CSE791 – Distributed Objects

Spring 2002


How to Build an in-proc Project (almost) from Scratch, ver 2.0
Assumes you are creating a new workspace and project

but modifying files from an existing in-proc project

Starting with inproc1_Ex1:

Workspace, Projects, and Files

1. Copy all inproc1_Ex1 files to your work folder.
2. Throw away all project, and workspace files.
· you will often keep the project files and simply insert them into the new workspace, but I will describe how to rebuild them all.

3. Open VC++ IDE and create a workspace – say myInproc.
4. Create a console app project for client and a Win32 DLL project for component.
5. In the component project select Project\Settings\C/C++\Category:\Code Generation and in the Use run-time library: comboBox select Debug Multithreaded DLL.
6. Make sure MkTypLib compatible option in Project\Settings\MIDL is not checked.

7. Add cmpnt.idl, cmpnt.cpp, cmpnt.dep, registry.h and registry.cpp to component.
8. Add client.cpp to client.
9. Build the component and client as described on the next page.  Do this first and make sure that the client runs successfully before you start modifying anything!
Modify the IDL File
10. Bring up the idl file in the IDE by clicking on it in the FileView.
11. Give the IDL interface and coclass names suitable for the current project and make whatever changes are required to the interface definition(s).  Also modify the manual and maintenance comments as appropriate.
12. Change the IDL helpstrings to match current project.

13. Replace GUIDs in IDL with new ones generated by GUIDGEN – I have added c:\program files\Microsoft Visual Studio\Common\tools\GUIDGEN to my tools list in IDE with the Tools\Customize option.  This is important – don’t skip it.
14. Run MIDL cmpnt.idl from command line first time to generate files to add to client and component.

15. Add cmpnt_i.c and cmpnt.h (created by MIDL) to the client and component projects.

Modifying Other Files

16. Now modify cmpnt.cpp implementation to suit the processing needs of your project.
17. Replace friendly name of component, ProgID, and version independent ProgID at top of cmpnt.cpp with your own strings.

18. Also change the component’s QueryInterface function to support the new interface.  All you do here is to change the IID_IString to IID_IYourInterface.
19. Modify function DllGetClassObject(…), near the bottom of cmpnt.cpp.   You change CLSID_inproc1_Ex1 to CLSID_YourProject.  If you are not sure what the CLSID is, check cmpnt.h after you have run MIDL on your IDL file(s).  This file is generated by MIDL from your IDL file.  Toward the bottom you will find the CLSID declared.  Use that.
20. Change dll name in library description in cmpnt.def to match your project name.
21. Modify the component class to implement your interface – for this example you change class declaration to match your interface changes.  You will be adding functions to interact with the xmlParser.  It is wise, at this step, to rebuild after every change, even small changes!
22. Modify client to use new interface (see client.cpp). 
Things That Stay the Same

23. You don’t need to change registry.h or registry.cpp.  The registration process is always the same.  It simply uses the file path\name returned by GetModuleFileName, using the module handle, the CLSID it gets from cmpnt.h and the ProgIDs provided at the beginning of cmpnt.cpp.

What are all These Files?

1. cmpnt.idl – interface definition file.  It defines the abstract interface and GUIDs for your interface(s), component, and type library

2. cmpnt.h – generated by command “MIDL cmpnt.idl” or by right clicking on your idl file and selecting MIDL compile.  It holds the declaration of the abstract interface(s) and CLSIDs and IIDs.

3. cmpnt_i.c – generated by MIDL, as above.  It holds the GUIDs that your interface and type library IIDs and component CLSID refer to.

4. cmpnt.def – declares dll exports.

5. cmpnt.cpp – defines the classes that implement your interfaces and class factory and the dll functions used by COM.

6. client.cpp – defines a test client that will demonstrate that your component works (or does not work).

7. registry.h and registry.cpp – declares and defines the code your component supplies to support registration in the windows registry.  This code is called by “regsvr32 component.dll” or by the Tools\Register Control option in the Visual Studio IDE.  You can unregister a component with the command “regsvr32 component.dll /u”.  You can change the name of the component dll in the Project\Settings\Link\Output file name: edit box.  By default it will choose the name defined in cmpnt.idl for your library and in the cmpnt.def file at the top (these should be the same).  You will almost always simply use the same registry files again and again, without modification.

8. cmpnt.tlb – generated by “MIDL cmpnt.idl”, your component’s type library, a binary version of cmpnt.idl. 

9. cmpnt_p.c – generated by “MIDL cmpnt.idl”, holds proxy/stub code for remote and interapartment communication between client and component.  This is not needed for this project.  When needed it will generate proxy/stub dlls which you will have to register in order to make component accessible to client.  
10. If CoCreateInstance fails in your client it is usually because you forgot to register one or more dlls.  Before running your client do the following:
· go to your project’s top directory and at the command prompt type:
 
dir *.dll/s   - lists all the dlls generated by your build

· go to each directory containing a dll and at the command prompt type:
 
regsvr32 ***.dll
where ***.dll is the name of the dll you found.
11. DLLDATA.C – used for proxy/stub compilation.  You won’t need to change anything here.
Building component and client
1. Go to Project\Set Active Project and select component.  Then go to Build and select Build component.dll.  Then go to Tools and select  Register Control.  If you forget this last step your client’s call to CoCreateInstance will fail.

2. Go to Project\Set Active Project and select client.  Then go to Build and select client.exe.  Now run the client and it should execute using the component.

If Things Still Don’t Work!
1. Go to Windows Start\Run and type cmd.  This will open a DOS window.  Navigate to your project directory and type dir *.idl/s.  For each idl file in your project navigate to that directory (if different from the top level directory) and type MIDL idl_fileName.idl
.  This will generate new files to define the abstract interface and GUIDs for your project.
2. Rebuild the component and client as described in the previous section.  Before running do the next step.

3. Navigate to the top project directory and type dir *.dll/s.  For each dll you find, navigate to that directory and type regsvr32 dll_fileName.dll1.  This will register the dll component.

What you have just done is to manually compile the IDL files and manually register the controls in your project.  Usually you don’t have to do this, but sometimes you have to help the IDE.

� Here idl_fileName and dll_fileName are the names of the files you find with the dir command.





1
1

