
Win32 Sockets

Jim Fawcett

CSE 687-OnLine – Object Oriented Design

Summer 2017

What are Sockets?

• Sockets provide a common interface to the various protocols
supported by networks.

• They allow you to establish connections between machines to send
and receive data.

• Sockets support the simultaneous connection of multiple clients to a
single server machine.

TCP Protocol
• TCP/IP stands for "Transmission Control Protocol / Internet Protocol.

TCP/IP is the most important of several protocols used on the internet. Some others are:
HyperText Transport Protocol (HTTP), File Transfer Protocol (FTP), Simple Mail Transfer
Protocol (SMTP), and Telnet, a protocol for logging into a remote computer. Sockets
provide a standard interface for a variety of network protocols. TCP/IP is, by far, the most
commonly used protocol for sockets. Here are the main features of TCP/IP:

• IP is a routable protocol.
That means that TCP/IP messages can be passed between networks in a Wide Area
Network (WAN) cluster.

• Each device using TCP/IP must have an IP address.
This address is a 32 bit word, organized into four 8-bit fields, called octets. Part of the
IP address identifies the network and the rest identifies a specific host on the
network.

• IP addresses are organized into three classes.
Each class has a different allocation of octets to these two identifiers. This allows the
internet to define many networks, each containing up to 256 devices (mostly
computers), and a few networks, each containing many more devices.

• A single machine can run mulitple communictaions sessions using TCP/IP.
That is, you can run a web browser while using Telnet and FTP, simultaneously.

TCP/IP based Sockets

• Connection-oriented means that two communicating machines
must first connect.

• All data sent will be received in the same order as sent.
• Note that IP packets may arrive in a different order than that sent.

• This occurs because all packets in a communication do not necessarily
travel the same route between sender and receiver.

• Streams mean that, as far as sockets are concerned, the only
recognized structure is bytes of data.

Socket Logical Structure

Socket

recv buffer
recv buffer

Socket

recv buffer

bytes

bytes

Creating Sockets

• Socket connections are based on:

• Domains – network connection or IPC pipe
• AF_INET for IPv4 protocol

• AF_INET6 for IPv6 protocol

• Type – stream, datagram, raw IP packets, …
• SOCK_STREAM  TCP packets

• SOCK_DGRAM  UDP packets

• Protocol – TCP, UDP, …
• 0  default, e.g., TCP for SOCK_STREAM

• Example:
HANDLE sock = socket(AF_INET,SOCK_STREAM,0);

Connecting Sockets

• Socket addresses

struct SOCKADDR_IN {
sin_family // AF_INET
sin_address.s_addr // inet_addr(“127.0.0.1”);
sin_port // htons(8000);

} addr;

• Bind server listener to port:

int err = bind(sock, (SOCKADDR_IN*)&addr,sizeof(addr));

• Connect client to server:

HANDLE connect(sock, (SOCKADDR_IN*)&addr,sizeof(addr))

Client / Server Processing

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

Accessing Sockets Library

• #include <winsock2.h>

• Link with wsock32.lib

• To build a server for multiple clients you will need to use threads, e.g.:

#include <process.h> // Win32 threads
or

#include<threads> // C++11 threads

and use the Project Settings:

C/C++ language\category=code generation\debug multithreaded

Project Settings

Sockets API

• WSAStartup - loads WS2_32.dll

• WSACleanup - unloads dll

• socket - create socket object

• connect - connect client to server

• bind - bind server socket to address/port

• listen - request server to listen for connection requests

• accept - server accepts a client connection

• send - send data to remote socket

• recv - collect data from remote socket

• Shutdown - close connection

• closesocket - closes socket handle

Sequence of Server Calls

• WSAStartup

• socket (create listener socket)

• bind

• listen

• accept
• create new socket so listener can continue listening
• create new thread for socket
• send and recv
• closesocket (on new socket)
• terminate thread

• shutdown

• closesocket (on listener socket)

• WSACleanup

WSAStartup

wVersionRequested = MAKEWORD(1,1);
WSAData wData;
lpWSAData = &wData

int WSAStartup(
WORD wVersionRequested,
LPWSADATA lpWSAData

)

• Loads WS2_32.dll

TCP/IP socket

af = AF_INET
type = SOCK_STREAM
protocol = IPPROTO_IP

SOCKET socket(int af, int type, int protocol)

• Creates a socket object and returns handle to socket.

struct sockaddr_in local;
… define fields of local …
name = (sockaddr*)&local
namelen = sizeof(local)

int bind(
SOCKET s,
const struct sockaddr *name,
int namelen

)

• Bind listener socket to network card and port

Bind socket

Listen for incoming requests

int listen(SOCKET s, int backlog)

• backlog is the number of incoming connections queued (pending) for
acceptance

• Puts socket in listening mode, waiting for requests for service from
remote clients.

