Organizing Design Patterns
Why Patterns?

· Solve “Real World” problems

· Capture Domain expertise

· Document design decisions and rationale

· Reuse wisdom and expertise of master practitioners

· Convey expert insight to novices

· Form a shared vocabulary for problem solving discussion

· Show more than just the solution

· Context (when and where)

· Forces (trade off alternatives, misfits, goals + constraints)

· Resolution (how and why the solution balances the forces)

What Patterns are not?

· Restricted to software design or Object oriented design

· Untested ideas/theories or new inventions

· Solutions that have worked only once

· Any old thing written up in pattern format

· Abstract principles or heuristics

· Universally applicable for all contexts

· A “Silver Bullet” or panacea

What Patterns are?

· Recurring solutions to common problems or design

· Practical / concrete solutions to real world problems

· Context specific

· “Best – fits” for the given set of concerns / trade-offs

· “Old hat” to seasoned professionals and domain experts

· A literary form for documenting best practices

· A shared vocabulary for problem solving discussions

· An effective means of (re)using, sharing, and building upon existing wisdom/experience/expertise

· Massively Over-hyped!

There are several methods of organizing Design Patterns. Here is a summary for eight methods. It was originally compiled by Stan Feighny (http://home.comcast.net/~stanfeighny/). I have collected his ideas with some of the literature which I found on the internet.
1. Organized to support the Systematic development of software
Extracted from Buschmann and Meunir “ System of Patterns” in Pattern Languages of Program Design Addison-Wesley 1995

“A usable system of patterns must:

1. Support the systems evolution.

2. Describe all the patterns it includes in a uniform way.

3. Classify the patterns it contains, to provide a guide when selecting a pattern for a particular design situation.

4. Address issues regarding the construction of patterns in more complex and heterogeneous structures

The classification of Patterns based on:

Granularity

Architectural Frameworks (Pipes and Filters, Layered Systems, Blackboards, Model View Controller)
Design Patterns (all patterns from GoF)
Idioms (Handle/Body, Counter Pointer, Promote and Add, …)
Functionality

Creation of objects

Guiding communication between objects

Access to objects

Organizing the computation of complex tasks

Structural Principles

Abstraction

Encapsulation

Separation of Concerns

Coupling and Cohesion”

2. Organized by the Relationship between the patterns

Quoted by Walter Zimmer in “Relationships between Design Patents” in Pattern Languages of Program Design Addison-Wesley 1995

Abstract: The catalogue of design patterns from [Gamm94] contains about twenty design patterns and their mutual relationships. In this paper, we organize these relationships into different categories and revise the design patterns and their relationships. We are then able to arrange the design patterns in different layers. The results simplify the understanding of the overall structure of the catalogue, thereby making it easier to classify other design patterns, and to apply these design patterns to software development. 1. Introduction In the last couple of years, object-orientation has gained much attention in the field of software engineering. However, after some initial experiences with... (Correct Abstract)
[image: image1.png]Kuses ¥ for
Abstract Factory it mamger
object
Competing” X ic Similasin
paternz implemented constructing

uing ¥

e within
indisectaccesz 1o Template Methods
abject:

Similarin giving Xis c:

Tempini Ve

Xeawe Vto
implement the change

"

collaborations betveen
abject

‘:::,W.,

The starting point: The overall structure of the design pattem catalogue

Figure

objectsypetu

Xic typically
Sppliedto ¥

Similisin

passingatate

toabject

Both mimic
otherobject,
bt Broxy
docz not
change
protocol

Both entfince
otherobject,

¥ (withont bt Decorator
abject does ot change
aggsegation) protocol

Xembd XY | XuwesTw Xis Itizcommon X adaptz
el totmmvene | implement mamged whaveXin implementition
msintia sctwe | Mao bywing¥ 2¥ sather than

Commands protocol

bebavior

Keinbe Xeanbe Bothirealevel
considered 3 captusecate orgnized ofindisectionts
compound and ofiteraon Y jchieve

imciemental ¥

… to improve the comprehensibility of the catalogue and its structure. Therefore we focused on the problem and solution aspect.

