipu-
late for the data conversion from the source schema to the target schema.)

Security Considerations

The database connection used to replay the transactions on the target must have
sufficient access rights to INSERT, UPDATE, or DELETE in all tables belonging to
the replication set. In addition, the Acquire database connection account needs to
have SELECT or READ privileges on the source transaction objects.

It is recommended that you create a dedicated user in the target database with
appropriate privileges and use this user for all transmissions. In general, this user
will not be used for any other purposes.

Defining such a user allows you to tailor the privileges to the specific needs of
Acquire or Write.

Operational Considerations

Before implementing Master-Slave Transactional Incremental Replication, the following
are considerations to achieve smooth running operations:

® Load on the source database server. When a large number of targets want to use
the same source for their replication links, then the source can have operational
difficulties in meeting all their demands. In this case, consider using the Master-
Slave Cascading Replication pattern.

® Load on the target database server. Transmissions replay transactions in the
same way they were executed on the source. Although the transactions are
executed sequentially on the target, the transmission consumes significant re-
sources, such as CPU time and I/O activity, on the target. This impacts the
response times of the applications during transmissions.

® Space requirements for replaying the transactions on the target. Every transac-
tion on the source is replayed as a single transaction on the target. Thus, you
must provide sufficient space in the logging system to complete the largest
transaction that might be executed on the source. Although the source must deal
with concurrent transactions that the target does not need, a good starting point
is to configure the logging system of the target in the same way that it is config-
ured on the source.

Chapter 3: Data Movement Patterns 101

Variants

After introducing the solution for transmitting the changes of a replication set from
the source to the target, two variants show possible enhancements. The first variant
shows a way to obtain a higher robustness of the replication. The second one
sketches the implementation of a change history.

Higher Robustness

When writing the transactions to the target, you might consider converting INSERTs
into UPDATEs or vice versa. Thus, if an INSERT raises a duplicate key error, you
perform an UPDATE instead; and if the number of rows being hit by an UPDATE is
zero, you perform an INSERT instead. This is sometimes referred to as an UPSERT.

Although such error handling is not necessary as long as the content of the target
corresponds exactly to the state of the source before the transaction, it offers a higher
degree of robustness. If the content of the target had been changed, for example, by
an erroneous action of an operation or administrator, the normal execution of the
transaction would fail; however, such an error handling will again align the contents
of the source and the target.

Implementing a Change History

Instead of updating changed rows, they can be appended by adding a version
number. Therefore, the previous version of the target row will be kept to retain a
change history at the target. For example, this information can be used to trace a
stock’s performance record.

Additional Prerequisites
Some preparations have to be made for this variant to work.

® The data schema must be extended by a version column.

® The version number must be managed by Write, which increases the version
number before it writes the new row by performing an INSERT.

Operational Considerations

Because rows will not be updated but inserted, the target database grows faster than
the source database. Therefore, you must provide an appropriate amount of free
disk space at the target site.

102 Data Patterns

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

Move Copy of Data. This is the root pattern of this cluster; it presents the overall
architecture for maintain copies of data after they have been updated.

Data Replication. This pattern presents the architecture of a replication.

® Master-Slave Replication. This pattern describes design considerations for trans-

mitting data from the source to the target by overwriting potential changes in the
target on a higher level.

Capture Transaction Details. This pattern describes the underlying change-capture
service to provide transactional information from the source when a DBMS log is
not available or is not to be used for this purpose.

Patterns That You Can Use Next

Implementing Master-Slave Transactional Incremental Replication Using SQL Server.
This pattern shows how to implement Master-Slave Transactional Incremental
Replication by using SQL Server.

Other Patterns of Interest

Master-Slave Snapshot Replication. This pattern presents a design for transmitting a
complete replication set. This can be used to equalize both databases as a starting
point before establishing an Incremental Replication.

Master-Slave Cascading Replication. This pattern shows replication topologies
where Master-Slave Transactional Incremental Replication can be used to design the
individual replication links of the topology.

Chapter 3: Data Movement Patterns 103

Implementing Master-Master Row-Level Synchronization
Using SQL Server

Context

You want to build a master-master synchronization between two Microsoft® SQL
Server™ databases, and you want to take advantage of the integrated synchroniza-
tion functionality of SQL Server. The replication sets of the source and target are
identical and manipulations of them are not intended. You want to detect and
resolve potential conflicts at the row level. In addition, you want to be able to define
the conflict resolution method according to your business needs (for example, the
more recent change wins).

Note: This pattern uses terms and concepts introduced in the following patterns:
® Move Copy of Data

® Data Replication

® Master-Master Replication

)

Master-Master Row-Level Synchronization

Background

Before introducing the implementation with SQL Server, this pattern covers the

following topics:

® A summary of the synchronization building block as described in the Master-
Master Row-Level Synchronization pattern

® The SQL Server replication services that this pattern uses (SQL Server merge
replication).

® The mapping of the elements of the synchronization building block to the
services of SQL Server.

Synchronization Building Block

The Master-Master Row-Level Synchronization design pattern uses a synchronization
building block, which consists of two related replication links and a synchronization
controller. Figure 3.25 on the next page shows Master-Master Row-Level Synchroniza-
tion at the design level with the related replication links.

104 Data Patterns

Synchronization Building Block

Replication Link 1

DoC
/P init end¢

Synchronization
Change Controller @ Change

Role Repository Role

¢end
oo

Replication Link 2

A = Acquire
M = Manipulate
W = Write

Rep. Set = Replication Set

Figure 3.25

Master-Master Row-Level Synchronization at the design level

Synchronization Controller

The synchronization controller manages the synchronization. It relates both replica-
tion links and controls their invocations. The controller uses its own repository to
store information about the synchronization, for example the time of the last syn-
chronization for the replication link pair.

Source

The source contains the replication set, which is the data to be copied from the
source and sent across a data movement link to the target.

Acquire

In the Master-Master Row-Level Synchronization pattern, the controller invokes the
Acquire service. The Acquire service reads the data changes to be transmitted.

Chapter 3: Data Movement Patterns 105

Manipulate

The Manipulate service performs simple data transformations, such as data type
conversions and splitting or combining columns.

Write

The Write service updates the target with the manipulated rows. Before writing the
updates, the Write service uses conflict detection and resolution methods to merge
any data modifications that occurred after the last synchronization on both source
and target.

Target

The Target is the database where the replication set is to be written.

SQL Server Replication Services

This section describes the types of replication available in SQL Server and the
replication components used in this pattern.

Replication Types

SQL Server offers two types of replication that cope with updates to both source and
target:

e Transactional replication. Conflicts are detected at the transaction level. If the
transactions do not conflict with each other, changes are transmitted in both
directions. However, if a conflict is detected, either the source or the target always
wins; you cannot use any other conflict resolution methods with this type of
replication.

® Merge replication. Conflicts can be detected at the row level or column level, but
conflicts are always resolved at the row level. You can use different kinds of
conflict resolutions methods with this type of replication. The data structure of
the replication set on source and target must be identical.

Note: This pattern uses merge replication because it provides the ability to detect conflicts at
the row level or column level and to define conflict resolution methods at the row level.

SQL Server merge replication uses several standard services to synchronize data
between the publication database and the subscription database. Figure 3.26 on the
next page shows the services and processes involved in such a transmission.

106 Data Patterns

Publisher Distributor Subscriber

Conflict
Resolver

Publication

Synchronization
System Tables

N Distribution

Subscription
Synchronization
System Tables

> Merge Agent

e _
Source Target
Figure 3.26

SQL Server merge replication

Platform Roles

SQL Server defines three roles for the platforms that are involved in synchronization:

Publisher. The Publisher contains the source and defines the replication set
(publication) to be replicated.

Distributor. The Distributor holds the distribution database and the conflict
resolver. It runs the cleanup jobs for managing the distribution database, and in a
push replication also runs the Merge Agent. (The next section discusses these
software components in detail.)

Subscriber. The Subscriber contains the target and creates a subscription to
subscribe a publication. In a pull replication, the Subscriber runs the Merge
Agent.

The Distributor does not necessarily need to be a separate platform. Its role can also
be assigned to the Publisher, where it is called a local Distributor. Otherwise it is
called a remote Distributor.

Software Components

SQL Server replication contains the following software components:

Trigger. In the source and the target, the configuration process creates system
tables and triggers. The triggers track the changes on the replication sets and
write them to the system tables.

Merge Agent. The Merge Agent applies the initial snapshot to the Subscriber and
moves and reconciles the data changes that occur to the replication set. Each
merge subscription has its own Merge Agent that connects to both the Publisher

Chapter 3: Data Movement Patterns 107

and the Subscriber and updates both. The Merge Agent runs at either the Dis-
tributor for push subscriptions or the Subscriber for pull subscriptions.

Note: The Merge Agent may serve several Subscribers, but this pattern considers only a
single Subscriber.

In a merge replication with row-level conflict detection, there are three alterna-
tives for the data flow:

® Upload. The changes are merged only in the target.
® Download. Only the source gets the merged data.

® Bidirectional. The replication first performs an upload (to merge at the target)
and then after applying these changes performs a download (to merge at the
original source).

Note: The Synchronization implementation pattern requires bidirectional transmission.

During synchronization, each changed row from the source is compared with the
corresponding row from the target (Upload). If both rows have changed, there is
a conflict. The merge agent uses the defined conflict resolver to choose a winning
row. After finishing all source rows, the same process starts with all changed
target rows (Download).

Conflict resolver. The conflict resolver is used to choose a winning row if a
conflict occurs. SQL Server provides a default priority-based conflict resolver and
a number of custom conflict resolvers. You can also write custom conflict resolv-
ers. SQL Server 2000 includes the following custom resolvers:

Additive Conflict Resolver

Averaging Conflict Resolver

DATETIME (Earlier Wins) Conflict Resolver
DATETIME (Later Wins) Conflict Resolver
Maximum Conflict Resolver

Merge Text Conflict Resolver

Minimum Conflict Resolver

Subscriber Always Wins Conflict Resolver
Priority Column Resolver

Upload Only Conflict Resolver

Download Only Conflict Resolver

Stored Procedure

Alternatively, you can use a user-written conflict resolver, which is implemented
as stored procedures, or a COM conflict resolver.

108 Data Patterns

e Distribution database. This additional database is needed to store the metadata,
the history, and the error log of the replication process. The distribution database
must be a SQL Server database and is located on either the publisher (called a
local Distributor) or on a dedicated platform (called a remote Distributor).

® Cleanup jobs. Independent of the transmission process, cleanup jobs run on the
distribution database and perform the following tasks:

e Agent History Clean Up: Distribution. Removes replication agent history
from the distribution database.

® Distribution Clean Up: Distribution. Removes replicated transactions from
the distribution database.

® Expired Subscription Clean Up. Detects and removes expired subscriptions
from publication databases.

® Reinitialize Subscriptions Having Data Validation Failures. Reinitializes all
subscriptions that have data validation failures.

® Replication Agents Checkup. Detects replication agents that are not actively
logging history.
Mapping the Synchronization Building Block to SQL Server

Figure 3.27 shows how the elements of the synchronization building block map to
those of SQL Server merge replication.

Acquire J [Write

Subscrlptlon
Conflict Merge
Resolver | % agent € |
istribut Synchromzatlon
D:;;;f: : System Tables

Write J [Acquire

Publlcatlon

Figure 3.27

SQL Server implementation of Master-Master Row-Level Synchronization design

Synchronlzatlo
System Tables

Source

Defining the Replication Set

The replication set that is to be synchronized between the source and the target in
SQL Server is called a publication on the Publisher and a subscription on the Sub-
scriber. The elements of a subscription are identical to those of a publication. This
kind of publication consists of one or more tables, or only parts of tables. The parts
of tables can be defined in one or two ways by:

Chapter 3: Data Movement Patterns 109

® TFiltering the rows to be replicated by defining a search condition.
In the theory of relational databases, the result is called a restriction.

® Filtering the columns to be replicated as a subset of the table’s columns.
In the theory of relational databases, the result is called a projection.

Synchronization Controller

In the SQL-Server environment, the Merge Agent takes the role of the synchroniza-
tion controller. The Merge Agent executes Replication Link 1 to upload changes from
the Publisher, and then executes Replication Link 2 to download the Subscriber
updates.

Source

The source is the publication database, which contains the publication to be repli-
cated and the synchronization system tables.

Acquire

The changes on the replication set are tracked by triggers and are written to local
system tables. These changes are then acquired by the Merge Agent.

Manipulate

In a merge replication environment, data manipulations within the transmission are
not permitted.

Write

The replication set is written to the target by the Merge Agent, which detects and
resolves conflicts before it writes the data.

Target

The target is the Subscription database, which contains the corresponding replica-
tion set to the source.

Implementation Strategy

The schemas of the publications in both Publisher and Subscriber must be identical.
SQL Server merge replication does not support any manipulations during transmis-
sions.

» To set up a new replication link

1. Configure the Distributor:

a. Create the distribution database: This is an internal SQL Server database used
from the Distributor. In most cases, you use the default options to create this
database, but you can also customize it.

110 Data Patterns

Choose the snapshot folder: You can either choose the default folder for
exchanging the initial snapshot files or you use a custom folder.

Set up the Subscriber parameter: To define the default parameter for all sub-
scribers, you can confirm the offered configuration options or customize them.

2. Define the publication:

a.

For each table, decide whether to use the default conflict resolver provided or
use a custom resolver.
If you want to use a custom Conflict Resolver that has additional require-

ments, it may be necessary to modify the table (for example, add a timestamp
column for the DATETIME Conflict Resolver and create triggers to update it).

c. Select the publication database that includes the replication set.

g.

h.

Select the possible database systems that the Subscribers will use: SQL Server
2000 or earlier versions of SQL Server.

Select the tables to be replicated; for each table, specify a conflict detection
method and a Conflict Resolver.

For each table, specify whether the entire table should be replicated, or restrict
the table by specifying horizontal and vertical filters.

Decide whether anonymous Subscribers are allowed to subscribe to the
publication.

Decide how often the Snapshot Agent creates new snapshots.

3. Define the subscription:

a.

b
c.
d

o

Decide if you want a pull or a push subscription.

. Select the publication you want to subscribe to.

Choose the subscription database.

. Decide whether to initialize the subscriber using an initial snapshot from the

publisher or whether to populate the database manually.
If you want to start the transmission automatically, define a schedule.

Verify that the SQL Server Agent is running at the Publisher, the Distributor,
and all Subscribers.

At this point, all elements of the replication link have been configured. From now
on, both Publisher and Subscriber will log all changes to the specified replication set
using triggers.

The SQL Server merge replication runs different jobs:

® Snapshot Agent: Creates the initial snapshot on the Publisher.

® Merge Agent: Applies the initial snapshot on the subscription database. Merges
the changes from publication database and subscription database, and detects
and resolve conflicts using the chosen Conflict Resolver.

Chapter 3: Data Movement Patterns 111

® (Cleanup jobs: Clean up the Distribution Database on the Distributor.

The example that follows describes in detail how to use the SQL Server wizards to
set up this kind of replication link.

