CSE776 – Design Patterns

 Summer 2006

Software Development Goals

To create code that:
1. is correct
a. Hard to do this without building in stages, module by module

b. Fix all know flaws before proceeding, otherwise fixing and testing grow exponentially.
2. is maintainable
a. You profit from building products, not fixing bugs
3. is readable
a. One person writes a module, many read it, if it is useful.
4. is trace-able

a. Don’t allow many variations of a “reusable” component to exist in your products.

b. If you find a defect, how will you find all the variants, and which of those should be fixed?
5. has low change impact
a. Changes in design and implementation, during development, are constant, due to changing requirements, defects, performance problems, and added functionality.
b. You don’t want a change in one module to cascade into many changes in other modules that use it.

Fundamental Design Principles

1. Partition large systems into cohesive modules

a. Favor low fan-out and high fan-in
2. Minimize strong coupling between modules
a. Depending on concrete classes and invocations makes a design brittle – easily broken – and hard to change – high change impact.
b. Prefer instead to couple to interfaces.
3. Liskov Substitution Principle

a. Base class pointers or references can be replaced by Derived class pointers or references without any knowledge other than the base class interface contract.

4. Open/Closed principle
a. Reusable components should be Open to extension, but Closed to modification

5. Dependency Inversion Principle

a. Clients and servers should depend on abstractions, not implementations

b. Implies the use of interfaces and object factories.

6. Interface Segregation Principle

a. Clients should not have to depend on interface elements they do not use.
Seven Implementation Principles
1. Keep It Short and Simple

a. Components are not easily understood or tested if they have large or complex functions
2. Encapsulate in Classes

a. Ensure that all operations on a data structure are valid by encapsulating both in a class.

b. Manage resources effectively in the presence of exceptions by allocating in member functions and deallocating in the destructor.
3. Use inheritance to model “is-a” relationships

a. A base class models behavior for a family of derived classes.
4. Use composition to model “part-of” and “implemented-by” relationships

a. Composition provides exclusive ownership to the composer of a private instance, entirely under its control.

b. No other entities have access to the private instance, except through the actions of the composer.
5. Use interfaces and object factories to break build dependencies between sub-systems.
a. Under this rule, a subsystem can be modified and rebuilt, and subsequently used by the system without rebuilding any other part of the system.

b. Simply copy the subsystem dynamic link library into the bin directory of the system. The next time the system runs it will be loaded.
6. Use “hooking” base classes or “command objects” to allow resource libraries to call application specific code.
a. Some variation on these structures is used by all event-based programming models.
7. Use templates to support extension without modification
a. Supports the use of policies and traits to make extensions easy and effective.

