
Introduction to COM

Roadmap to COM

Jim Fawcett

CSE775 - Distributed Objects

Spring 2014

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

• Solution #1 - Dynamic Link Libraries

• Solution #2 - Standard Interfaces

• Solution #3 - System management of component lifetime

• Solution #4 - Registration

• Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

What’s the Problem?

• Building large systems depends on decomposing the logical structure
of the system into a hierarchy of components using:
• class inheritance and aggregation

• static modular structure

• While establishing an effective hierarchy is essential, it is not enough.
The physical packaging of the logical design must:
• minimize duplication of code

• minimize compile, link, and load-time dependencies

• avoid rebuilding large parts of the system when a small change is made to fix
a latent error or add new functionality

Introduction to COM

Duplication of Code

• Using conventional technology we build monolithic programs. Each
program that reuses a library or module duplicates that code in its
execution image.

• The code occupies disk space for every replicated copy.

• Two running applications that share source code do not share the
corresponding machine code. They each have their own copies that occupy
memory in RAM.

• Since broad reuse of code is an important goal for large systems the
duplication of machine code can be a major user of system resources, e.g.,
memory and load and initialization time.

Introduction to COM

Compile, Link, and Load-Time Dependencies

• Compile and link time dependencies have been cited as the prime
culprit in failures of some very large system implementations, e.g.
LargeScale C++ Software Development, John Lakos, Addison-Wesley
• Dependencies make testing software components in isolation difficult or

impossible.

• Small changes in a single component result in massive recompilation and
linking if dependencies are spread out across the system.

• In large systems parts of a system may be spread over many directories. Then
changes to the directory structure cause breakage in compile, link, and load
processes.

Introduction to COM

Compile-Time Dependencies

Error Module

Application

module #1

Application

module #4

Application

module #2

Application

module #3

Application

module #5

Introduction to COM

Rebuilding Components

• Each build requires many files and compile and link options:
• it is often difficult to ensure that the right versions of source code are

included in a build

• we may not even know all the components required to successfully rebuild a
system.
• Build may take hundreds of files and scores of build scripts and make files.

• knowing how to set all the options and environments can require detailed
knowledge of the design, which for a large system may be very hard to find.

• Sometimes it can be very difficult to find source code of the correct
version (supporting the correct platform with all appropriate bug
fixes).

Introduction to COM

What’s the Solution?

• Several competing technologies have been invented to package and
manage a large system’s physical structure:
• Common Object Request Broker Architecture (CORBA) was specified by the

Object Management Group (OMG), a consortium of software vendors.
Mostly used in UNIX environments for Enter-prise Computing Systems.

• Component Object Model (COM) was developed by Microsoft Corp. and is
supported by their development technologies, e.g., Visual Studio with C++,
Visual Basic, and Java on windows systems.

• JavaBeans, developed by Sun, Inc. is a modular technology but doesn’t fully
support physical packaging.

• We will focus on COM because it is available on all current Windows
platforms and is being widely used by MS and others.

Introduction to COM

Part #1 of the Solution:
Code Reuse by Using DLLs

• Use dynamic link libraries (DLLs).
• DLLs are loaded at run time from a single file into any running program that

needs them, saving disk space for one copy of the object code for each
executable that uses the library.

• DLLs used by several concurrently running executables have only one copy of
their code in memory, although each executable maintains local storage for
the DLL code. This saves RAM space that would otherwise be required for
each running program using the DLL.

Introduction to COM

Dynamic Link Library References

• Windows via C/C++, Fifth Edition, Richter and Nasarre, Microsoft
Press, 2008

• Windows System Programming, Third Edition, Johnson Hart, Addison-
Wesley, 2005

• Win32 Programming, Rector and Newcomer, Addison-Wesley, 1997

• Also, checkout the ProgrammingToInterface Demo in class code
directory. It illustrates:
• How you create and use a dynamic link library

• How to break compile dependencies

Introduction to COM

Duplication of Library Code with Static Linking

Application #2

Machine Code

Application#1

Machine Code

Application #3

Machine Code

Library

Machine Code

copy #1

Library

Machine Code

copy #2

Library

Machine Code

copy #3

Application #1

source code

Application #2

source code

Application #3

source code

LIbrary

source Code

Introduction to COM

Sharing of DLL Code

Application #2

Machine Code

Application#1

Machine Code

Application #3

Machine Code

DLL

local data

DLL

local data

DLL

local data

Application #1

source code

Application #2

source code

Application #3

source code

DLL

source code

DLL

shared code

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

• Solution #2 - Standard Interfaces

• Solution #3 - System management of component lifetime

• Solution #4 - Registration

• Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

Part #2 of the Solution:
Break Compile-Time Dependencies

• Use component interfaces that carry no implementation detail. You
do that by defining interfaces with abstract base classes.
• Clients see the public member functions but no data members.