Example

This example describes a synchronization performed with SQL Server merge replica-
tion. The synchronization uses a table from the Pubs sample database, which is
delivered with SQL Server.

Overview

This example uses two computers to demonstrate the synchronization. One com-
puter, PUB_SERVER, hosts the Publisher, including the database PUB_DB, and a
local Distributor, including the default Distribution database, Distribution. Another
computer, SUBS_SERVER, forms the subscriber and has a database identical to
PUB_DB named SUBS_DB. An initial snapshot is used to transmit the data schema
and populate the tables on the Subscription database. Figure 3.28 shows the architec-
ture of the example.

PUB_SERVER SUBS_SERVER

Publisher Local Distributor Subscriber

' Authors

PK

' Authors

Distribution

Au_lname
Au_fname

Au_lname
Au_fname

Distribution
PUB_DB Database SUBS_DB

Figure 3.28

Example environment

112 Data Patterns

The conflict resolution mechanism used is an integrated custom Microsoft SQL
Server DATETIME (Earlier Wins) Conflict Resolver. Each table in the replication set
therefore needs a special column of type DATETIME. This column must be updated
each time a row is modified. The following triggers perform this task:

CREATE TRIGGER authors_inserted ON dbo.authors
AFTER INSERT, UPDATE

AS

UPDATE dbo.authors

SET Tlast_changed = getdate()

WHERE au_id = 1inserted.au_id;

CREATE TRIGGER authors_deleted ON dbo.authors
BEFORE DELETE

AS

UPDATE dbo.authors

SET Tast_changed = getdate()

WHERE au_id = deleted.au_id;

The triggers were created on the Subscription database when the initial snapshot
was applied. If you don’t use an initial snapshot, you have to create the triggers
yourself that correspond to the Publication database. The subscriber initiates the
synchronization process every 15 minutes. Publication and Subscription have
identical data structures.

Configuring the Publisher and the Distributor

To set up the example environment, follow these steps in the Configure Publishing
and Distribution Wizard.

1. In SQL Server Enterprise Manager, select the publication database server, right-
click Replication, and then click Configure Publishing, Subscribers and Distri-
bution.

2. On the Select Distributor page, select Make Pub_Server its own Distributor,
where Pub_Server is the name of the server you want to configure as a Distributor.
Click Next.

Note: The distributor can be located on the same server as the Publisher, in which case it
is called a local distributor, or on a remote server. This example uses a local Distributor.

3. On the Specify Snapshot Folder page, type the name of a shared folder on the
Distributor where the Snapshot Agent can store snapshot files.

Chapter 3: Data Movement Patterns 113

Note: You must create and share this folder manually or use an existing system shared
folder for this purpose. You should use a manually defined snapshot folder because the
default uses a system internal share, such as C$. These shares are used for administrative
purposes.

4. On the Customize the Configuration page, select No, use the following default
settings to create a default distribution database.

Note: In this simple example, it’s sufficient to use the default settings. In a more complex
environment, you should manually configure the distribution database.

Creating a Publication

Next, use the Create Publication Wizard to create a publication on the Publisher.

1. In SQL Server Enterprise Manager, select the publication database server, expand
Replication, right-click Publications, and then click New Publication.

2. On the Welcome Screen, click Next.

3. On the Choose Publication Database page, select Pub_DB as the Publication
Database, where Pub_DB is the name of your publication database for the
replication.

4. On the Select Publication Type page, select Merge Publication to create a
publication for the synchronization.

5. On the Specify Subscriber Types page, select only Servers running SQL Server
2000.

6. The Specify Articles page shows possible objects for replication in the Publica-
tion Database. From the Object Type Tables list, select the authors table. Click
the ellipses (...) button to specify the properties for this article.

7. On the Table Article Properties page, specify the type of conflict detection and
select a resolver:

a. Click the General tab and select Treat changes to the same row as a conflict to
enable conflict detection.

b. On the Resolver tab, click Use this custom resolver and select Microsoft SQL
Server DATETIME (Earlier Wins) Conflict Resolver. In the text box, specify
the DATETIME column used by the resolver. In this case, the column is named
last_changed.

Figure 3.29 on the next page shows the General and Resolver tabs of the Table
Articles Properties page.

114 Data Patterns

Table Article Properties - authors g| Table Article Properties - authors g|
General l Snapshot] Hesolver] Merging Ehanges] General] Shapshot Resobver l Merging Ehanges]
L) h A rezolver iz a module called by the Merge Agent that controls how changes
Name: |aut ors made to bwo members of the publication are merged.

Drescription: ‘ " Use the default resolver

Table information

Source table |db0 Microsoft SOL 5 erver Averaging Conflict Resolver
: oL 7
Source table

Destination table

‘when merging changes from different sources last_changed

+ sz this custom resolver [registered at the Distributar]):

Microzaft SUL Server Additive Conflict Resalver A~

owner:

Microzoft SOL Server DATETIME [Earlier 5] Conflict Resalve
Microzoft SOL Server DATETIME [Later “Wins) Conflict FResolver
|‘3Uth°'S Microsoft SOL Server Download Only Conflict Resakver
Microsoft SOL Server Maximum Conflict Resolver

hame:

oWnEr: | I Require verification of a digital signature before merging

Enter information needed by the resolver :

+ Treat changes to the same row as a conflict

™ Allow Subscribers ta resolve conflicts interactively during on-dermand

™ Treat changes to the same column az a conflict (changes ta different synchronizations

columns in the zame row will be merged)

QK | Cancel | Help | QK | Cancel Help

10.

11.

Figure 3.29
Tabs on the Table Articles Properties page

. The Article Issues page informs you that each table of the publication needs a

unique identifier column with the data type ROWGUIDCOL. If this column does
not exist, it is created automatically. Click Next to proceed.

. On the Select Publication Name and Description page, specify the Publication

name as example. The default entry for the publication description can be used.

On the Customize the Properties of the Publication page, select the option
beginning with No, create the publication as specified to accept the default
options shown in the text box below the options.

On the Completing the Create Publication Wizard page, click Finish to create
the publication.

Creating a Subscription

To complete the configuration, use the Pull Subscription Wizard to create a pull
subscription for the defined publication on the Subscriber.

1.

In SQL Server Enterprise Manager, select the subscription database server, open
Replication, right-click Subscriptions, and then click New Pull Subscription.

. On the Welcome Screen, click Next.
. On the Look for Publications page, select Look at publications from registered

servers.

. On the Choose Publication page, expand Pub_Server and select the Publication

named example:pub_db, where Pub_Server is the name of your Publisher and
example:pub_db is the name of your publication (see Figure 3.30).

10.

Chapter 3: Data Movement Patterns 115

Pull Subscription Wizard g|
Choose Publication
Chooze the publication to which pou want to subscribe.

Select one publication from one of the following servers:
=8 B PUE_SERVER
@ example : pub_db
-) SUBS_SERVER

Fegister Server...

Expand a Publizher to display publications accessible by the login uzed to connect to
'SUBS_SERVER' and thoze that allow anonymous subscriptions.

< Back | Mext » | Cancel Help

Figure 3.30
Choose Publication page

. On the Specify Synchronization Agent Login page, select Use SQL Server

Authentication. Enter the login and the password of a user account that is used
to connect to the Publisher during the replication.

. On the Choose Destination Database page, select Subs_DB as the database for

the Subscription, where Subs_DB is the name of your subscription database.

. On the Initialize Subscription page, select Yes, initialize the schema and the

data, and then click Start the Merge Agent to initialize the Subscription imme-
diately to use a snapshot from the Publication database to create an identical
author table on the Subscription database.

. On the Snapshot Delivery page, specify the snapshot folder. This example uses

the default folder of the publication.

. On the Set Distribution Agent Schedule page, select Using the following

schedule, and then click Change to specify a new schedule for the Distribution
Agent.

On the Edit Recurring Job Schedule page, under Occurs, select Daily. Under
Daily Frequency, select Occurs every and specify an interval of 15 minutes. (See
Figure 3.31 on the next page.)

116 Data Patterns

Edit Recurring Job Schedule - SUBS_SERVER

Jobname: [Default Merge Agent Schedule]

Oceurs D aily

* Daily Every |1 El: dayls]
" weekly

" Monthly

Daily frequency

" Oceurs once at: —i
% Ocours eveny: 15 3: Mirute(s) = | Starting at 1200:00 AW -
Ending at: 11:53:59 PM —=
Duration

Start date: 5/23/2003 - " End date:

* Mo end date

Figure 3.31
Edit Recurring Job Schedule page

11. On the Set Subscription Priority page, select Use the Publisher as a proxy (the
example does not use a priority-based conflict resolver).

12. The Start Required Services page shows the status of the SQL Server Agent on
the Subscriber. If the SQL Server Agent is not running, select the check box next
to the entry for the Agent. The Agent will start after the wizard creates the sub-
scription.

13. On the Completing the Pull Subscription Wizard page, review the options for
the specified subscription. Click Finish to create the subscription with these
options.

The configuration process is finished. During this process, the system tables and
triggers for the merge replication are installed on the Publisher and the Subscriber.
The initial snapshot is applied, and now every change on the replication set is
logged in both databases.

Before starting the first transmission, you should check the following:

® Make sure that the Snapshot Agent has created the first initial snapshot. You may
need to start the Snapshot Agent manually on the publication database.

® Make sure that the Merge Agent has initialized the schema. If this has not been
done automatically, you can start the process manually on the subscription
database.

® Ensure that each replication agent is able to communicate with all servers in-
volved in the replication topology. You can do so by logging on to the required
server and database using SQL Query Analyzer or the SQL Server command line
utility called osql.

Chapter 3: Data Movement Patterns 117

Starting and Restarting the Synchronization

To start the synchronization manually, follow these steps:

1. In SQL Server Enterprise Manager, select the publication database server, open
Replication Monitor, select Publishers, Pub_Server, and open the publication
example:pub_db.

2. Right-click Snapshot Agent and select Start Agent to create an initial snapshot.
3. Right-click SUBS_Server:subs_db and select Start Synchronizing to start the
synchronization.

The replication usually runs on a defined schedule. If you want to test the replica-
tion or start the merge replication immediately, however, you need to start the
replication manually.

Testing the Example

You can easily test the functionality of the implemented synchronization by
changing data in the publication database and the subscription database, starting
the synchronization, and checking to see if the corresponding data has changed
accordingly.

To check various kinds of data changes, perform INSERT, UPDATE, and DELETE
operations on the publication database and the subscription database. The updates
should involve the same rows in both databases. Manipulate the data so that different
conflicts occur and so that both databases include winning rows, as follows:

1. Change a row in the publication database. For example:
UPDATE authors SET au_lname = 'Smith' WHERE au_id = '807-91-6654'

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('453102-3255', 'Berg', 'Karen', '400 486-234', 1)

DELETE FROM authors WHERE au_id = '672-71-3249'

2. Change the corresponding row in the subscription database so that a conflict
occurs. For example:

UPDATE authors SET au_lname = 'Meyer' WHERE author_id = '807-91-6654"

3. Start the synchronization manually.

4. Check to see if the rows changed in both databases. Verify that the expected
column won the conflict that occurred during the transmission. For example:

SELECT * FROM authors

5. Check the history of the subscription in the replication monitor to make sure that
the conflict was logged as detected and resolved.

118 Data Patterns

Resulting Context

The implementation described in this pattern detects and resolves conflicts at the
row level. Updates on different columns of the same row are treated as conflicts, and
only the source changes or the target changes will remain after a transmission.

The implementation of the Master-Master Row-Level Synchronization pattern has the
same benefits and liabilities as the design pattern. In addition, the use of this pattern
results in the following benefits and liabilities:

Benefits

® Integrated into SQL Server Enterpise Manager. The configuration and execution
of a replication in SQL Server is integrated into SQL Server administration and
can be easily done with the SQL Server Enterprise Manager.

Liabilities
® Additional database to be managed. The implementation requires the
distribution database as an additional database that must also be managed.

Testing Considerations

After you set up the merge replication as described in this pattern, you must test it
thoroughly. Your test cases should cover these scenarios and others:

® Correct transmission of changes to the publication.

® Correct conflict resolution in terms of the right row winning during a conflict.

® The longest disconnection between the publication database and the Subscription
database that you expect under production conditions.

® Network interruption between the publication database and the distribution
database during updates on the publication database.

® Network interruption between the distribution database and the subscription
database during a running transmission.

® A hard abort of database system on the Subscription database during a running
transmission.

After each test, make sure that the data at both ends of the replication is consistent.

Finally, put the highest expected load on both the publication database and the
subscription database and check to see if the synchronization still runs correctly.

Security Considerations

To secure the connection between the Distributor and the Subscribers, do one of the
following:

® Use a SQL Server user account to connect to the Distributor.

Chapter 3: Data Movement Patterns 119

® Place all computers in one Windows domain, or have a common user with the
same password on all computers. Then use a trusted Windows connection
between Distributor and Subscribers.

If you prefer a security approach that is independent of the operating system, you
should use SQL Server authentication.

Note: The SQL Server Agents on all systems must run on a local or a domain account, not on
the LocalSystem account. Otherwise, the replication will not work.

Operational Considerations

The SQL Server Agent manages the different jobs of the replication. Schedules for
these jobs were defined during the configuration. Additionally, you can start each
job manually using the SQL Server Enterprise Manager.

The Replication Monitor in SQL Server Enterprise Manager provides the following
information:

® A list of all publications and attached agents with the time and the duration of
the last execution and information about the last action.

e Alist of all agents grouped by task with current status and a history of actions.

® The event log entries created by Replication Alerts, which monitor the replication
process.

If the replication fails, do the following:

® Check to see if the accounts have network access rights.

® Check the history of the subscription to determine the reason that
synchronization failed.

® Check the Replication Monitor for highlighted replication failures.

Related Patterns

For more information, see the following related patterns.

Patterns That May Have Led You Here

® Move Copy of Data. This pattern is the root pattern of this cluster. It presents the
fundamental data movement building block consisting of source, data movement
set, data movement link, and target. In such a block, transmissions are done
asynchronously (or some time after the update of the source). Thus, the target
applications must tolerate a period of latency until changes are delivered.

® Data Replication. This pattern presents the overall architecture of replication.

120 Data Patterns

® Master-Master Replication. This pattern presents the general design of a replication
that accepts updates by applications on both source and target, and exchanges
the changes in both directions.

® Master-Master Row-Level Synchronization. This pattern presents the design of
synchronization.

Other Patterns of Interest

® [mplementing Master-Slave Snapshot Replication Using SQL Server. This pattern
describes the implementation of a snapshot replication, which is used as a start-
ing point when setting up a synchronization.

® Capture Transaction Details. This pattern gives background information about
using triggers to record changes.

Chapter 3: Data Movement Patterns 121

Implementing Master-Slave Snapshot Replication
Using SQL Server

Context

You want to implement the design pattern Master-Slave Snapshot Replication. You are
replicating between two Microsoft® SQL Server™ databases, and you want to take
advantage of the integrated functionality of SQL Server. The replication set consists
of entire rows, not just changes that have occurred to rows since the last replication.
Any changes to the replication data at the target that may have occurred since the
last transmission will be overwritten by a new transmission.

