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What are Sockets?

• Sockets provide a common interface to the various protocols 
supported by networks.

• They allow you to establish  connections between machines to send 
and receive data.

• Sockets support the simultaneous connection of multiple clients to a 
single server machine.



TCP Protocol
• TCP/IP stands for "Transmission Control Protocol / Internet Protocol.

TCP/IP is the most important of several protocols used on the internet. Some others are: 
HyperText Transport Protocol (HTTP), File Transfer Protocol (FTP), Simple Mail Transfer 
Protocol (SMTP), and Telnet, a protocol for logging into a remote computer. Sockets 
provide a standard interface for a variety of network protocols. TCP/IP is, by far, the most 
commonly used protocol for sockets. Here are the main features of TCP/IP: 

• IP is a routable protocol.
That means that TCP/IP messages can be passed between networks in a Wide Area 
Network (WAN) cluster.

• Each device using TCP/IP must have an IP address.
This address is a 32 bit word, organized into four 8-bit fields, called octets. Part of the 
IP address identifies the network and the rest identifies a specific host on the 
network.

• IP addresses are organized into three classes.
Each class has a different allocation of octets to these two identifiers. This allows the 
internet to define many networks, each containing up to 256 devices (mostly 
computers), and a few networks, each containing many more devices.

• A single machine can run mulitple communictaions sessions using TCP/IP.
That is, you can run a web browser while using Telnet and FTP, simultaneously.



TCP/IP based Sockets

• Connection-oriented means that two communicating machines 
must first connect.

• All data sent will be received in the same order as sent.
• Note that IP packets may arrive in a different order than that sent.

• This occurs because all packets in a communication do not necessarily 
travel the same route between sender and receiver.

• Streams mean that, as far as sockets are concerned, the only 
recognized structure is bytes of data.
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Creating Sockets

• Socket connections are based on:

• Domains – network connection or IPC pipe
• AF_INET for IPv4 protocol

• AF_INET6 for IPv6 protocol

• Type – stream, datagram, raw IP packets, …
• SOCK_STREAM  TCP packets

• SOCK_DGRAM  UDP packets

• Protocol – TCP, UDP, …
• 0  default, e.g., TCP for SOCK_STREAM

• Example: 
HANDLE sock = socket(AF_INET,SOCK_STREAM,0);



Connecting Sockets

• Socket addresses

struct SOCKADDR_IN {
sin_family // AF_INET
sin_address.s_addr // inet_addr(“127.0.0.1”); 
sin_port // htons(8000);

} addr;

• Bind server listener to port:

int err = bind(sock, (SOCKADDR_IN*)&addr,sizeof(addr));

• Connect client to server:

HANDLE connect(sock, (SOCKADDR_IN*)&addr,sizeof(addr))
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Accessing Sockets Library

• #include <winsock2.h>

• Link with wsock32.lib

• To build a server for multiple clients you will need to use threads, e.g.:

#include <process.h> // Win32 threads
or 

#include<threads> // C++11 threads

and use the Project Settings:

C/C++ language\category=code generation\debug multithreaded



Project Settings



Sockets API

• WSAStartup - loads WS2_32.dll

• WSACleanup - unloads dll

• socket - create socket object

• connect - connect client to server

• bind - bind server socket to address/port

• listen - request server to listen for connection requests

• accept - server accepts a client connection

• send - send data to remote socket

• recv - collect data from remote socket

• Shutdown - close connection

• closesocket - closes socket handle



Sequence of Server Calls

• WSAStartup

• socket (create listener socket)

• bind

• listen

• accept
• create new socket so listener can continue listening
• create new thread for socket
• send and recv
• closesocket (on new socket)
• terminate thread

• shutdown

• closesocket (on listener socket)

• WSACleanup



WSAStartup

wVersionRequested = MAKEWORD(1,1);
WSAData wData;
lpWSAData = &wData

int WSAStartup(
WORD wVersionRequested,
LPWSADATA lpWSAData

)

• Loads WS2_32.dll



TCP/IP socket

af = AF_INET
type = SOCK_STREAM
protocol = IPPROTO_IP

SOCKET socket(int af, int type, int protocol)

• Creates a socket object and returns handle to socket.



struct sockaddr_in local;
… define fields of local …
name = (sockaddr*)&local
namelen = sizeof(local)

int bind(
SOCKET s, 
const struct sockaddr *name, 
int namelen

)

• Bind listener socket to network card and port

Bind socket



Listen for incoming requests

int listen(SOCKET s, int backlog)

• backlog is the number of incoming connections queued (pending) for 
acceptance

• Puts socket in listening mode, waiting for requests for service from 
remote clients.