Accept Incoming Connection

SOCKET accept(
SOCKET s,
struct sockaddr *addr,
int *addrLen

)

• Blocking call, accepts a pending request for service and returns a
socket bound to a new port for communication with new client.

• Usually server will spawn a new thread to manage the socket
returned by accept, often using a thread pool.

Client/Server Configuration

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

recv

int recv(
SOCKET s,
char *buff,
int len,
int flags

)

• Receive data in buff up to len bytes.

• Returns actual number of bytes read.

• flags variable should normally be zero.

send

int send(
SOCKET s,
char *buff,
int len,
int flags

)

• Send data in buff up to len bytes.

• Returns actual number of bytes sent.

• flags variable should normally be zero.

shutdown

int shutdown(SOCKET s, int how)

• how = SD_SEND or SD_RECEIVE or SD_BOTH

• Disables new sends, receives, or both, respectively. Sends a FIN to server
causing thread for this client to terminate (server will continue to listen for
new clients).

closesocket

int closesocket(SOCKET s)

• Closes socket handle s, returning heap allocation
for that data structure back to system.

WSACleanup

int WSACleanup()

• Unloads W2_32.dll if no other users. Must call this once for each call
to WSAStartup.

Sequence of Client Calls

•WSAStartup

• socket

• address resolution - set address and port of
intended receiver

• connect - send and recv

• shutdown

• closesocket

•WSACleanup

TCP Addresses – IP4

struct sockaddr_in{

short sin_family;

unsigned short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

} SOCKADDR_IN;

TCP/IP Address fields - IP4

• sin_family AF_INET

• sin_port at or above 1024

• sin_addr inet_addr(“127.0.0.1”);

• sin_zero padding

• Setting sin_addr.s_addr = INADDR_ANY allows a server
application to listen for client activity on every network
interface on a host computer.

connect

int connect(
SOCKET s,
const struct sockaddr *name,
int namelen

)

• Connects client socket to a specific machine and port.

Special Functions

• htons – converts short from host to
network byte order

• htonl – converts long from host to network
byte order

• ntohs – converts short from network to host
byte order

• ntohl – converts long from network to host
byte order

A Word of Caution

•With stream oriented sockets, send does not guarantee
transfer of all bytes requested in a single call.

• That’s why send returns an int, the number of bytes
actually send.

• It’s up to you to ensure that all the bytes are actually sent
• See my code example – socks.cpp

Non-Blocking Communication

Process #2

receiver

Process #1

sender

function sending
data to

Process #2

function receiving
data from
Process #1

interprocess
communication

FIFO queue

processing thread

receiver thread

Talk Protocol

• The hardest part of a client/server socket communication
design is to control the active participant

• If single-threaded client and server both talk at the same time,
their socket buffers will fill up and they both will block, e.g.,
deadlock.

• If they both listen at the same time, again there is deadlock.

• Often the best approach is to use separate send and receive
threads

Client

Server’s Client Handler

sending receiving

/extract token

/send token

/send message /extract message

receiving sending

/extract token

/send token
/send message/extract message

/send token

/send done

/receive done

State Chart - Socket

Bilateral Communication Protocol

Each connection channel
contains one “sending” token.

Message Length

•Another vexing issue is that the receiver may not know
how long a sent message is.

• so the receiver doesn’t know how many bytes to pull from the
stream to compose a message.

• Often, the communication design will arrange to use message
delimiters, fixed length messages, or message headers that carry
the message length as a parameter.

• For examples see:
• Repository/CppStringSocketServer // uses string delimiter

• Repository/CommWithFileXfer // uses messages with headers

Message Framing

• Sockets only understand arrays of bytes
• Don’t know about strings, messages, or objects

• In order to send messages you simply build the message
string, probably with XML
• string msg = “<msg>message text goes here</msg>”
• Then send(sock,msg,strlen(msg),flags)

• Receiving messages requires more work
• Read socket one byte at a time and append to message string:
• recv(sock,&ch,1,flags); msg.append(ch);
• Search string msg from the back for </
• Then collect the msg>

• You will find a more sophisticated approach in the
CommWithFileXfer, cited on the previous slide

They’re Everywhere

• Virtually every network and internet communication method uses
sockets, often in a way that is invisible to an application designer.

• Browser/server

• ftp

• SOAP

• Network applications

What we didn’t talk about

• udp protocol

• socket select(…) function

• non-blocking sockets

The End