Note: This pattern uses terms and concepts introduced in the following patterns:
® Move Copy of Data

® Data Replication

® Master-Slave Replication

® Master-Slave Snapshot Replication

Background

Before introducing the implementation with SQL Server, this pattern covers the

following topics:

e A summary of the replication building block as described in the Master-Slave
Replication pattern

e The SQL Server replication services that this pattern uses (SQL Server snapshot
replication)

e The mapping of the elements of the replication building block to the services of
SQL Server

Replication Building Block

The replication building block used in the Master-Slave Snapshot Replication pattern
consists of a source and a target that are connected by a replication link, as Figure
3.32 on the next page shows.

122 Data Patterns

Replication Building Block

Al g

Source Replication Link Target

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

Figure 3.32
Replication building block for Master-Slave Snapshot Replication

Source

The source contains the replication set, which is the data to be copied from the
source and sent across a data movement link to the target.

Acquire
The Acquire service reads the rows to be replicated.
Manipulate

The Manipulate service performs simple data transformations, such as data type
conversions and splitting or combining columns.

Write

The Write service updates the target with the manipulated rows.

Target

The target is the database where the replication set is to be written.

Moving the replication set from source to target according to defined functional and
operational requirements is called a transmission.

SQL Server Snapshot Replication

SQL Server replication uses several standard services to move data from a publica-
tion database to a subscription database. Figure 3.33 shows the services and pro-
cesses involved in SQL Server snapshot replication.

Chapter 3: Data Movement Patterns 123

Publisher Distributor Subscriber

Fiten

Publication l) Subscription

Database . Database
'Y Distribution

Agent

=P | Snapshot Agent

Snapshot Files

Snapshot Folder

Figure 3.33

SQL Server snapshot replication

Platform Roles

SQL Server defines three roles for the platforms involved in the replication:

Publisher. The Publisher contains the source. In this environment, the Subscriber
defines the replication set (publication) to be replicated.

Distributor. The Distributor holds a distribution database that is used for storing
replication metadata. The Snapshot Agent runs on the Distributor and creates the
snapshot files from the publication. In a push subscription, the Distributor also
runs the Distribution Agent. Additionally, the cleanup jobs for managing the
distribution database run here.

Subscriber. The Subscriber contains the target and creates a subscription for the
publication. In a pull subscription, the Subscriber runs the Distribution Agent.

The Distributor does not necessarily need to be a separate platform. Its role can also
be assigned to the Publisher, where it is called a local Distributor. Otherwise, it is
called a remote Distributor.

Software Components

SQL Server snapshot replication contains two processes:

Snapshot Agent. The Snapshot Agent reads all the articles of a publication and
writes the schema and data to a set of snapshot files. The snapshot files are stored
in a shared snapshot folder. The folder is typically located on the Distributor, but
in general it can be any shared folder that is accessible by both source and target.

Distribution Agent. The Distribution Agent may run on the Subscriber (pull sub-
scription), or it may run on the distributor (push subscription). The Distribution

124 Data Patterns

Agent reads the snapshot file from the shared snapshot folder and writes its
content to the target. Before actually writing the data, it can be manipulated by
using a data transmission service (DTS) package that the Subscriber defines.

Note: The Distribution Agent may serve several Subscribers, but this pattern considers only
a single Subscriber.

Independent of the replication processes, cleanup jobs run on the distribution
database and perform the following tasks:

e Agent History Clean Up: Distribution. Removes replication agent history from
the distribution database.

e Distribution Clean Up: Distribution. Removes replicated transactions from the
distribution database.

e Expired Subscription Clean Up. Detects and removes expired subscriptions from
publication databases.

e Reinitialize Subscriptions Having Data Validation Failures. Reinitializes all
subscriptions that have data validation failures.

e Replication Agents Checkup. Detects replication agents that are not actively
logging history.
Mapping the Replication Building Block to SQL Server

Figure 3.34 shows how the elements of the replication building block correspond to
those of a SQL Server snapshot replication.

Source Target

> = &j

N [

Acquire Manipulate Write

Snapshot
Agent

¥

Publlcatlon Subscription
A

Publication Snapshot e Subscription
YT Files P | Distribution Agent Database
Snapshot
Folder
Figure 3.34

SQL Server implementation of the replication building block

Chapter 3: Data Movement Patterns 125

Source

The source is the publication database that contains the publication to be replicated
and takes on the role of the Publisher.

Replication Set

In SQL Server, the replication set to be transmitted from the Publisher to the Sub-
scriber is called a publication. A publication consists of one or more tables, or only
parts of tables. Parts of tables can be defined by:

e Filtering the rows to be replicated by defining a search condition.
In the theory of relational databases, the result is called a restriction.

e Filtering the columns to be replicated as a subset of the table’s columns.
In the theory of relational databases, the result is called a projection.

Acquire

The Snapshot Agent reads all of the data from the defined publication into snapshot
files and stores them in a shared snapshot folder.

Manipulate

The Distribution Agent can manipulate data before the data is written to the target.
When the target registers its subscription to the Distributor, it can define a DTS
package that the Distributor will call before sending the data to the Subscriber. Each
Subscriber can use its own package; different Subscribers can get various views of
the same data.

Within a DTS package, you can define any manipulations using the data of the
current row and the possibilities of an ActiveX script language. Each row from the
source can result in only one row at the target, or it can be skipped. Fields can be
split or combined. Additionally, any kind of data type conversions and changes of
field names can be done.

Write

The Distribution Agent writes the contents of the snapshot file to the target. The
agent reads the snapshot file from the shared snapshot folder and applies the
schema and the data to the target. Name conflicts during the write can be resolved
in different ways. The default option in a snapshot replication is to drop the existing
table and recreate it from the snapshot file. Another option is to leave the table on
the target unchanged and reject the relevant data in the snapshot file. The last option
is to delete the data on the target and use the empty table to write only the data from
the snapshot file. In the case of using the existing table, the schema information from
the snapshot file is not needed.

Target

The target is the subscription database, where the transmitted and possibly manipu-
lated replication set is written. The target takes on the role of the Subscriber.

126 Data Patterns

Implementation Strategy

To set up a new replication link, follow these steps:

1. Configure the Distributor:

a.

Create the distribution database. This is an internal SQL Server database used
from the Distributor. In most cases, you use the default options to create this
database, but you can also customize it.

Choose the snapshot folder. You can either choose the default folder for
exchanging the initial snapshot files or use a custom folder.

Set up the Subscriber parameter: To define the default parameter for all Sub-
scribers, you can confirm the offered configuration options or customize them.

2. Define the publication:

a.
b.

f.

Select the publication database that includes the publication.

Decide if you want to transform the data during the transmission. If so, any
Subscriber must have a DTS package for the transformation.

Select the possible database systems the Subscribers will use: SQL Server 2000
or earlier versions of SQL Server.

For each table, specify whether the entire table should be replicated, or restrict
the table by specifying horizontal and vertical filters.

Decide whether anonymous Subscribers are allowed to subscribe to the
publication.

Decide how often the Snapshot Agent creates new snapshots.

3. Create a DTS package for the transformation, if you have decided to use one.

4. Define the subscription:

a.
b.

-~ 0o o o

Decide if you want a pull or a push subscription.

Select the publication you want to subscribe to.

Choose the subscription database.

If you want to start the transmission automatically, define a schedule.
Specify the DTS package you want to use for this subscriber.

Verify that all required services are started.

At this point, all elements of the replication link have been configured. From now
on, both the publication database and the subscription database will log all changes
to the specified replication set using triggers.

The SQL Server snapshot replication runs different jobs:

e Snapshot Agent: Creates the initial snapshot from the Publisher.

e Distribution Agent: Applies the snapshots on the Subscriber.

e Cleanup jobs: Clean up the distribution database on the Distributor.

Chapter 3: Data Movement Patterns 127

The example that follows describes in detail how to use the SQL Server wizards to
set up such a replication link.

Example

This example shows how to configure snapshot replication based on a particular
replication set. The replication set used here is the authors table from the pubs
sample database, which is delivered with SQL Server.

Overview

The environment has two SQL Server computers: PUB_SERVER and SUBS_SERVER.
The Publisher has a database, PUB_DB, that contains the authors table from the pubs
sample database. The Subscriber has an empty database, SUBS_DB. (See Figure 3.35.)

PUB_SERVER SUBS_SERVER

Publisher Local Distributor Subscriber

' Authors ’] ' Authors

Au_Iname Distribution Au_Iname
Au_fname — Au_fname

Distribution
PU B_DB Database SUBS_DB

Figure 3.35

Example environment

The introduced configuration describes a snapshot replication using pull subscrip-
tion where the Subscriber initiates the replication every two hours. The data from
the Publisher will be manipulated during the replication. The first and the last name
from the authors table will be converted to uppercase.

128 Data Patterns

Configuring the Publisher and the Distributor

To set up the example environment, follow these steps in the Configure Publishing
and Distribution Wizard.

1. In SQL Server Enterprise Manager, select the publication database server, right-

4,

click Replication, and then click Configure Publishing, Subscribers and Distri-
bution.

. On the Select Distributor page, select Make Pub_Server its own Distributor,

where Pub_Server is the name of the server you want to configure as a Distributor.
Click Next.

Note: The Distributor can be located on the same server as the Publisher, in which case it
is called a local Distributor, or on a remote server. This example uses a local Distributor.

. On the Specify Snapshot Folder page, type the name of a shared folder on the

Distributor where the Snapshot Agent can store snapshot files.

Note: It is recommended that you use a manually defined snapshot folder because the
default uses a system internal share, such as C$. These shares are used for administrative
purposes.

On the Customize the Configuration page, select No, use the following default
settings to create a default distribution database.

Note: In this simple example, it is sufficient to use the default settings. In a more complex
environment, you should manually configure the distribution database.

Creating a Publication

Next, use the Create Publication Wizard to create a publication on the Publisher.

1.

In SQL Server Enterprise Manager, select the publication database server, expand
Replication, right-click Publications, and then click New Publication.

. On the Welcome Screen, check the Show advanced options check box to use this

wizard with the advanced options needed to enable a transformation of the data.

. On the Choose Publication Database page, select Pub_DB as the publication

database, where Pub_DB is the name of your database for the replication.

. On the Select Publication Type page, select Snapshot Publication to create a

publication for a snapshot replication.

10.

11.

12.

13.

14.

Chapter 3: Data Movement Patterns 129

. You do not want to allow the replication of changes from the subscriber to the

publisher; therefore, ensure that no option is selected on the Updateable Sub-
scription page.

. On the Transform Published Data page, select Yes, transform the data to enable

the transformation during the replication.

. On the Specify Subscriber Types page, select only Servers running SQL Server

2000.

. The Specify Articles page shows possible objects for replication in the publica-

tion database. From the Object Type Tables list, select the table authors.

Note: Clicking the ellipses (...) button for each object shows additional properties for the
replication. You do not need them in this example.

. On the Select Publication Name and Description page, specify the Publication

name as example. The default publication description can be used.

On the Customize the Properties of the Publication page, select the option
beginning with Yes, I will define, because you need a special schedule for the
Snapshot Agent.

The Filter Data page allows you to specify filters for the data. Since this is not
necessary in this example, click Next.

On the Allow Anonymous Subscriptions page, select No, allow only named
subscriptions to prohibit anonymous access in this example.

Note: Anonymous subscriptions are pull subscriptions from Subscribers that are not
registered on the Publisher. If you want to allow anonymous subscriptions, you must change
this option.

On the Set Snapshot Agent Schedule page, click Change to specify a new sched-
ule for the Snapshot Agent.

On the Edit Recurring Job Schedule page, define the schedule for the Snapshot
Agent as a daily run with an interval of two hours. (See Figure 3.36 on the next

page.)

130 Data Patterns

Edit Recurring Job Schedule - PUB_SERVER X
Job name: ([Initial Synchronization Schedule)

Ocours [Daily

" Daily Every |1 3: day(s]

" wWeekly

" Manthly

Draily frequency

" Oecurs once at: —
+ Oecurs eveny: 2 3: Houls] = | Statingat |[12:00:004M =
Ending at: 11:59:59 P =

Diuration

Start date: B/23/2003 hd " End date:

* Moend date

QK | Cancel | Help |

Figure 3.36
Edit Recurring Job Schedule page

15. On the Completing the Create Publication Wizard page, review the options for
the specified publication. Click Finish to create the publication with these op-
tions.

Defining a DTS Package for the Transformation
Before you can create a subscription to the defined publication, you must create a
DTS package for the transformation.

1. In SQL Server Enterprise Manager, select the publication database server, expand
Replication, open Publications, right-click the example:pub_db replication, and
then click Properties.

2. On the Publication Properties page, click the Subscriptions tab, and then click
Transformations.

3. On the Welcome Screen, click Next.

4. On the Choose a Destination page, select the target server and database. (See
Figure 3.37.)

Chapter 3: Data Movement Patterns

131

Transform Published Data Wizand

Choose a Destination
Select the Subscriber. [F more than one Subscriber will uge thiz package, select a
representative Subscriber,

&

Destination: | B Microsoft OLE DB Provider for SAL Server

|

Server: |SUBS_SERVER

™ Use Windows Authentication
(+ Use SOL Server Authentication

[~ |

X

Login: za Password: [mononnn
Database: | bl subs_db j Refresh
Advanced Connection Properties... |
< Back Cancel | Help |
Figure 3.37

Choose a Destination page

5. On the Define Transformations page, click the ellipses (...) button from the

article authors.

6. On the Column Mappings tab of the Column Mappings and Transformations
page, select Drop the existing table and recreate it from the list box. Leave the

mappings unchanged. (See Figure 3.38.)

Column Mappings and Transformations

Source:

Destination:

|[auth0rs]

Calurnn Mappings | Tramsformations]

‘wihen applving the shapshat, if a tabled named [authors]' exists at the Subscriber:

|DF|DF' the exizting table and re-create it. j
Mappings:

Source Drestination Type Mullable | Size |Precision |Scale -~
? au_id au_id varcha
au_lname au_lname warchar O 40
au_fname au_frname warchar O 20
phone phone char o 12
address address warchar 40)
city city varchar 20
state state char 2 2
Source column: au_id varchar(11] HOT MULL

QK | Cancel | Help |

Figure 3.38

Column Mappings tab on the Column Mappings and Transformations page

132 Data Patterns

7. Click the Transformations tab. Click Transform data using the following script
and select VB Script Language from the list box. (See Figure 3.39.)