X uses Y in its solution
A Variant of X uses Y in its solution
X is similar to Y
The article continues

“…we can identify three semantically different layers: Basic Design Patterns and Techniques, Design Patterns for Typical Software Problems, Design Patterns Specific to an Application Domain”
[image: image2.png]| v,

[ezmm)

Xuses Y inits solution X can be combined with ¥

Xis smilarto Y

Figure2 Classification of Relationships

3. Organized by Purpose and Scope

Extracted from “Design Patterns – Elements of reusable Object Oriented Architecture” by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

Abstract: We propose design patterns as a new mechanism for expressing object-oriented design experience. Design patterns identify, name, and abstract common themes in object oriented design. They capture the intent behind a design by identifying objects, their collaborations, and the distribution.

“We classify design patterns by two criteria. The first criterion, called purpose, reflects what a pattern does. Patterns can have creational, structural, or behavioral purpose.

The second criterion, called scope, specifies whether the pattern applies primarily to classes or to objects. Class patterns deal with relationships between classes and their subclasses. These relationships are established through inheritance, so they are static—fixed at compile time. Object patterns deal with object relationships, which can be changed at run-time and are more dynamic….”

	
	Purpose

	
	Creational
	Structural
	Behavioral

	Scope
	Class
	Factory Method
	Adapter
	Interpreter

Template Method

	
	Object
	Abstract Factory

Builder

Prototype

Singleton

	Adapter

Bridge

Composite

Decorator

Facade

Proxy
	Chain of Responsibility

Command

Iterator

Mediator

Memento

Flyweight

Observer

State

Strategy

Visitor

4. Organized by Semantics of the patterns
Quoted in “Report of Design Patterns” by Ligang Wang, Wenhua Fan, Ping Wang, Liyang Zhao, Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada

Basic Introduction

“…criterion of classification partitions design patterns into three semantically different layers: Basic design patterns and techniques, design patterns for typical software problems(middle layer), design patterns specific to an application domain(high layer).”

Basic Design Patterns:
“…The problems addressed by these design patterns occur again and again when developing object-oriented systems. The design patterns are thus very general. When building a system, one would often look upon them more as basic design techniques than as patterns.”

Typical Software Problems:
“These design patterns are not used in design patterns from the basic layer, but in patterns from the application specific layer, and possibly from the same layer. The problems addressed by these design patterns are not typical of a certain application domain.”

Application Domain:

“In this layer, design patterns are the most specific and can often be assigned to one or more application domains.”

[image: image3.png]Design pattems specific to an application domain T

‘Design patierns for typical soRware problems.

5. Organized by Software Design Level (Scalability) model

Extracted from Mowbray and Malveu in “ CORBA Design Patterns” John Wiley and Sons, 1997, credited to Richard helms (GoF)

…At the micro levels we have individual objects, and the design principles that apply to those individual objects are usually object-specific. There is a class of patterns called idioms which represent design guidance for language-specific issues. These issues are fairly fine grained…
…The next level up is called micro architecture patterns. In micro architectures we have small configurations of objects, generally a handful of objects that give us sophisticated ways of organizing our software structure to support variability in other qualities of design...
…The framework level then takes a number of micro architecture patterns and combines them into a partially completed application with reusable software. Above the micro level, we have completed applications and systems…
…The application level represents the application of zero or more frameworks to provide an independent program. We encounter issues such as user interface programming which are significant in software development…
…At the system level, we take a number of applications which play the role of subsystems and integrate those applications to create a working system environment. The system level is where many of the design forces applicable to programming are changed in terms of their priorities. Management of complexity and change become critical at the system level and above…
…At the enterprise level, we have a number of different systems which are integrated across an organization or virtual enterprise of organizations working in conjunction. The enterprise level is the longest scale of internally controlled operating environments…
…The global industry level is represented by the Internet, the commercial market, and the standards organizations, which comprise the largest scale of software systems…
[image: image4.png]rcEre architectures
EI=rG
AP A Frameworks
AR -[a"
= Application level
25 iam a0 e
2o Ham System level
AT (a8 et
a7 [Ja% F[a® [[a® [[a® Enterprise level
2% Flam JaB [[a®

Global/industry level

FIGURE 1.9 Software Design-Level Model

6. Organized by Patterns and Adaptability

Extracted from Patterns and Design Adaptability C. W. Irving and D. Eichmann, University of Houston -- Clear Lake

Adaptability is a key attribute. Software architectures need to be adaptable for applications to be built around them, meaning that the domain engineers building the architecture must have a design ``vocabulary'' that is well--suited to adaptable software. The application engineers building actual system instances, on the other hand, require a vocabulary that allows them to adapt architectures and reusable components in manners that may not have been foreseen by their original designers.