Accept Incoming Connection

SOCKET accept(
SOCKET s, 
struct sockaddr *addr, 
int *addrLen

)

• Blocking call, accepts a pending request for service and returns a 
socket bound to a new port for communication with new client.

• Usually server will spawn a new thread to manage the socket 
returned by accept, often using a thread pool.
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recv

int recv(
SOCKET s, 
char *buff, 
int len, 
int flags

)

• Receive data in buff up to len bytes.

• Returns actual number of bytes read.  

• flags variable should normally be zero.



send

int send(
SOCKET s, 
char *buff, 
int len, 
int flags

)

• Send data in buff up to len bytes.  

• Returns actual number of bytes sent.  

• flags variable should normally be zero.



shutdown

int shutdown(SOCKET s, int how)

• how = SD_SEND or SD_RECEIVE or SD_BOTH

• Disables new sends, receives, or both, respectively.  Sends a FIN to server 
causing thread for this client to terminate (server will continue to listen for 
new clients).



closesocket

int closesocket(SOCKET s)

• Closes socket handle s, returning heap allocation 
for that data structure back to system.



WSACleanup

int WSACleanup( )

• Unloads W2_32.dll if no other users.  Must call this once for each call 
to WSAStartup.



Sequence of Client Calls

•WSAStartup

• socket

• address resolution - set address and port of
intended receiver

• connect - send and recv

• shutdown

• closesocket

•WSACleanup



TCP Addresses – IP4

struct sockaddr_in{

short sin_family; 

unsigned short sin_port; 

struct in_addr sin_addr; 

char sin_zero[8]; 

} SOCKADDR_IN; 



TCP/IP Address fields - IP4

• sin_family AF_INET

• sin_port at or above 1024

• sin_addr inet_addr(“127.0.0.1”);

• sin_zero padding

• Setting sin_addr.s_addr = INADDR_ANY allows a server 
application to listen for client activity on every network 
interface on a host computer.



connect

int connect(
SOCKET s, 
const struct sockaddr *name, 
int namelen

)

• Connects client socket to a specific machine and port.



Special Functions

• htons – converts short from host to
network byte order

• htonl – converts long from  host to network
byte order

• ntohs – converts short from network to host
byte order

• ntohl – converts long from network to host
byte order



A Word of Caution

•With stream oriented sockets, send does not guarantee 
transfer of all bytes requested in a single call.

• That’s why send returns an int, the number of bytes 
actually send.

• It’s up to you to ensure that all the bytes are actually sent
• See my code example – socks.cpp
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Talk Protocol

• The hardest part of a client/server socket communication 
design is to control the active participant

• If single-threaded client and server both talk at the same time, 
their socket buffers will fill up and they both will block, e.g., 
deadlock.

• If they both listen at the same time, again there is deadlock.

• Often the best approach is to use separate send and receive 
threads
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Message Length

•Another vexing issue is that the receiver may not know 
how long a sent message is.

• so the receiver doesn’t know how many bytes to pull from the 
stream to compose a message.

• Often, the communication design will arrange to use message 
delimiters, fixed length messages, or message headers that carry 
the message length as a parameter. 

• For examples see:
• Repository/CppStringSocketServer // uses string delimiter

• Repository/CommWithFileXfer // uses messages with headers



Message Framing

• Sockets only understand arrays of bytes
• Don’t know about strings, messages, or objects

• In order to send messages you simply build the message 
string, probably with XML
• string msg = “<msg>message text goes here</msg>” 
• Then send(sock,msg,strlen(msg),flags)

• Receiving messages requires more work
• Read socket one byte at a time and append to message string:
• recv(sock,&ch,1,flags); msg.append(ch);
• Search string msg from the back for </
• Then collect the msg>

• You will find a more sophisticated approach in the 
CommWithFileXfer, cited on the previous slide



They’re Everywhere

• Virtually every network and internet communication method uses 
sockets, often in a way that is invisible to an application designer.

• Browser/server

• ftp

• SOAP

• Network applications



What we didn’t talk about

• udp protocol

• socket select(…) function

• non-blocking sockets



The End