Column Mappings and Transformations

Source: |[db0].[auth0rs]

Drestination: |[auth0rs]

Column Mappings Transformations l

" Copy the source columns directly

+ Transform data using the following script:

Language:
B Script Language j Load File...
A~
' Yizual Basic Transformation Script
' Copy each zource column to the destination column
Function b ain()
DTSDestination]"au_id"] = DTS Source"au_id")
DTSDestination]"au_lname'"] = UCazeDTSSource"au_lname"]
DTSDestination]"au_frame'] = UCaze[DTSS5ource("au_fname'])
DTSDestination phone'] = DTS5 S ource"'phone"]
DTSDestination]"address'] = DTSSource("address")
DTSDestination city'"] = DTS Source] city''] w

QK | Cancel | Help |

Figure 3.39
Transformations tab on the Column Mappings and Transformations page

8. Use the following code to transform the first and the last name of the author to
uppercase:

Function Main(Q)
DTSDestination("au_id") = DTSSource("au_id")
DTSDestination("au_lname") = UCase(DTSSource("au_Tname"))
DTSDestination("au_fname") = UCase(DTSSource("au_fname™))
DTSDestination("phone") = DTSSource("phone")
DTSDestination("address") = DTSSource("address")
DTSDestination("city") = DTSSource("city")
DTSDestination("state") = DTSSource("state")
DTSDestination("zip") = DTSSource("zip")
DTSDestination("contract") = DTSSource("contract")
Main = DTSTransformStat_OK

End Function

9. On the DTS Package Location page, select the option to save the package on the
Distributor. Use the SQL Server authentication option, and insert the user and the
password to connect to the Distributor.

10. On the DTS Package Identification page, specify the name of the package. In
this example, the name should be transform_sub. You do not need to define an
owner password.

Chapter 3: Data Movement Patterns 133

11. On the Completing the Transform Published Data Wizard page, click Finish to
save the package as specified.

Creating a Subscription

To complete the configuration, you must create a pull subscription of the defined
publication on the target.

1. In SQL Server Enterprise Manager, select the target database server, expand
Replication, right-click Subscriptions, and then click New Pull Subscription.
2. On the Welcome Screen, click Next.

3. On the Look for Publications page, select Look at publications from registered
servers.

4. On the Choose Publication page, expand PUB_SERVER and select the publica-
tion named example:pub_db, where PUB_SERVER is the name of your Publisher
and example:pub_db is the name of your publication. (See Figure 3.40.)

Pull Subscription Wizard

Choose Publication
Chooze the publication to which pou want to subscribe.

Select one publication from one of the following servers:

Fiegister Server...

Expand a Publizher to display publications accessible by the login uzed to connect to
'SUBS_SERVER' and thoze that allow anonymous subscriptions.

< Back | Mext » | Cancel Help

Figure 3.40
Choose Publication page

5. On the Specify Synchronization Agent Login page, select Use SQL Server
Authentication. Enter the login and the password of a user account that is used
to connect to the Publisher during the replication.

6. On the Choose Destination Database page, select Subs_DB as the database for
the subscription, where Subs_DB is the name of your target database.

7. On the Initialize Subscription page, the option Yes, initialize the schema and
the data cannot be changed because you use a snapshot replication.

8. On the Snapshot Delivery page, specify the snapshot folder. This example uses
the default folder of the publication.

134 Data Patterns

9. On the Set Distribution Agent Schedule page, select Using the following
schedule and click Change to specify a new schedule for the Distribution Agent.

10. On the Edit Recurring Job Schedule page, define the schedule for the Distribu-
tion Agent as a daily run with an interval of two hours. (See Figure 3.41.)

Edit Recurring Job Schedule - SUBS_ SERVER 3
Job name: [Default Distribution Agent Schedule]

Ocours [Daily

" Daily Every |1 3: day(s]

" Weekly

" Manthly

[Draily frequency

" Oecurs once at: —
+ Oecurs eveny: 2 3: Hourls] = | Statingat |12:00:004M -
Ending at: 11:59:59 P

Diuration

Start date: B/23/2003 hd " End date:

+ Mo end date

Figure 3.41
Edit Recurring Job Schedule page

11. On the Specify DTS Package page, select Distributor and click List packages.
For the transformation, select the transform_sub package you created previously.
(See Figure 3.42.)

Pull Subscription Wizard le

Specify DTS Package
Specify the DTS package that defines the transformations for this subscription(s).

Package location
" Digtributor ™ Subszcriber List Packages

Package name: Owner Pazzword (if required]:

transform_sub

Mame Drescription

< Back | Mext » | Cancel Help

Figure 3.42
Specify DTS Package page

Chapter 3: Data Movement Patterns 135

12. The Start Required Services page shows the status of the SQL Server Agent on
the Subscriber. If the SQL Server Agent is not running, select the check box next
to the entry for the agent. The agent will be started after the wizard creates the
subscription.

13. On the Completing the Pull Subscription Wizard page, review the options for
the specified subscription. Click Finish to create the subscription with these
options.

Starting and Restarting the Snapshot Replication
To start or restart the snapshot replication manually for testing purposes, follow
these steps:

1. In SQL Server Enterprise Manager, select the publication database server, open
Replication Monitor, select Publishers, Pub_Server, and open the publication
example:pub_db.

2. Right-click Snapshot Agent and click Start Agent to create an initial snapshot.
3. Right-click SUBS_Server:subs_db and select Start Synchronizing to start the
replication.

The replication usually runs on a defined schedule. If you want to test the replica-
tion or start the snapshot replication immediately, however, you need to start the
replication manually.

Testing the Example

You can easily test the functionality of the implemented snapshot replication by
changing some data in the publication, starting the replication process, and checking
to see if the subscription database has changed accordingly.

To check various kinds of data changes, perform INSERT, UPDATE, and DELETE
operations on the data in the publication.

1. Change data in the publication. For example:
UPDATE authors SET au_lname = 'Smith' WHERE au_id = '807-91-6654'

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('453-12-3255', 'Smith', 'John', '400 486-234', 1)

DELETE FROM authors WHERE au_id = '672-71-3249'
2. Manually start the replication process.
3. Check to see if the rows changed in the subscription database. For example:

SELECT * FROM authors

136 Data Patterns

Resulting Context

This implementation has all benefits and liabilities of the Snapshot Replication
pattern. This section describes additional benefits and liabilities.

Benefits

e Compressed snapshots. SQL Server gives you the option of compressing the
snapshot file. This option is useful when you have to transmit the snapshot over
a slow communications link, or when the snapshot file will not fit on removable
media. Using compressed snapshots saves disk space, which decreases transmis-
sion time and network load.

e Integrated into SQL Server Enterpise Manager. The configuration and execution
of a replication in SQL Server is integrated into the SQL Server administration
and can be easily done with SQL Server Enterprise Manager.

Liabilities
e Disk space requirements for snapshots. Because SQL Server stores the snapshot

file in a separate folder and the file grows with the volume of the replication set,
you must provide an appropriate amount of free disk space.

e Overhead of compressing snapshots. The disadvantage of compressing snap-
shots is that this option increases the time required to generate and apply
snapshots.

e Additional database to be managed. The implementation requires the
distribution database as an additional database that must be managed.

Hint: This pattern is appropriate for replication sets that change infrequently, or for those with
a substantial amount of changed data. It is also often used to distribute read-only copies of
data as it appears at a specific moment in time (for example, for analytical purposes such as
decision support).

This pattern is also frequently used to populate a database for the first time. In cases where
you must transmit a large volume of data to the target, you can use removable media instead
of a communications link.

Testing Considerations

After you set up the replication link as described in pattern, you must test it
thoroughly. Your test cases should cover the following scenarios at a minimum:
e Correct transmission of the snapshot that includes the replication set

e Network interruption between the distribution database and the subscription
database during a running transmission

e A hard abort of the subscription database during a running transmission

After each test, make sure that the subscription database is in the correct state.

Chapter 3: Data Movement Patterns 137

Security Considerations

To secure the connection between the Distributor and the Subscribers, do one of the
following:

e Use a SQL Server user account to connect to the Distributor.

e DPlace all computers in one Windows domain, or have a common user with the
same password on all computers. Then use a trusted Windows connection
between Distributor and Subscribers.

Note: The SQL Server Agents on all systems must run on a local or a domain account, not on
the local system account. Otherwise, the replication will not work.

Snapshot data can reside in places other than the source and target data. Use the
same security standards for snapshot data that you use for other data in the replica-
tion.

Operational Considerations

The SQL Server Agent manages the different jobs of the replication. Schedules for
these jobs are defined during the configuration. Alternatively, you can start each job
manually using the SQL Server Enterprise Manager.

The Replication Monitor in SQL Server Enterprise Manager provides the following
information:

e A list of all publications and attached agents with the time and the duration of
the last execution and information about the last action

e Alist of all agents grouped by task with current status and a history of actions

e The event log entries created by Replication Alerts, which monitor the replication
process

If the replication fails, do the following:

e Check to see if the accounts have network access rights.

e Check the history of the subscription to determine the reason the synchronization
failed.

e Check the Replication Monitor for highlighted replication failures.

The connections between the Publisher and its Subscribers must be able to manage
the load. If the Publisher sends its data to Subscribers over a slow or expensive
communications link, using the republisher model will improve replication. In any
case, the Publisher must be connected to remote Distributors by reliable, high-speed
communications links.

Hint: An alternative for the transmission of the replication set to use removable media to
transmit the snapshot from source to target.

138 Data Patterns

Related Patterns

For more information, see the following related patterns.

Patterns that May Have Led You Here
e Move Copy of Data. This pattern is the root pattern of this cluster; it presents the
overall architecture for maintaining copies of data.

e Data Replication. This pattern presents the architecture of data replication, which
is a particular way of moving copies of data.

e Master-Slave Replication. This pattern describes design considerations for trans-
mitting data from the source to the target by overwriting potential changes in the
target on a higher level than the Master-Slave Snapshot Replication.

e Master-Slave Snapshot Replication. This pattern presents a solution that transmits
the whole replication set from the source to the target on each transmission.

Other Patterns of Interest

o [mplementing Master-Slave Transactional Incremental Replication Using SQL Server.
This pattern uses a snapshot replication to prepare the target.

e Implementing Master-Master Row-Level Synchronization Using SQL Server. This
pattern uses a snapshot replication to prepare the target.

Chapter 3: Data Movement Patterns 139

Implementing Master-Slave Transactional Incremental
Replication Using SQL Server

Context

You want to build a Master-Slave Transactional Incremental Replication between two
Microsoft® SQL Server™ databases, and you want to take advantage of the inte-
grated replication functionality of SQL Server.

The schemas of the source and target do not need to be identical; simple manipula-
tions as defined in the Data Replication pattern can be implemented in the replication
link. In addition, horizontal (row) and vertical (column) filters can be used to restrict
the replication set.

Note: This pattern uses terms and concepts from the following data patterns:
® Move Copy of Data

® Data Replication

® Master-Slave Transactional Incremental Replication

Background

Before introducing the implementation with SQL Server, this pattern covers the
following topics:

® A summary of the replication building block, as described in the Master-Slave
Transactional Incremental Replication pattern

® The SQL Server replication services that this pattern uses (SQL Server transac-
tional replication).

® The mapping of the elements of the replication building block to the services of
SQL Server

Replication Building Block

The replication building block used in the Master-Slave Transactional Incremental Replica-
tion pattern consists of a source and a target that are connected by a replication link,
as Figure 3.43 (on the next page) shows.

140 Data Patterns

g B0 g

Replication Link Target

Source

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

Figure 3.43
Replication building block

Source

The source contains the replication set, which is the data copied from the source and
sent across a data movement link to the target.

Acquire
The Acquire service reads the data changes that are replicated.
Manipulate

The Manipulate service performs simple data transformations, such as data type
conversions and splitting or combining columns.

Write

The Write service updates the target with the manipulated rows.

Target

The target is the database where the replication set is to be written.

The process of moving the replication set from source to target according to defined
functional and operational requirements is called a transmission.

SQL Server Transactional Replication

SQL Server replication uses several standard services to move data from a publica-
tion database to a subscription database. Figure 3.44 shows the services and pro-
cesses involved in SQL Server transactional replication.

Chapter 3:

Data Movement Patterns

Publisher

> =

Publication

Publication
Database

Distributor

=

Subscriber

> =

Subscription
Database

Distribution

Agent

Logreader > Transactional
Information
Distribution
Database
Figure 3.44

SQL Server transactional replication

Platform Roles

SQL Server defines three roles for the platforms involved in the replication:

141

® Publisher. The Publisher contains the source and the Log Reader Agent. In this
environment, the Subscriber defines the replication set (publication) to be repli-

cated.

® Distributor. The Distributor holds the distribution database. It runs the cleanup
jobs for managing the distribution database, and in a push replication also runs

the Distribution Agent.

® Subscriber. The Subscriber contains the target and creates a subscription to
subscribe a publication. In a pull replication, the Subscriber runs the Distribution

Agent.

The Distributor does not necessarily need to be a separate platform. Its role can also

be assigned to the Publisher, where it is called a local Distributor. Otherwise, it is

called a remote Distributor.

Software Components

SQL Server transactional replication consists of two main processes and a database:

® Log Reader Agent. The Log Reader Agent extracts changes defined by the publi-
cation from the transaction log of the publication database, and stores the

142 Data Patterns

changes to be replicated in an additional database, called the distribution data-
base.

Distribution database. The distribution database is a SQL Server database and is
located on the Publisher (called a local Distributor), or on a dedicated platform
(called a remote Distributor). Because it stores changes in a proprietary format,
the distribution database can only be used for SQL Server replication, not for any
applications. After the Log Reader Agent extracts the changes, the logging system
of the publication database is allowed to shrink the transaction log, because the
information for the transmissions is saved in the distribution database.

Distribution Agent. The Distribution Agent applies the initial snapshot to the
subscription database by moving transactions held in the distribution database to
Subscribers. The Distribution Agent runs at either the distributor for push sub-
scriptions, or at the Subscriber for pull subscriptions. Before actually writing the
changes, the Distribution Agent can manipulate them using a Data Transmission
Services (DTS) package that the Subscriber defines. If you need to perform
manipulations before writing the changes to the subscription database, you can
do so using such a DTS package.

Independent of the replication processes, cleanup jobs run on the distribution
database and perform the following tasks:

Agent History Clean Up: Distribution. Removes replication agent history from
the distribution database.

Distribution Clean Up: Distribution. Removes replicated transactions from the
distribution database.

Expired Subscription Clean Up. Detects and removes expired subscriptions from
publication databases.

Reinitialize Subscriptions Having Data Validation Failures. Reinitializes all
subscriptions that have data validation failures.

Replication Agents Checkup. Detects replication agents that are not actively
logging history.

A SQL Server replication is based on the following rules:

Any table that should be published needs a primary key as a unique identifier for
a row.

SQL Server transactional replication assumes that the subscription database is

read-only (unless updating subscriptions are used). This means:

® Any changes to the subscription database at the Subscriber will be overwritten
by the next transmission.

® Any deletion of rows on the subscription database will cause a failure in the
replication process.

Chapter 3: Data Movement Patterns 143

Mapping the Replication Building Block to SQL Server

SQL Server transactional replication implements the replication building block
elements used by Master-Slave Transactional Incremental Replication as shown in
Figure 3.45. Figure 3.45 is the result of merging Figures 3.43 and 3.44.