Classification based on design adaptability is thus a worthwhile focus, both from the perspective of adaptable design and the adaptation of existing designs. Designers faced with these problems will, of course, develop their own set of favored techniques and patterns but will also rely on published pattern catalogues. This implies that any classification with respect to adaptability could (and should) be applicable to existing pattern catalogues.

The remainder of this paper explores two such adaptability-- based classification schemes and applies them to some well--known patterns from the Gamma et al. [Gamma et al. 95] and Siemens pattern catalogues [Buschmann et al. 96]. Our classification approach is based upon the examination of the actual design models present in each pattern. These models are the expression of what the system's design will look like following the pattern's application, so they can be reasoned about using our knowledge of object--oriented design techniques.

7. Organized by Design Pattern Approaches
Extracted from Wolfgang Pree in “ Design Patterns For Object-Oriented Software Development” Addison-Wesley, 1994

Page 62

Categorization of Design Pattern Approaches

· Purpose of a specific component

· Purpose of a framework

· Notation

Page 65

Object-Oriented Patterns

“We categorize Coad’s Patterns into:

· basic inheritance and interaction patterns

· patterns for structuring object-oriented software

· patterns related to the MVC framework”

Page 97 Design Patterns Catalog (GoF)

“In this section we give a glimpse of the design pattern catalog. Deviating from the fine-grained pattern classification proposed in the catalog, we apply the following classification of the listed patterns:

· patterns relying on abstract coupling

· patterns based on recursive structures

· other patterns.
Summarizing remarks

“Gamma et.al (1993) point out the deference between frameworks and a design patterns: “…frameworks are implemented in a programming language. …In this sense frameworks are more concrete than design patterns. …Mature frameworks usually use several design patterns.”

8. Organized by Activity

Extracted from A CLASSIFICATION OF OBJECT-ORIENTED DESIGN PATTERNS, Master's thesis by Magnus Kardell Umeå University
Abstract: Over recent years patterns have been drawing attention in the software community. Patterns capture knowledge from various parts of software developing. As the number of patterns increases the need to organize the patterns becomes more important. A classification scheme should organize patterns in a library and assist users in finding and storing patterns. This thesis concerns a classification of object-oriented design patterns. Developing a classification scheme involves finding useful criteria that should reflect natural properties of patterns. The thesis also contains a thorough survey of patterns and related topics.

[image: image5.png]design

purose ppliesto scope. time o apply
Tunctionaliy abject static uliding
instantiation Objectfam dynamic reusing
ntertace el object fam

Communicatir

physicalty

atcess

Stale

Comparison of different Design Pattern Languages:

[image: image6.png]Gamma | Buschmann | CORBA Fouler
Design | Architecture | Design Analysis
Patterns | Patterns | Patterns | _Patterns
Software Micro- Micro to ystem | Obiectsto
Scale Architecture. System ¥ Micro
Most oo System System 00
Usefulto | Programmer | Architect | Architect Analyst
Key Change
Horizontal | Change | Complexty | Cange | Funtionaliy
Complexity | Change
Forces Performance

FIGURE 1.18 Comparison of Design Pattern Languages

Gamma Design Patterns - E. Gamma, R. Helm, and J. M. Vlissides, Design Patterns: Abstraction and Reuse of Object-Oriented Designs, Technical Report in preparation, IBM Research Division, 1992.

Buschmann Architecture Patterns - Pattern-Oriented Software Architecture: A System of Patterns (POSA), Buschmann, Meunier, Rohnert, Sommerlad, Stal; Wiley and Sons, 1996

CORBA Design Patterns – by Thomas Mowbray & Raphael Malveau ISBN 0 471 15882 8, Publisher: Wiley
Fowler Analysis Patterns - Analysis Patterns: reusable object models. Addison Wesley. 1997 by Martin Fowler

More Patterns
There are some more patterns which are recently introduced by some publications at Microsoft:

· Integration Patterns: (to be made available in pdf soon, for the time being available in web-cast)

http://www.placeware.com/cc/mseventsbmo/view?id=1032254463&role=attend&pw=webcast
· Data Patterns: DAPN.pdf
· Software Test Patterns: PatternsTest.pdf

