
Compound Files
Structured Storage, Persistence,

and
Monikers

Jim Fawcett
CSE775 – Distributed Objects

Spring 2006

COM components + persistent storage = objects

Compound Files

 A compound file is a file capable of containing, as separate
unique identities, the states of more than one object.

 Compound files contain storages and streams:

– A storage is analogous to a directory. It is a container for other
storages and streams.

– A stream is analogous to a file. It consists of a stream of bytes.
No further division or structure is present in a stream.

 Each compound file has a root storage, below which other
storages and streams exist.

Structured Storage

 Structured storage allows several objects to store their
persistent data in a single file

Root Storage

Storage StorageStream

StorageStream

StreamStream

Stream Stream

Ownership

 Each software component that shares a compound file can be
assigned its own stream to store its persistent data.

 If a component needs to store complex data it can be assigned
a storage, allowing it to create its own substorages and streams
as appropriate for its own activities.

 You assign a stream or storage to an object by associating it
with the object’s CLSID.

Structured Storage API Functions

 StgCreateDocFile

– creates a new compound file and returns a pointer to the IStorage
interface of the new file’s root storage.

 StgOpenStorage

– opens an existing compound file.

 StgIsStorageFile

– indicates if a named file is a compound file.

IStorage

 Storages support the IStorage interface:

– CreateStream creates a stream below the storage object

– OpenStream opens a stream below the storage object

– CreateStorage creates a new storage below the storage object

– OpenStorage opens a storage below the storage object

– DestroyElement destroys a stream or storage below the storage
object

– RenameElement renames a stream or storage below the storage
object

– CopyTo copies contents of one storage into another

– MoveElement copies then deletes a storage

IStorage (continued)

 IStorage:

– EnumElements returns list of elements contained in storage
object

– SetElementTimes sets creation, access, and modification times of
a storage or stream

– SetClass persistently stores a CLSID in its own stream
immediately below the storage object. This allows persistent
storage of a COM object. Its data is stored in one or more streams
and its methods are identified by the CLSID.

– Stat returns information about the storage object including a
CLSID stored by invoking SetClass.

– Commit commits changes made since the last commit request for
a storage object opened in transacted mode.

– Revert discards all changes made since the last commit request.

IStream

 Streams support the IStream interface:

– Read reads a specified number of bytes from the stream object

– Write writes a specified number of bytes to the stream object

– Seek moves to a specified number of bytes from the beginning,
end, or relative to current location

– CopyTo copies a range of bytes from one stream to another

– LockRegion lock a range of bytes in a stream

– UnlockRegion unlocks a range of bytes in a stream

– Commit - not currently supported for streams

– Revert - not currently supported for streams

– Stat retrieves STATSTG structure for this stream

– Clone creates a new stream object referring to same bytes.

COM Object Persistence

 Persistent objects usually use structured storage through one of
the following interfaces:

– IPersistStream used by clients to ask an object to load its persistent
data from and save to a stream.

– IPersistStreamInit adds a method to IPersistStream to tell an object
it’s being initialized for the first time.

– IPersistStorage used by clients to ask an object to load its
persistent data from and save to a storage.

– IPersistFile used by clients to tell an object to load and save
persistent data to a flat file.

– IPersistPropertyBag allows a client to ask an object to load and
save property values, each of which is a string.

– IPersistMemory like IPersistStreamInit except it uses memory.

IPersistStream

 IPersistStream supports the methods:

– Load instructs an object to load its persistent data from a stream

– Save instructs an object to save its persistent data to a stream

– IsDirty allows a client to determine if an objects persistent data
has been modified

– GetSizeMax returns maximum size stream needed to save the
current persistent data

 IPersistStreamInit supports these plus the method:

– InitNew allows client to instruct the component that it is being
initialized for the first time.

IPersistStorage

 The IPersistStorage interface supports the methods:

– InitNew allows a client to pass a storage object pointer for sub-
sequent use.

– Load instructs the object to retrieve its persistent data

– Save instructs the object to save its persistent data. After save the
object cannot again write to the storage until it receives a
SaveCompleted message.

– SaveCompleted indicates that the object can again write to its
storage.

– HandsOffStorage causes object to release any pointers to
streams or substorages it has opened below its storage, allowing
the client to safely copy the storage. The client calls
SaveCompleted to allow the object to write to storage again.

Persistence and Monikers

 Monikers are COM objects supporting the IMoniker interface
which derives from the IPersistStream interface.

 A moniker is a name for a specific object instance, e.g., a
particular combination of a CLSID and persistent data.

 Each moniker identifies only one object instance.

 Clients can use monikers to create a COM object and initialize it
in one operation:

– IPersistMoniker lets a client ask an object to load and retrieve its
persistent data using a moniker. This allows the client to surrender
control to the object regarding how it retrieves and stores its
persistent data.

Moniker Types

 File moniker identifies a file-based object and is created with the
CreateFileMoniker function. File monikers are used to instan-
tiate a class associated with some specific file and initialize the
class with that data, e.g., Word and *.docs.

 Item moniker is based on a string that identifies an object in a
container. Item monikers can be used to identify objects
smaller than a file like embedded objects in a compound file and
non-objects like a range of spreadsheet cells. They are created
with the CreateItemMoniker function.

 Generic composite monikers consist of two or more monikers of
arbitrary type that have been composed together. They are
created with the function CreateGenericComposite.

Moniker Types (continued)

 Anti-monikers are used to construct relative monikers,
analogous to a relative path. They specify a location of an
object relative to the location of another object. They are
created with the function CreateAntiMoniker.

 Pointer monikers are non-persistent and wrap a pointer to an
object loaded in memory. Pointer monikers identify objects that
cannot be saved to persistent memory. Pointer monikers are
created with CreatePointerMoniker.

Moniker Types (continued)

 Class Monikers act as wrappers for the CLSID of a COM class.
– One common use is to call MkParseDisplayName with the string form of

a CLSID, e.g., clsid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx and a
binding context, getting back a class moniker.

– The object can then be activated by calling BindToObject like this:

pMoniker->BindToObject(

pClassBindCtx,

NULL,

IID_IUnknown,

(void**)&pUnknown

);

 URL Monikers manage Uniform Resource Locators

IMoniker

 Some of the methods IMoniker supports are:

– BindToObject instantiates the object the moniker refers to and
returns a pointer to a specific interface on the object.

– BindToStorage returns a pointer to an object’s stream or storage
instead of one of its interfaces. It is possible that the object is not
instantiated by this call.

– ComposeWith returns a new moniker that is a composite of two
exisiting monikers supplied as arguments.

– IsRunning indicates whether the object is currently running.

 Two kinds of objects call the IMoniker methods:

– A component that contains objects to be identified with a moniker
and provides the moniker to other objects.

– A client object that needs to bind to the object identified by the
moniker.

Running Object Table

 When a client wants to bind to an object using a moniker it is
possible that the object is already running. To allow a moniker
to bind to a currently active object COM supports the Running
Object Table (ROT). This object can be accessed via the
IRunningObjectTable interface which supports the methods:

– Register registers a running object in the table

– Revoke removes an object from the table

– GetObject indicates if an object with a particular moniker is
currently running. If so, the call returns a pointer to the object.

 You access it by calling the global GetRunningObjectTable
function.