Source Target

Publlcatlon

Publication
Database
Acquire [| Manipulate || Write
L d Distribution
ogreaaer Agent Subscrlptlo

Subscription
Database

Transactlona
Informatlon

Distribution
Database

Figure 3.45
SQL Server implementation of Master-Slave Transactional Incremental Replication

Source

Incremental replication transmits only the changes that have been made to source
rows that the target has copies of, rather than getting full refreshes of the data. As
described in the design pattern Master-Slave Transactional Incremental Replication, this
type of replication needs a recording of the source transactions to use for change
transmission. SQL Server replication preserves the changes to the publication data-
base in the distribution database for transmission to the subscription database. The

144 Data Patterns

distribution database is updated by the Log Reader Agent, which reads the transac-
tional information from the transaction log of the relational database management
system (RDBMS) and writes it to the distribution database. This allows the RDBMS
to shrink the transaction log.

The changes remain available in the distribution database for a specified period of
time (the retention period).

Replication Set

In SQL Server, the replication set to be replicated from the publication database to
the subscription database is called a publication. A publication consists of one or
more tables, or only parts of tables. You can define the parts of tables in one of
two ways:

® TFilter the rows to be replicated by defining a search condition.
In the theory of relational databases, the result is called a restriction.
® Filter the columns to be replicated as a subset of the table’s columns.
In the theory of relational databases, the result is called a projection.

Acquire

The Distribution Agent reads all the changed data from the distribution database
from the last transmission up to the most recent transaction.

Manipulate

The Distribution Agent can manipulate the data. When the Subscriber registers its
subscription to the Distributor, it can define a DTS package, which the Distribution
Agent invokes before sending the data to the Subscriber. Each Subscriber can use its
own package, so different Subscribers can get various views of the same data.

Within such a DTS package, you can define any manipulations that can be per-
formed using the data of the current row and the ActiveX script language. Each row
from the publication database can result in only one row at the subscription data-
base, or it can be skipped. Columns can be split or combined. Additionally, any kind
of data type conversions and changes of column names can be done.

Write

The Distribution Agent writes the data to the subscription database. The Write is
done by default using a stored procedure. Optionally, it can be done directly using
SQL.

In general, the Distribution Agent writes the changes regardless of whether the
contents of the subscription database have been updated by any application. If you
must prevent updates from being overwritten, you have to use updateable subscrib-
ers or configure a merge replication instead of a transactional replication. A merge
replication is described in the pattern Implementing Master-Master Row-Level Synchro-
nization Using SQL Server.

Chapter 3: Data Movement Patterns 145

Target

The target is the subscription database, which contains the replication set to be
updated.

Implementation Strategy

To set up a new replication link, follow these steps:
1. Configure the Distributor:

a. Create the distribution database: This is an internal SQL Server database used
from the Distributor. In most cases, you use the default options to create this
database, but you can also customize it.

b. Choose the snapshot folder: You can either choose the default folder for
exchanging the initial snapshot files or use a custom folder.

c. Set up the Subscriber parameter: To define the default parameter for all sub-
scribers, you can confirm the offered configuration options or customize them.

2. Define the publication:
a. Select the publication database that includes the publication.

b. Decide if you want to transform the data during the transmission. If so, any
subscriber must have a DTS package for the transformation.

c. Select the possible database systems the Subscribers will use: SQL Server 2000,
earlier versions of SQL Server, or another RDBMS.

d. For each table, specify whether the entire table should be replicated, or restrict
the table by specifying horizontal and vertical filters.

e. Decide whether anonymous Subscribers are allowed to subscribe to the
publication.

f. Decide how often the Snapshot Agent creates a new snapshot.
3. Create a DTS package for the transformation, if you have decided to use one.
4. Define the subscription:

a. Decide if you want a pull or a push subscription.

b. Select the publication you want to subscribe to.
c. Choose the subscription database.
d

. Decide if you want to initialize the subscriber using an initial snapshot from
the publisher.

If you want to start the transmission automatically, define a schedule.

o

f. Specify the DTS package you want to use for this subscriber.
g. Verify that all required services are started.

146 Data Patterns

At this point, all parts of the replication link have been configured. From now on,
both Publisher and Subscriber will log all changes to the specified replication set
using triggers.

The SQL Server transactional replication runs different jobs:

® Snapshot Agent: Creates the initial snapshot on the Publisher.

® Distribution Agent: Applies the snapshots on the Subscriber.

® Cleanup jobs: Clean up the distribution database on the Distributor.

The example that follows describes in detail how to use the SQL Server wizards to
set up such a replication link.

Example

This example shows how to configure transactional replication based on a particular
replication set. The replication set used here is the authors table from the pubs
sample database, which is delivered with SQL Server.

Overview

The environment has two SQL Server computers: PUB_SERVER and SUBS_SERVER.
The Publisher has a database, PUB_DB, that contains the authors table from the
pubs sample database. To use PUB_SERVER as a local Distributor, you create a
distribution database named Distribution. The Subscriber has an empty database,
SUBS_DB. Figure 3.46 shows the environment of the example.

This configuration creates a periodical incremental transactional replication process
with an initial snapshot. The Subscriber initiates the replication (pull) every 15
minutes. The data from the Publisher is manipulated during the replication by
converting the first and the last name from the authors table into uppercase. (This
example does not allow updateable or anonymous subscribers.)

Chapter 3: Data Movement Patterns 147

PUB_SERVER SUBS_SERVER

Publisher Local Distributor Subscriber

‘ Authors ’] ' Authors

Au_Iname Distribution Au_Iname
Au_fname - Au_fname

Distribution
PUB_DB Database SUBS_DB

Figure 3.46
Example environment

Configuring the Publisher and the Distributor

To set up the example environment, follow these steps in the Configure Publishing
and Distribution Wizard:

1. In SQL Server Enterprise Manager, select the publication database server, right-
click Replication, and then click Configure Publishing, Subscribers and Distri-
bution.

2. On the Select Distributor page, select the Make Pub_Server its own Distributor
option, where Pub_Server is the name of the server you want to configure as a
distributor. Click Next.

Note: The Distributor can be located on the same server as the Publisher, in which case it
is called a local Distributor, or on a remote server. This example uses a local Distributor.

148 Data Patterns

4.

. On the Specify Snapshot Folder page, type the name of a shared folder on the

Publisher where the Snapshot Agent can store snapshot files.

Note: You must create and share this folder manually, or use a previously defined system
shared folder for this purpose.

On the Customize the Configuration page, select No, use the following default
settings to create a default distribution database.

Note: In this simple example, it is sufficient to use the default settings. In a more complex
environment, you should manually configure the distribution database.

Creating a Publication

Next, use the Create Publication Wizard to create a publication on the Publisher.

1.

In SQL Server Enterprise Manager, select the publication database server, expand
Replication, right-click Publications, and then click New Publication.

. On the Welcome Screen, check the Show advanced options check box to use this

wizard with the advanced options needed to enable a transformation of the data.

. On the Choose Publication Database page, select Pub_DB as the publication

database, where Pub_DB is the name of your database for the replication.

. On the Select Publication Type page, select Transactional Publication to create a

publication for a transactional replication.

. You do not want to allow the replication of changes from the subscriber to the

publisher; therefore, ensure that no option is selected on the Updateable Sub-
scription page.

. On the Transform Published Data page, select Yes, transform the data to enable

the transformation during the replication.

. On the Specify Subscriber Types page, select only Servers running SQL Server

2000.

. The Specify Articles page shows possible objects for replication in the publica-

tion database. From the Object Type Tables list, select the table authors.

Note: Clicking the ellipses (...) button for each object shows additional properties for the
replication. You do not need them in this example.

. On the Select Publication Name and Description page, specify the Publication

name as example. The default publication description can be used.

Chapter 3: Data Movement Patterns 149

10. On the Customize the Properties of the Publication page, select the option
beginning with No, create the publication as specified, because you can use the
defaults options shown in the text box below the options.

11. On the Completing the Create Publication Wizard page, click Finish to create

the publication.

Defining a DTS Package for the Transformation

Before you can create a subscription for the defined publication, you must create a
DTS package for the transformation.

1. In SQL Server Enterprise Manager, select the publication database server, expand
Replication, open Publications, right-click on the example:pub_db replication,
and then click Properties.

2. On the Publication Properties page, click theSubscriptions tab and then click

Transformations.

3. On the Welcome Screen, click Next.

4. On the Choose a Destination page, select the subscription database server and
database. (See Figure 3.47.)

Transform Published Data Wizand

Choose a Destination

representative Subscriber,

Select the Subscriber. [F more than one Subscriber will uge thiz package, select a

Server: |SUBS_SERVER =

™ Use Windows Authentication
(+ Use SOL Server Authentication

Login: za Pazzword: ’W

Database: | b subs_db j Refresh

Advanced Connection Properties... |

< Back Cancel | Help

&

Destination: | B Microsoft OLE DB Provider for SAL Server j

X

Figure 3.47

Choose a Destination page

5. On the Define Transformations page, click the ellipses (...) button from the

article authors.

6. On the Column Mappings tab of the Column Mappings and Transformations
page, select Drop the existing table and recreate it from the list box. Leave the
mappings unchanged. (See Figure 3.48 on the next page.)

150 Data Patterns

Column Mappings and Transformations

Source:

Drestination: |[auth0rs]

Calurnn Mappings | Tramsformations]

‘wihen applving the shapshat, if a tabled named authors]' exists at the Subscriber:

|DF|DF' the exizting table and re-create it. j
Mappings:

Source [restination Type Mullable | Size |Precision |Scale -~
? AL au_id
au_lname au_lname warchar O 40
au_fname au_frname warchar O 20
phone phone char o 12
address address warchar 40 L3
city city varchar 20
state state char 2 e
.- . , - bt

Source column: au_id warchar(11] HOT MULL

QK | Cancel | Help |

Figure 3.48
Column Mappings tab on the Column Mappings and Transformations page

7. Click the Transformations tab. Click Transform data using the following script
and select VB Script Language from the list box. (See Figure 3.49.)

Column Mappings and Transformations

T cource: |[db0].[auth0rs]

Drestination: |[auth0rs]

Colurmn Mappings Transformations l

" Copy the source columns directly

+ Transform data using the following script:

Language:
B Script Language j Load File...
A
' Yizual Basic Transformation Script b
' Copy each zource column to the destination column
Function b ain()
DTSDestination]"au_id"] = DTS Source"au_id")
DTSDestination]"au_lname'"] = UCazeDTSSource"au_lname"] —
DTSDestination]"au_frame'] = UCaze[DTSS5ource("au_fname'])
DTSDestination phone'] = DTS5 S ource"'phone"]
DTSDestination]"address'] = DTSSource("address")
DTSDestination city'"] = DTS Source] city''] b

QK | Cancel | Help |

Figure 3.49
Transformations tab on the Column Mappings and Transformations page

Chapter 3: Data Movement Patterns 151

8. Use the following code to transform the first and the last name of the author to

10.

11.

uppercase:

Function Main(Q)
DTSDestination("au_id") = DTSSource("au_id")
DTSDestination("au_lname") = UCase(DTSSource("au_Tname"))
DTSDestination("au_fname") = UCase(DTSSource("au_fname™))
DTSDestination("phone") = DTSSource("phone")
DTSDestination("address") = DTSSource("address")
DTSDestination("city") = DTSSource("city")
DTSDestination("state") = DTSSource("state")
DTSDestination("zip") = DTSSource("zip")
DTSDestination("contract") = DTSSource("contract™)
Main = DTSTransformStat_OK

End Function

. On the DTS Package Location page, select the option to save the package on the

Distributor. Use the SQL Server authentication option, and insert the user and the
password to connect to the Distributor.

On the DTS Package Identification page, specify the name of the package. In
this example, the name should be transform_sub. You do not need to define an
owner password.

On the Completing the Transform Published Data Wizard page, click Finish to
save the package as specified.

Creating a Subscription

To complete the configuration you must create a pull subscription for the defined
publication on the Subscriber.

1.

In SQL Server Enterprise Manager, select the subscription database server, ex-
pand Replication, right-click Subscriptions, and then click New Pull Subscrip-
tion.

. On the Welcome Screen, click Next.

. On the Look for Publications page, select Look at publications from registered

servers.

. On the Choose Publication page, expand PUB_SERVER and select the publica-

tion named example:pub_db, where PUB_SERVER is the name of your Publisher
and example:pub_db is the name of your publication. (See Figure 3.50 on the next

page.)

152 Data Patterns

10.

Pull Subscription Wizard

Choose Publication
Chooze the publication to which pou want to subscribe.

il

Select one publication from one of the following servers:

Fiegister Server...

Expand a Publizher to display publications accessible by the login uzed to connect to
'SUBS_SERVER' and thoze that allow anonymous subscriptions.

< Back | Mext » | Cancel Help

Figure 3.50
Choose Publication page

. On the Specify Synchronization Agent Login page, select Use SQL Server

Authentication. Enter the login and the password of a user account that is used
to connect to the Publisher during the replication.

. On the Choose Destination Database page, select Subs_DB as the database for

the subscription, where Subs_DB is the name of your subscription database.

. On the Initialize Subscription page, select Yes, initialize the schema and the

data.

. On the Snapshot Delivery page, specify the snapshot folder. Use the default

folder of the publication.

. On the Set Distribution Agent Schedule page, select Using the following

schedule and click Change to specify a new schedule for the Distribution Agent.

On the Edit Recurring Job Schedule page, define the schedule for the Distribu-
tion Agent as a daily run with an interval of 15 minutes. (See Figure 3.51.)

Chapter 3: Data Movement Patterns 153

X

Edit Recurring Job Schedule - SUBS_SERYER

Job name: [Default Distribution Agent Schedule]

Occurs D aily

o Daily Every |1 3: dapls]
" Weekly

" Manthly

[Draily frequency

™ Oecurs once at: —
+ Oecurs eveny: 15 3: Minutefs) «| Statingat |12:00:004M -
Ending at: 11:59:00 P <

Diuration

Start date: B/25/2003 hd " End date:

+ Mo end date

QK | Cancel | Help |

Figure 3.51
Edit Recurring Job Schedule page

11. On the Specify DTS Package page, select Distributor and click List packages.
For the transformation, select the transform_sub package that you created
previously. (See Figure 3.52.)

X
Specify DTS Package G

Specify the DTS package that defines the transformations for this subscription(s).

Pull Subscription Wizard

Package location
" Digtributor ™ Subszcriber List Packages

Package name: Owner Pazzword (if required]:

transform_sub

Drescription

Transform publication ‘example’

< Back | Mext » | Cancel Help

Figure 3.52
Specify DTS Package page

154 Data Patterns

12. The Start Required Services page shows the status of the SQL Server Agent on
the Subscriber. If the SQL Server Agent is not running, select the check box next
to the entry for the agent. The agent will be started after the wizard creates the
subscription.

13. On the Completing the Pull Subscription Wizard page, review the options for
the specified subscription. Click Finish to create the subscription with these
options.

The configuration process is finished. Before starting the first transmission, the
following checks should be done:

® Did the Snapshot Agent create the first initial snapshot? It may be necessary to
start the Snapshot Agent manually on the publication database.