• Components derive from the abstract base class to provide the
implementation.

struct IInterfaceName {

virtual void m_fun1(int x)=0;

virtual char* m_fun2(double y)=0;

}

class implementationName : public IInterfaceName { … }

Introduction to COM

Part #2 of the Solution:
Break Link-Time Dependencies

• This comes for free if we use the Part #1 solution. DLLs load at run-
time so when a component is recompiled, to fix a latent error
perhaps, the client and its other components do not need to be
rebuilt, provided there are no compile-time dependencies.

• This helps to make the development process incremental. We can
work on each piece, represented by a DLL, in isolation. Then simply
run the client to make sure the application works as a whole.

• When a component is revised, we simply copy the new DLL into the
directory where the original was stored, overwriting the original.
Now when the application is run the new DLL is loaded and we get
new functionality without rebuilding other parts of the application.

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

Solution #2 - Standard Interfaces

• Solution #3 - System management of component lifetime

• Solution #4 - Registration

• Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

Part #3 of the Solution:
System Management of Lifetime
• There is one problem with the Part #2 solution.

• Clients can not instantiate the derived class, which does all the real work of
the component, without its header file.

• But if we give the client the derived class header, we no longer break
compile-time dependencies.

• The solution:
• we could endow the abstract base class with a static creational function

which builds the derived object.

• COM uses an alternate solution: the component supplies a class factory
responsible for building any classes derived from the com-ponent’s
interfaces.

• The COM library provides a function, CoCreateInstance that clients use to
build derived classes using the class factory.

• Another part of this recipe is to use reference counting to decide when to
destroy the component instance.

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

Solution #2 - Standard Interfaces

Solution #3 - System management of component lifetime

• Solution #4 - Registration

• Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

Part #4 of the Solution:
Registration of Components

• In order to break load-time dependencies, COM provides access to all
components through a single point - the windows registry.

• Each component is assigned a Globally Unique IDentifer (GUID) which
serves as a key in the windows registry database. Part of the value
associated with the GUID key is the directory path to the component.

• Using GUIDs and the registry, clients that need to load a com-ponent
do not have to know where it is stored.
• They simply ask COM to load the component for them by calling

CoCreateInstance(…) using the component’s GUID.

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

Solution #2 - Standard Interfaces

Solution #3 - System management of component lifetime

Solution #4 - Registration

• Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

Part #5 of the Solution:
Interprocess Communication

• Using DLLs work well as long as an instance of a component is used by
only one client at a time. However, sometimes it may be important
for multiple clients to access the same instance of a component.
Perhaps the component is managing information that can be
modified by any one of a number of clients, all running at the same
time.

• To support this client/server architecture -- one server for multiple
clients -- COM provides server “wrappers” for a component that allow
it to operate as a stand-alone EXE, communicating with stand-alone
clients.

• COM provides a standard method of interprocess communication
between client and server called Remote Procedure Calls.

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

Solution #2 - Standard Interfaces

Solution #3 - System management of component lifetime

Solution #4 - Registration

Solution #5 - Interprocess Communication

• Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

Part #6 of the Solution:
Automation Interfaces

• Automation is a process where scripting languages like visual basic
and other languages that do not support C/C++ interfaces can still
use COM components.

• It is intended to support, for example, the use of Visual Basic for
Applications (VBA) to control COM servers like the Microsoft Office
products, e.g., word, excel, access, etc.

• Automation interfaces are provided by the Microsoft Office
products and others like Viso. This allows COM designers to use
sophisticated processing like viewing complex documents provided
by those programs without building the functionality themselves.

Introduction to COM

Roadmap

• What’s the problem?
• tight coupling between many components in large systems makes

debugging, integration, and maintenance very difficult

• builds are complex activities depending on many different pieces of source
code and many option settings.

Solution #1 - Dynamic Link Libraries

Solution #2 - Standard Interfaces

Solution #3 - System management of component lifetime

Solution #4 - Registration

Solution #5 - Interprocess Communication

Solution #6 - Automation

• Final solution: local and remote plug compatible components.

Introduction to COM

PostScript

• Well, the “Final Solution” is a bit more complicated.
• Every COM object lives inside a construct called an Apartment.

• The purpose of the Apartment is to allow a client to use one or more COM
objects that may have different threading models or different security
models from itself and from each other.

• The goal is to allow composition of objects without worrying about their
implementation details.

• All communication between apartments occurs via a proxy.
• Think of the proxy as wrapping a socket or pipe

• These enable reading and writing bytes, not types.

• For this reason the COM runtime must know the sizes of each type that travels through
the proxy.

• This is complicated by the fact that different languages may be used to implement the
client and the COM objects it uses.

Introduction to COM

PostScript Continued

• The consequence of using proxies is that COM has to define a binary
standard for all types that pass through a COM interface.

• It accomplishes that by adopting the Network Data Representation
(NDR) for types.

• This has two consequences:
• COM interfaces can pass only a limited number of types

• The interfaces are constructed from an Interface Definition Language (IDL) by
an IDL compiler.

• That means that designers need to know how to write IDL and that
communication to and from COM objects is not nearly as rich as
between objects in any of the conventional OO languages.

Introduction to COM

End of COM Roadmap