® Did the Pull Agent initialize the schema and the first replication? If this has not
been done automatically, you can start the process manually on the subscription
database.

Starting and Restarting the Synchronization

1. In the Enterprise Manager, select the publication database server, expand Repli-
cation Monitor, select Publishers, Pub_Server, and open the publication
example:pub_db.

2. Right-click the Snapshot Agent and select Start Agent to create an initial snap-
shot.

3. Right-click SUBS_Server:subs_db and select Start Synchronizing to start the
transactional replication.
Testing the Example

You can easily test the functionality of the implemented replication by changing
some data in the publication, starting the replication process, and checking to see if
the Subscriber has changed accordingly.

To check various kinds of data changes, perform INSERT, UPDATE, and DELETE
operations on the data in the publication database.

1. Change data in the publication database. For example:

UPDATE authors SET au_lname = 'Smith' WHERE au_id = '807-91-6654"

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('453-12-3255', 'Smith', 'John', '400 486-234', 1)

DELETE FROM authors WHERE au_id = '672-71-3249'

2. Manually start the replication process.

Chapter 3: Data Movement Patterns 155

3. Check to see if the rows changed in the subscription database. For example:

SELECT * FROM authors

Resulting Context

Although this pattern describes a replication between SQL Server databases, the
subscription database can be any heterogeneous database that provides an ODBC or
OLEDB interface, such as Oracle, DB2, or Microsoft Access.

Note: To use a heterogeneous database as a publication database, you need a software
component that implements a dedicated interface —the replication distributor interface. The
examples that are delivered with SQL Server show how to implement this software.

There are two ways to use a heterogeneous database as a subscription databse:

® Use ODBC or OLEDB and create a push subscription using the wizard on the
Publisher. This is the simplest way to publish data to a heterogeneous Subscriber.

® C(Create a publication and then create an application with an embedded distribu-
tion control. The embedded control implements the pull subscription from the
Subscriber to the Publisher.

For Subscribers, the subscribing database has no administrative capabilities regard-
ing the replication being performed.

A closer look at the architecture of the SQL Server elements reveals that the
implementation corresponds to a cascading synchronization with two replication
links. One link is from the publication database to the distribution database, and the
other link is from the distribution database to the subscription database. The
distribution database plays the role of a cascade intermediary target/source (CITS).
It can serve additional replications links to other targets. The Master-Slave Cascading
Replication pattern descibes this design and the terms associated with it.

This pattern inherits the benefits and liabilities from the pattern Master-Slave
Transactional Incremental Replication. Because this pattern actually implements a
cascading replication, it also inherits the benefits and liabilities of the Master-Slave
Cascading Replication pattern. The use of this pattern also results in the following
additional benefits and liabilities:

Benefits

® Integrated logging mechanism. If you track the transaction log, you do not need
a logging mechanism for changes in the application or database.

® Integrated into SQL Server Enterpise Manager. The configuration and execution
of the replication in SQL Server is integrated in the SQL Server administration,
and can be easily done with the SQL Server Enterprise Manager.

156 Data Patterns

Liabilities
® Additional database to be managed. The implementation requires the
distribution database as an additional database that must be managed.

Testing Considerations

After you set up the replication link as described in this pattern, you must test it
thoroughly. Your test cases should cover these scenarios and others:

® Correct transmission of transactions that update the replication set

® The largest transaction that might occur

® The longest disconnection between Publisher and Subscriber that you expect
under production conditions

® Network interruption between the Publisher and the distribution database
during transactions on the Publisher, if you are using a remote distributor. (This
does not apply to the example in this pattern.)

® Network interruption between the distribution database and the Subscriber
during a a running transmission

® A hard abort of the database system on the Subscriber during a running
transmission
After each test, make sure that the Subscription is in the correct state.

Also make sure that transactions that do not update the replication set are not
transmitted.

Finally, put the highest expected load on the Publisher and verify that the replication
still runs correctly.

Security Considerations

To secure the connection between the Distributor and the Subscribers, do one of the
following:

® Use a SQL Server user account to connect to the Distributor.

® Place all computers in one Microsoft Windows® domain, or have a common user
with the same password on all computers. Then use a trusted Windows
connection between Distributor and Subscribers.

If you prefer a security approach that is independent of the operating system, you
should use SQL Server authentication.

Note: The SQL Server Agents on all systems must run on a local or a domain account, not on
the local system account. Otherwise, the replication does not work.

Chapter 3: Data Movement Patterns 157

Operational Considerations

The SQL Server Agent manages the different jobs of the replication. Schedules for
these jobs are defined during the configuration. Alternatively, you can start each job
using the SQL Server Enterprise Manager.

The Replication Monitor in SQL Server Enterprise Manager provides the following
information:

® A list of all publications and attached agents with the time and the duration of
the last execution and information about the last action

e Alist of all agents grouped by task with current status and a history of actions

® The event log entries created by Replication Alerts, which watch the replication
process.

If a row was deleted on the subscription database and the transmission tries to
change this row, an error occurs. In this case, there are two solutions:

® Manually restore the row in the subscription database by using an INSERT
statement based on the data from the same row in the publication database.

® Have the replication automatically use a new snapshot to rebuild the subscription
database. This snaphot must be newer than the first erroneous transmission.

If the replication fails, do the following:
® Check to see if the accounts have network access rights.

® Check the history of the subscription to determine the reason the synchronization
failed.

® Check the Replication Monitor for highlighted replication failures.

The replication usually runs on a defined schedule. If you want to test the replica-
tion or start the merge replication immediately, however, you need to start the
replication manually.

Hints: It is common practice to have the distribution database on the same server as the
Publisher, for example to ensure frequent and rapid movement of the transactional information
from the transaction log to the distribution database.

If there are many subscribers and a high rate of operations on the publisher, the Distributor
can become a bottleneck. In this case, you should configure the Distributor on an additional
server to separate the transmissions from the activity caused by the applications.
Transferring a large amount of data over slow conections can be problematic. An alternate
solution is to create the initial snapshot files and transaction data using removeable media,
replicate the database, and then establish the transactional replication over the slow network.

158 Data Patterns

Related Patterns

For more information, see the following related patterns:

Patterns that May Have Led You Here

® Move Copy of Data. This pattern is the root pattern of this cluster; it presents the
overall architecture for maintaining copies of data.

® Data Replication. This pattern presents the architecture of data replication, which
is a particular way of moving copies of data.

® Master-Slave Replication. This pattern describes design considerations for trans-
mitting data from the source to the target by overwriting potential changes in the
target on a higher level than the Master-Slave Snapshot Replication.

® Master-Slave Transactional Incremental Replication. This pattern presents a solution
that transmits only the changes from the source to the target on a transaction-by-
transaction basis.

Other Patterns of Interest

® Master-Slave Snapshot Replication. This pattern presents the design of snapshot
replications, which this pattern uses to prepare the target.

Chapter 3: Data Movement Patterns 159

Master-Slave Cascading Replication
Context

You are designing a replication solution for the following requirements:
® Areplication set is to be replicated from a single source to many targets that all
require substantially the same replication data.

® The replicated data in the targets is read-only, or if it is updated at the targets by
any applications, it is accepted that these updates can be overwritten by later
transmissions. This is called a master-slave relationship.

Hence the replication flow is one-way, from the source to the targets, and neither
conflict detection nor conflict resolution are triggered at the targets because of target
changes.

Figure 3.53 summarizes this overall replication scenario.

Replication
Topology

Source

Target n
Figure 3.53

Owerall replication scenario

You know you could design direct replication links from the source to each target,
but the potential impact on the source, and possibly the source availability, is a
concern. Therefore, you want to find another approach that reduces this concern
and is also an efficient way to replicate this common replication set to many targets.

160 Data Patterns

Problem

How can you optimize the replication to a set of targets in a master-slave environ-
ment, and minimize the impact on the source?

Forces

Any of the following compelling forces would justify using the solution described
in this pattern:

Too many passes on the source. Every replication link that starts from a source

requires a pass over the replication set to acquire it. The resources (for example,

CPU time and I/O activity) needed for the required number of passes might not
be available on the source database server, or they may cost too much.

Very large replication set. Even with a moderate number of replication links to
the source, the total overhead on the source database server can become unsus-
tainable if the amount of data to be transmitted to the targets is large.

Significant growth in replication needs anticipated. Concerning both of the
preceding forces, you anticipate a significant growth in the number of targets and
amount of data to be transmitted. Therefore it is important to implement a
replication topology that can sustain the predicted growth.

Need to offload replication set from source as quickly as possible. Acquiring
data impacts source resources and you must minimize the duration of the impact.
For example, if you are replicating across a slow communications link, you may
prefer to offload the source quickly and then replicate to the target from this
offloaded set.

No direct connection between source and target. Due to your network topology,
you might not be able to directly link the source and target, but you can connect
to a third place.

The following enabling forces facilitate the move to the solution, and their absence
could hinder such a move:

Targets can tolerate the delays implied by replication. The timeliness with
which the data arrives at any one of the targets depends on the replication link,
which frequently includes a network link. Adding more replication links from the
source to the final target generally increases the delay until changes made to the
source replication set appear at the target.

Great similarity in the replication sets to be replicated. The core of this pattern
is that all the replication data comes from the same original source replication set.
Within this fundamental constraint, each replication link can have its own repli-
cation set to be replicated, which can differ from the replication set of other
replication links. Although the structure differences between each source/target
pair might be fairly small, the overall differences could be significant. Data
Replication requires that the source and the target of every replication building

Chapter 3: Data Movement Patterns 161

block be very similar. Master-Slave Cascading Replication requires the similarity of
all databases along the whole chain of replication links to be high. Otherwise, an
Extract-Transform-Load (ETL) approach would be more useful.

Solution

Increase the number of replication links between the source and target by adding
one or more intermediary targets between the original source and the end target
databases, as Figure 3.53 shows. Specifically, this arrangement adds the concept of
cascade intermediary target/source (CITS) to the topology, as Figure 3.54 shows. These
intermediaries are data stores that take a replication set from the source, and thus act
as a target in a first replication link. Then they act as sources to move the data to the
next replication link and so on until they reach the cascade end targets (CETS5).

-)

Cascade End
Target 1

DEC e

D pug

Source Cascade End
Intermediar Target 2
Target/Source
T §)
A = Acquire
M = Manipulate Cascade End
W = Write Target 3
Figure 3.54

Master-Slave Cascading Replication with a single intermediate target/source

Figure 3.54 shows a very simple example of a Master-Slave Cascading Replication
topology. Each Acquire, Manipulate, and Write (AMW) box in the figure represents a
replication link. For more information about the replication building block, see the
Data Replication pattern.

In general, several CITSs can be connected to the same source and a CITS can also be
connected to several other CITSs. Regardless of the number of CITS, Master-Slave

162 Data Patterns

Cascading Replication arranges them in a tree with the source as the root, CITS as
inner nodes, and CETs as the leaf nodes.

For discussion purposes, it is helpful to define a few more specific terms for the
replication links in a topology:

o Initial link. The initial link connects a source to a CITS.
® Intermediary link. The intermediary link connects a CITS to another CITS.
® End link. The end link connects a CITS to a CET.

The characteristics of the end links are the same as if the targets were connected
to the source directly. This means that the end links can be configured for full or
incremental replication depending on the requirements, and that they can start a
transmission immediately after every transaction, periodically, or on demand.

Hint: The addition of CITS to the replication topology, however, impacts the service level offered
to the CETs. The initial and intermediary links must transmit any data or changes early enough
for any of the following intermediary or end links. Thus, it is common practice to design an
immediate replication here. If all end links only do periodic or on-demand replication, a periodic
replication on the initial and intermediary links would be sufficient. For these reasons, you
should not design an on-demand replication on an initial or intermediary link, because the
timeliness of some of the CITS and their corresponding targets would depend on a user or
operator starting the transmission.

The choice of the replication frequency also impacts the choice of the replication refresh policy.
If the initial and intermediary links have been configured for immediate replication, you will
have to use incremental replication to transmit only the changes. Incremental replication is
also generally the best choice to transmit changes for periodic replication at the initial and
intermediary links. If the replication sets are small enough, another option is to use a snap-
shot replication on the initial and intermediary replication links.

Next Considerations

To design a Master-Slave Cascading Replication topology for your environment, you
must do the following:
® Determine the number of CITS to use.

® Design the replication links from the source to the CITS and from the CITS to the
CETs.

® Determine how much data is required for each CITS.
® Define the data structure of the CITSs.
® Define the manipulation in each replication link.

The following sections explore these issues.

Chapter 3: Data Movement Patterns 163

Number of CITSs

A single CITS removes most of the load from the source database server because
there is only a single replication link from the source to the CITS. Thus, the only
overhead to the source is that single replication link.

However, if you design just a single CITS, you introduce two new single points of
failure: the CITS and the additional replication link. An additional CITS helps to
mitigate this effect because you can design an alternative chain of replication links
from the source to each of the targets. Although the additional replication links that
are now connected to the source cause a slight increase in replication overhead
compared to a single replication link, the overall availability increases because the
alternative chain acts as a backup to the standard chain.

~
Source SO CET 2
CET n
Figure 3.55

Master-Slave Cascading Replication with an alternative chain (dotted arrows)

Hint: After you have two (or more) CITSs connected to the source, you can connect parts of the
CETs to each of them. This achieves some load balancing on the CITSs because every CITS
serves fewer CETs. In case of a failure, the CETs are served by one of the remaining CITSs.

The replication links to both CITSs must transmit the same replication set. Addition-
ally, the CITSs must not be written to by any process but the replication link from

164 Data Patterns

the source. If one of these conditions fails, the CITSs could have different data. In
that case, they would not be able to serve as substitutes for each other.

More CITSs can also be added if a single CITS cannot serve all CETs. Adding CITSs
also increases scalability because you can add new CITSs to accommodate a growing
number of CETs. If the number of CITSs consequently impacts the source in an
unsustainable way, you can even add another layer of CITSs. This increases the
chain length by one replication link, but again frees the source database server from
the additional load.

Hint: Adding CITSs can also help you optimize for different replication characteristics
because the CITSs can be structured in different ways. If, for example, some of the CETs
require snapshot replication, while others require incremental replication, you can optimize
the structure of one of the CITS for storing change data and the other one for storing the data
itself. The CETs requesting the changes will connect to the first CITS, while the CETs request-
ing snapshots will connect to CETs that are optimized for the snapshots. Generally, you should
look for clusters of CETs with similar replication characteristics and then design a dedicated
CITS for each of these clusters. Thereafter, you can optimize every CITS to best support the
replications links that have similar characteristics.

Limiting the Number of Replication Links

You must have at least one chain of replication links between the source and every
CET to transmit the data or its changes. As described earlier, you can design an
alternative chain of replication links from the source to every target to achieve
higher availability for the whole system. Do not overdo it by designing too many
alternative chains, however, because the additional replication links increase the
load on the source. It is best to design at most one standard chain of replication
links plus one alternative chain. Furthermore, designing additional replication links
should be reserved for when you feel that normal data availability techniques, such
as clustering, storage area networks, or hot standbys, are not suitable.

Amount of Data for Each CITS

The source replication set which is stored on each CITS must satisfy the require-
ments of all the CETs connected. Thus, the amount of data stored on each CITS is
the logical union of data requested by any of its CETs and the type of replication
being used.

Chapter 3: Data Movement Patterns 165

Data Structure for Each CITS

To determine the data structure for each CITS involves, choose one of the following

design options:

® Matching the data structure of the CITS to the source. This enables the move-
ment of data from the source to the CITS without any additional manipulation
overhead. This design is important if the main goal of your cascading replication
is to remove any avoidable load from the source.

® Matching the data structure of the CITS to the CET superset. In this case, the
manipulation is performed only once, namely within the replication link from the
source to the CITS. The targets can be fed easily by the contents of the CITS. This
provides a higher overall efficiency with the tradeoff of some impact on the
source that could have been avoided.

® Designing a data structure that differs from both the source and the CETs. If all
replication links to the CETs perform incremental replication, the CITSs do not
have to store the data—only the changes. In this case, the data structure of the
CITSs can be designed for the storage of changes only.

Examples

The following examples present two possible configurations of Master-Slave Cascad-
ing Replication.

Different Lengths of Replication Chains

This first example assumes that you have a single source and a large number of
CETs. A small number of the CETs receive snapshots, while the others are served by
incremental replication. The snapshot replication is transmitted by way of a single
CITS. The number of CETs served by incremental replication is too large to be
served by a single CITS, however. To minimize the impact on the source, you could
design two levels of CITS, each with a single CITS that is connected to the source.
Figure 3.56 on the next page shows the resulting replication topology where thick
arrows represent replication links with snapshot replication and thin arrows repre-
sent replication links with incremental replication.

166 Data Patterns

:
1;)"1
—

CET

CITS
Source

CITS CITS

CITS

) 16 26 2 2

Figure 3.56
Master-Slave Cascading Replication topology with different chain lengths

Chapter 3: Data Movement Patterns 167

Two Sources and Conflict Detection and Resolution

Figure 3.57 shows a replication topology in which a CET participates in two master-
slave cascading replications.

> CET 1

Source 1 CITS 1
> CET 2

Source 2 CITS 2
CET 3

Figure 3.57
Master-Slave Cascading Replication from two sources

If the replication sets of Source 1 and Source 2 do not intersect, then replication from
Source 1 by way of CITS 1 to CET 2 always affects different records than those from
Source 2 by way of CITS 2. Thus, no special attention is required in CET 2 to handle
both replication chains.

However, if the replication sets of Source 1 and Source 2 do intersect, the same CET
2 record can be affected by both the replication from Source 1 through CITS 1 and
Source 2 through CITS 2. Resolving the discrepancy requires the ability to detect and
resolve conflicts in CET 2. The same applies if two or more sources feed the same
CITS.

Note: The conflict detection and resolution is not triggered by updates having occurred at the
target, which is why this is not a master-master pattern. In this case, the trigger is that
different updates occurred at two sources. However, the concepts described in Master-Master
Replication still apply to solving this problem.

168 Data Patterns

Resulting Context

This pattern inherits the benefits and liabilities from the Data Replication pattern and
has the following additional benefits and liabilities:

Benefits

Source is freed from most of the replication load. This is the most important
benefit of a Master-Slave Cascading Replication. Only the first replication link adds
load to the source. The remaining replication links do not burden the source. The
CITS generally should not serve any applications so that conflicting operational
demands between applications and replication services can be avoided.

CETs can be relatively autonomous. Using a CET is a good way to provide data
to other organizations because you can pass raw data on to the organizations and
they can use the data however they want. Because you cannot force another
organization to pull the data frequently, though, this could impact your source
database system (for example, if the organization connected to your database
directly). Master-Slave Cascading Replication liberates the source from this impact;
a CITS is more appropriate to handle the impact because it does not serve any
applications.

Adding more targets does not impact the source. As your business requires more
CETs you can add them without overburdening the source.

Liabilities

Increased latency. Because the chains from the source to the targets are longer
compared to direct replication, the delays in getting the replication set to the
CETs can increase. Most implementations of this pattern use an immediate
replication on the replication links to minimize this liability.

Potential for decreased availability. The longer chains from the source to the
targets have an impact on the overall availability as well. As the number of links
in the chain increases, the opportunity for failures increases. You can address this
liability by adding a second CITS and alternative chains in case of failures. A
second CITS also offers the opportunity for load balancing by connecting half of
the targets to each of the CITSs.

Additional administration and management. Master-Slave Cascading Replication
adds databases and replication links that must be administrated and managed.
The whole replication environment should be controlled by management tools
for an automatic surveillance of the ongoing operation.

Chapter 3: Data Movement Patterns 169

® Extra storage cost. The CITS will add storage requirements to the overall
environment.

® Additional change management. Structural changes to the source or the CETs
require more attention because the CITS have to be adjusted appropriately. You
should precisely plan and design the changes on all affected databases.

Operational Considerations

By applying Master-Slave Cascading Replication, most of the replication overhead is
loaded on the CITS. Hence, it is common practice that the CITSs do not serve any
applications. Instead, the applications are connected to the source and the targets
only. All applications requiring write access of the database must be connected to
the source.

Related Patterns

For more information, see the following related patterns:

Patterns That May Have Led You Here

® Move Copy of Data. This is the root pattern of this cluster. It presents the funda-
mental data movement building block that consists of source, data movement set,
data movement link, and target. Transmissions in such a data movement building
block are done asynchronously (or eventually) after the update of the source.
Thus, the target applications must tolerate a certain amount of latency until
changes are delivered.

Data Replication. This pattern presents the architecture of a replication.

® Master-Slave Replication. This pattern presents the solution for a replication where
the changes are replicated to the target without taking changes of the target into
account. It will eventually overwrite any changes on the target.

Patterns That You Can Use Next

® [mplementing Master-Slave Transactional Incremental Replication Using SQL Server.

Other Patterns of Interest
® Master-Slave Snapshot Replication. This pattern presents a solution that transmits
the whole replication set from the source to the target on each transmission.

® Master-Slave Transactional Incremental Replication. This pattern presents a solution
that transmits only the changes from the source to the target on a transaction-by-
transaction basis.

Patterns and Pattlets

Pattlets are actual patterns to which this guide refers, but does not discuss in detail.
For more information about why pattlets are used, see Chapter 2, “Organizing
Patterns.” The following table lists each pattern and pattlet mentioned in this guide.

Table A.1: Patterns and Pattlets

Pattern or Pattlet Problem Description
Name

Maintain Data Copies | What proven architectural

(pattlet) approach should you follow to
maintain the content of data that
exists in more than one place?

Application-Managed What proven architectural

Data Copies (pattlet) approach should you follow to
design synchronous data
management services when you
have data held in more than one
data stores that are serving
applications?

Solution Description

This root pattlet sets the context
for the pattern cluster overall. The
context is that you have, or are
about to create, more than one
copy of some data. The general
solution is to either synchronously
write to the copies from the
originating application, or to
synchronously post data to a local
cache for later movement by an
asynchronous service. The timeli-
ness of that movement is given

by the requirements of the applica-
tions.

In this case, when a particular
application makes a change to its
copy of the data, it should then
also make changes to the other
copies. The application ensures
that copies of the data and/or
derived data are updated in the
same transaction that changed
the original data.

(continued)

172 Data Patterns

Pattern or Pattlet
Name

Move Copy of Data

Data Replication

Extract-Transform-
Load (ETL) (pattlet)

Master-Master
Replication

Problem Description

What proven architectural
approach should you follow to
design data movement services
when you have data held in data
stores that are serving applica-
tions, and now you want other
applications to use copies of
that data?

What proven architectural
approach should you follow to
create nearly-identical copies of
the data, and possibly also allow
the copies to be updated at either
the source or target with changes
being reflected in each other?

What proven architectural
approach should you follow to
create copies of the data when
data flows one-way to the target,
but getting the data is complex
and it needs to be changed a lot
before it can be written to the
target?

How do you design a replication
where the replication set is
updateable at either end, the
changes need to be transmitted
to the other party, and any
conflicts need to be detected
and resolved?

Solution Description

This is the root pattern for any type
of asynchronous writing of copies
of data. The pattern presents the
fundamental data movement
building block, which consists of
source, data movement set, data
movement link, and target.
Transmissions in such a data
movement building block are done
asynchronously (or eventually) after
the update of the source. Thus, the
target applications must tolerate
certain latency until changes are
delivered.

This pattern presents a special type
of data movement (replication) with
a simple acquisition and manipula-
tion of the data, but possibly a
complex write. The complexity of the
write generally arises from the
need to update both source and
target and to eventually exchange
the changes to the counterpart.

ETL is a type of data movement
with possibly a complex acquisition
from heterogeneous sources, and/
or a complex manipulation with
aggregation and cleansing, but
always a simple write by overwriting
any changes on the target

This is bidirectional data replication
between source and target. This
includes conflict detection and
resolution in order to handle
concurrent updates to different
copies of the same data in the
same transmission interval.

Pattern or Pattlet
Name

Master-Slave
Replication

Master-Master
Row-Level
Synchronization

Master-Slave
Snapshot Replication

Capture Transaction
Details

Master-Slave
Transactional
Incremental
Replication

Problem Description

How do you design replication
when the copy is read-only, or it
may be updated but changes to
the copied data are not
transmitted back, and they may
overwritten on a later replication
transmission?

How do you design a replication
to transmit data from the source
to the target and vice versa,
when the same replication set
is updateable on both sides and
you want to resolve conflicts at
the row level?

How do you design a master-
slave replication to copy the
entire replication set so that it is
consistent at a given point in
time?

How do you design a recording of
transactional information for all
changes to a data store so you
can use these as a source for
replication?

How do you design a replication
link to support the transmission
of changes using transactional
details and replaying them on the
target while meeting all integrity
constraints?

Appendix A: Patterns and Pattlets 173

Solution Description

This is unidirectional data replica-
tion from a source to a target, with
overwrite of the target data by the
transmission.

A specific master-master replication
where conflict detection and
resolution are done at a row level.

A specific master-slave replication
where the complete replication set
is acquired from the source,
possibly manipulated and written to
the target. This design is also used
for incremental replications and
synchronizations to create the first
copy of the data to be maintained.

Design of recording transactional
information by means of
handcrafted artifacts to be used in
an incremental replication using
transactional changes. Required if
there is no database management
system (DBMS) transaction log or
if the transaction log cannot be
used for any reasons.

A specific master-slave replication
that transmits transactional infor-
mation from the source and applies
it to the target. This ensures that
changed data is available to appli-
cations only after dependent
operations of the same transaction
have been replicated as well.

(continued)

174 Data Patterns

Pattern or Pattlet
Name

Implementing
Master-Master Row-
Level Synchronization
Using SQL Server

Implementing
Master-Slave
Snapshot Replication
Using SQL Server

Implementing Master-
Slave Transactional
Incremental
Replication Using
SQL Server

Topologies for Data
Copies (pattlet)

Master-Slave
Cascading
Replication

Problem Description

How do you implement this
design using Microsoft® SQL
Server™?

How do you implement this
design using SQL Server?

How do you implement this
design using SQL Server?

What are the proven architectural
approaches for creating a
topology of data copies for
deployments?

How can you optimize the replica-
tion of a set of targets in a
master-slave environment, and
minimize the impact on the
source?

Solution Description

Guidance to implement synchroniza-
tion with row-level conflict detection
and resolution by means provided
with SQL Server merge replication.

Guidance to implement snapshot
replication by means provided with
SQL Server snapshot replication.

Guidance to implement incremental
replication using transactional
information by means provided with
SQL Server transactional replica-
tion.

The architectural approaches to
deploying data copies on several
platforms.

A deployment design for master-
slave replications, where the
replication from a single source to
several targets uses a concatena-
tion of replication links with
intermediary databases serving
both as target and source. The
copies are all related by a need for
data from the source replication set.

Glossary

The following table defines terms that are used throughout Data Patterns:
Table 1: Definitions for Data Patterns

Term Definition

Access profile A description of the characteristics of how application queries access the data
store, such as search condition, size of the result set, frequency, and required
response time.

Acquire A service that gets a movement set from a data source. Acquisition may be a
simple one-step process, or it may a multi-step process. The Acquire can enrich
the data by adding details (such as time the data was acquired) to allow for
management of the overall data integrity. It can acquire the movement set from
the data structures directly, or it can acquire the set from other caches where
only data changes are stored. Typically these caches are either database
management system (DBMS) log record stores, message queuing system
stores, or user-written databases. Acquire must either collect all changes, in
which case the ordering of the changes is vital so that they are written correctly
by the Write service; or it must collect the net change, which is the final result
of all the changes that have occurred to the set since the last transmission.

Aggregation Creation of a compound record or element from individual records or elements,
where a record is a collection of data elements in the data store. In relational
terms, a record is a row, and elements are columns.

Asynchronous A style of processing where an application posts a request for an event to occur
and then continues without waiting for the event. A separate service will
recognize the request and take responsibility for ensuring that the event occurs.

Cascading A hierarchical assembly of replication building blocks used for related replication

replication transmissions. In this structure, the source(s) replicate to intermediary targets
(of which there may be several layers). The intermediaries switch roles and
become sources for the next replication link. This process continues until the
replicated data reaches the end target. This configuration is used to reduce
workload on the source when there are many end targets that all want the same
replication set or a very similar replication set.

(continued)

176 Data Patterns

Term

Composite
movement set

Conflict

Conflict
detection

Conflict
resolution

Data
movement

Definition

A collection of one or more movement sets. Data in a composite movement set
can come from one or more data stores. In a data store, the subset that is to be

be moved is a movement set. The sum of these movement sets is called a com-
posite movement set and comprises all the data you want to move to the applica-

tion. Composite movement sets are usually relevant to Extract-Transform-Load
(ETL).

Source 1

r= == e |

Mvmt.
Set

I I
I I
I I
I I
| Composite |
| Movement Set |
I I
I I
I I
I I
I I

Source 2

A conflict arises whenever two or more copies of the same data are indepen-
dently updated in a time interval. Conflicts are detected only when one of the
copies replicates its data to the other copy and the Write service discovers that
the other copy of the data has been changed since the last replication. The
conflict must be resolved by the Write service.

The process of detecting conflicting change transactions on the common data in
a source and target during a transmission.

The process of resolving conflicting change transactions on the common data in
a source and target during a transmission. The resolution method specifies
whether the source or the target change should overrule the other; or it may
return data as an aggregated result of the conflicting transactions; or it may
require manual intervention to resolve some conflicts, for example, those where
complex business rules need to be invoked.

The act of reliably and repeatedly moving a copy of data from its current
physical location(s) to different location(s) and possibly transforming its con-
tents. This action requires several architectural components that are described
in the patterns, and a process that is outside the scope of these patterns.

Term

Data
movement
building block

Data
movement
link

Database

Full replication

Immediate

replication

Incremental
replication

Key updates

Manipulate

Glossary 177

Definition

The fundamental architectural building block for data movement. This block is
used to assemble all solutions that move data copies to the applications that
need them. It consists of a source, a movement set, a data movement link, and
a target data store.

A connection between the source and target along which the relevant source
movement set moves from one data store to another with appropriate security.
This link includes the method of transmission of data at each step that moves
the data (which includes any needed intermediary transient data stores). The
data movement link also includes the Acquire, Manipulate, and Write replication
services.

A collection of data managed by a DBMS. The scope of the term database can
vary depending on the DBMS product used. For clarity, these patterns use the
term as defined by Microsoft® SQL Server™.

A replication in which a whole replication set of complete rows is moved from
the source to the target on every transmission through a replication link. (A full
replication is also called a snapshot replication.)

A replication in which every change to the source triggers a replication transmis-
sion to the target. When using a database, the changes will be transmitted
immediately after the changing transaction commits its changes to the DBMS.

A replication in which the replication set consists of only the changes that have
been made to rows since the last transmission are sent (as opposed to the
complete replication set). When designing an incremental replication, you need
to decide whether to send all changes that have occurred to any particular
record during the replication interval, or whether to send only the net effect of
those changes.

Changes to the primary key of a database record, such as SQL updates to the
columns of the table key within a replication set. The replication must handle
such key updates with special care.

A service that changes the content or form of the movement set in some way
and passes it on in a format that can easily be written to the target. Manipula-
tions can vary in complexity from a null event (where Manipulate does not
change the data) to very radical data alternations.

(continued)

178 Data Patterns

Term

Master-master

Definition

A source-target relationship in which the replication set can be changed at either
the source or the target within a replication interval, and these changes are to
be posted back to the other party on the next transmission in its direction. Thus
the source and target are equals with respect to rights to make changes to the
replication set. (Master-master replication is also known as peer-to-peer replica-
tion.) The write logic of a replication link must include logic for resolving multiple-
updater conflicts, and two replication links must exist between the peers since
they will swap source and target roles when exchanging data (see following
figure).

Replication Building Block

Replication Link 1

S A@W—>

Change
Role

4—W@A

Replication Link 2

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

The Master-master relationship should not be confused with a pair of master-
slave relationships between source and target. Although the configurations look
similar, the pair of master-slave relationships does not provide the capability to
update a common set of data at either end (see following figure).

Replication Building Block 1

Replication Link 1

IS A@W—}

Change
Role

4—W@A

Replication Link 2

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

Replication Building Block 2

Term
Master-slave

Movement set

On-demand
replication

Operation

Optimistic
concurrency
control

Pattern

Pattlet

Periodical
replication

Glossary 179

Definition

A source-target relationship in which the source replication set is written to the
target without checking for conflicts. Either the replication data at the target
data store is read-only; or any updates to the replication data from the source
are not to be copied back to the source database and the changes can be
overwritten by a later replication transmission.

Replication Building Block

A f——

Source Replication Link Target

A = Acquire

M = Manipulate

W = Write

Rep. Set = Replication Set

An identified subset of data that exists within a single source. A movement set
is copied from that source and is sent across a data movement link to one or
more targets. During the copy operation, the content and form of the movement
set may change as it is acquired, manipulated, and written.

A replication in which transmissions are started by explicit operator request, as
opposed to being triggered or scheduled by an automated process.

An action performed on a row of data, such as an INSERT, UPDATE, or DELETE
operation.

A data integrity technique that allows multiple parties to update different copies
of the same set of data. When the changes are merged, a check is done to see
if the changes affected the same data within the data store. If such a conflict is
detected, it must be resolved by a defined method; for example, the more recent

change overrules any older changes.

A three-part relationship between a general problem, its context, and its solu-
tion, which is based on real-world experience and is documented in a consis-
tent, formal structure. A pattern encapsulates experienced practitioner knowl-
edge and can be used as a starting place for creating solutions to specific
situational problems.

A placeholder for a pattern where there is good cause to believe that a pattern
exists that has not yet been written. Usually expressed as a hame, and a
problem or solution statement, or both.

A replication in which transmissions are scheduled to be run at a fixed time or
after a fixed interval.

(continued)

180 Data Patterns

Term

Pessimistic
concurrency
control

Projection

Publication

Publisher

Push replication
Pull replication

Redundant
data

Related
replication
links

Replication

Replication
building block

Replication

interval

Replication link

Replication set

Replication
transmission

Definition
A data integrity technique that requires an application to acquire a data lock

before it can change data. This means that only a single party can change the
data at any point in time.

A selected subset of columns from tables. If the replication set is not a full
replication, then it is a projection.

The Microsoft SQL Server term for a set of data made available for replication
by a publisher.

In Microsoft SQL Server, the role of a platform that provides the source for a
replication link.

Replication that is invoked at the source.
Replication that is invoked at the target.

Any data that does not provide new information but already exists elsewhere in
the environment as an exact copy or is derived by more complex manipulations,
such as aggregations.

Replication links that require information about one another’s actions because
of the relationship they support between the source and target. Master-master
replication uses two related replication links between source and target in
opposite directions to allow changes to the replicated data at either end, and
to transmit the changes to the counterpart.

The act of reliably and repeatedly moving a copy of a set of data from its
current physical location(s) to different location(s). If both source and target
have updated the replicated data since the last replication transmission, the
process of writing the data to the target may be complex. Otherwise, the pro-
cess of moving the data is very simple.

The fundamental architectural building block for replication. This block serves
as the basis for all replication solutions. It consists of a source replication set
to be replicated, a replication link, and a target database.

The period of time between replication transmissions.

A connection between the source and target along which the relevant source
replication set can be moved from one database to another with appropriate
security. This link includes the method of transmission of data at each step
that moves the data (which includes any needed intermediary, transient data
stores). The replication link also includes the Acquire, Manipulate, and Write
replication services.

A movement set that is used for data replication. A replication set consists of
one or more replication units.

The act of moving a replication set from source to target.

Term

Replication unit

Snapshot
replication

Source

Subscriber
Subscription

Synchronization

Synchronization
building block

Synchronous

Target

Topology

Transaction

Transaction log

Transactional
Replication

Glossary 181

Definition

The smallest amount of data that can be discretely recognized in a transmis-
sion. The replication unit can be one of the following:

The complete replication set

A table in the replication set

A transaction

A row (of a table in the replication set)

A column (of a row in a table in the replication set)

A replication in which a whole replication set is moved from the source to the
target on every transmission through a replication link. (A snapshot replication
is also called a full replication.)

The data store that contains a movement set to be replicated.

In Microsoft SQL Server, the role of a platform that acts as the target for a
replication link.

In Microsoft SQL Server, the metadata that defines a replication set.

The process of replicating and applying changes from a source to a target when
data from the replication set may potentially have been updated at both ends,
and these conflicts need to be detected and resolved.

A refinement of the replication building block consisting of two replication links
and a synchronization controller. The controller manages the synchronization
and relates the replication link pair.

A style of processing where an application requests that an event occurs and
waits for the event to complete, so that the application is certain of the result of
its request before it proceeds. In the case of data operations, it means
performing a set of data operations within a common unit of work as defined
by DBMS commit services so that the state of the set of data is certain.

The data store in a data movement building block where the copy data is
written.

A layout of related data movement building blocks that provides a map of the
source and target data stores and the links between them. By describing the
relationships between these elements, a topology helps you to determine the
provenance of the movement set and assess the impact of changes to the data
movement set or to the configuration of the movement building blocks.

A collection of one or more manipulations of a database. A transaction should
adhere to the ACID principles: Atomicity, Consistency, Isolation, and Durability.

A special data store provided by a DBMS that allows copies of transactional
database changes to be persisted to a location other than the data store itself.
A transaction log’s primary purpose is to allow a DBMS to recover from failures.

A type of incremental replication in which the replication unit is a transaction.

(continued)

182 Data Patterns

Term Definition

Transform Transform is a service of the complex data movement process commonly known
as ETL (Extract-Transform-Load).

Transmission The process of moving of the movement set from source to target according to
defined functional and operational requirements.

Trigger A database object attached to a table that invokes additional actions on behalf
of an initiating operation. The common usage of a trigger is to perform addi-
tional actions on certain kinds of manipulations and to free the application
from the implementation of these actions.

Write A service that writes a movement set to the target data store(s). Write deals
with any errors returned from the attempted write, which may be simple (such as
database error codes) or more complex (such as multiple-updater conflicts).

Microsoft

patterns & practices

Proven practices for predictable results

Patterns & practices are Microsoft’'s recommendations for architects, software developers,
and IT professionals responsible for delivering and managing enterprise systems on the
Microsoft platform. Patterns & practices are available for both IT infrastructure and software
development topics.

Patterns & practices are based on real-world experiences that go far beyond white papers
to help enterprise IT pros and developers quickly deliver sound solutions. This technical
guidance is reviewed and approved by Microsoft engineering teams, consultants, Product
Support Services, and by partners and customers. Organizations around the world have
used patterns & practices to:
Reduce project cost

® Exploit Microsoft’s engineering efforts to save time and money on projects

® Follow Microsoft's recommendations to lower project risks and achieve predictable outcomes

Increase confidence in solutions

® Build solutions on Microsoft’s proven recommendations for total confidence and predictable
results

® Provide guidance that is thoroughly tested and supported by PSS, not just samples, but
production quality recommendations and code

Deliver strategic IT advantage

® Gain practical advice for solving business and IT problems today, while preparing companies
to take full advantage of future Microsoft technologies.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

0p)
)
o
+—J
o
)
P -
o
oJ
7))
-
S
o
+—J
+—J
©
o

0p]
]
&
+—
o
©
—
o
oJ
)]
-
—
]
+—
+—
©
o

patterns & practices

Proven practices for predictable results

Patterns & practices are available for both IT infrastructure and software development
topics. There are four types of patterns & practices available:

Reference Architectures

Reference Architectures are IT system-level architectures that address the business
requirements, operational requirements, and technical constraints for commonly occurring
scenarios. Reference Architectures focus on planning the architecture of IT systems and
are most useful for architects.

Reference Building Blocks

References Building Blocks are re-usable sub-systems designs that address common technical
challenges across a wide range of scenarios. Many include tested reference implementations to
accelerate development.

Reference Building Blocks focus on the design and implementation of sub-systems and are most
useful for designers and implementors.

Operational Practices

Operational Practices provide guidance for deploying and managing solutions in a production
environment and are based on the Microsoft Operations Framework. Operational Practices focus on
critical tasks and procedures and are most useful for production support personnel.

Patterns

Patterns are documented proven practices that enable re-use of experience gained from solving
similar problems in the past. Patterns are useful to anyone responsible for determining the
approach to architecture, design, implementation, or operations problems.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

patterns & practices

December 2002

Reference Architectures

Microsoft Systems Architecture—Enterprise Data Center 2007 pages

Microsoft Systems Architecture—Internet Data Center 397 pages

Application Architecture for .NET: Designing Applications and Services 127 pages
Microsoft SQL Server 2000 High Availability Series: Volume 1: Planning 92 pages

Microsoft SQL Server 2000 High Availability Series: Volume 2: Deployment 128 pages

Enterprise Notification Reference Architecture for Exchange 2000 Server 224 pages
Microsoft Content Integration Pack for Content Management Server 2001
and SharePoint Portal Server 2001 124 pages
UNIX Application Migration Guide 694 pages
Microsoft Active Directory Branch Office Guide: Volume 1: Planning 88 pages
Microsoft Active Directory Branch Office Series Volume 2: Deployment and
Operations 195 pages
Microsoft Exchange 2000 Server Hosting Series Volume 1: Planning 227 pages
Microsoft Exchange 2000 Server Hosting Series Volume 2: Deployment 135 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 1: Planning 306 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 2: Deployment 166 pages

Reference Building Blocks

Data Access Application Block for .NET 279 pages

.NET Data Access Architecture Guide 60 pages

Designing Data Tier Components and Passing Data Through Tiers 70 pages

Exception Management Application Block for .NET 307 pages

Exception Management in .NET 35 pages

Monitoring in .NET Distributed Application Design 40 pages

Microsoft .NET/COM Migration and Interoperability 35 pages

Production Debugging for .NET-Connected Applications 176 pages

Authentication in ASENET: .NET Security Guidance 58 pages

Building Secure ASPNET Applications: Authentication, Authorization, and
Secure Communication 608 pages

Operational Practices

Security Operations Guide for Exchange 2000 Server 136 pages

Security Operations for Microsoft Windows 2000 Server 188 pages
Microsoft Exchange 2000 Server Operations Guide 113 pages

Microsoft SQL Server 2000 Operations Guide 170 pages

Deploying .NET Applications: Lifecycle Guide 142 pages

Team Development with Visual Studio .NET and Visual SourceSafe 74 pages
Backup and Restore for Internet Data Center 294 pages

For current list of titles visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

Proven practices for predictable results

	Front Cover
	Contents
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Documentation Conventions
	Community
	Feedback and Support
	Acknowledgments

	Chapter 1: Data Patterns
	Patterns Document Simple Mechanisms
	Patterns as Problem-Solution Pairs
	Patterns at Different Levels
	Simple Refinement

	Common Vocabulary
	Concise Solution Description

	Summary

	Chapter 2: Organizing Patterns
	Pattern of Patterns
	Pattern Clusters
	Different Levels of Abstraction
	Architecture Patterns
	Design Patterns
	Implementation Patterns

	Viewpoints
	The Pattern Frame
	Constraints
	Pattlets
	Summary

	Chapter 3: Data Movement Patterns
	Architecture: Data Movement Root Patterns
	Architecture: Move Copy of Data Approaches
	Design and Implementation: Data Replication Patterns
	Data Replication Deployment
	Data Movement Patterns
	Move Copy of Data
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Examples
	Related Patterns

	Data Replication
	Context
	Problem
	Forces
	Solution
	Examples
	Resulting Context
	Related Patterns

	Master-Master Replication
	Context
	Problem
	Forces
	Solution
	Example: Synchronizing Laptops and a Central Database
	Resulting Context
	Related Patterns
	Acknowledgments

	Master-Slave Replication
	Context
	Problem
	Forces
	Solution
	Examples
	Resulting Context
	Related Patterns

	Master-Master Row-Level Synchronization
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Operational Considerations
	Related Patterns
	Acknowledgments

	Master-Slave Snapshot Replication
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Security Considerations
	Related Patterns

	Capture Transaction Details
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Variants
	Related Patterns

	Master-Slave Transactional Incremental Replication
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Security Considerations
	Operational Considerations
	Variants
	Related Patterns

	Implementing Master-Master Row-Level Synchronization Using SQL Server
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns

	Implementing Master-Slave Snapshot Replication Using SQL Server
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns

	Implementing Master-Slave Transactional Incremental Replication Using SQL Server
	Context
	Background
	Implementation Strategy
	Example
	Resulting Context
	Testing Considerations
	Security Considerations
	Operational Considerations
	Related Patterns

	Master-Slave Cascading Replication
	Context
	Problem
	Forces
	Solution
	Examples
	Resulting Context
	Operational Considerations
	Related Patterns

	Appendix A: Patterns and Pattlets
	Glossary
	Additional Resources

