
YAHOO!
WIDGET ENGINE 3.0
Reference Manual

Version 3.0
December 7, 2005

Copyright 2002-2005 Yahoo! Inc.
All Rights Reserved

� | WIDGET ENGINE 3.0 REFERENCE �

Release History

First Release February 10, 2003
Second Release February 12, 2003
Third Release February 15, 2003
Fourth Release February 19, 2003
Fifth Release Version 1.5 July 23, 2003
Sixth Release Version 1.5.1 September 26, 2003
Seventh Release October 8, 2003
Eighth Release Version 1.6.2 June 6, 2004
Ninth Release Version 1.8 November 8, 2004
Tenth Release Version 1.8.1 November 24, 2004
Eleventh Release Version 1.8.3 January 18, 2005
Twelfth Release Version 2.1 July 23, 2005
Thirteeth Release Version 2.1.1 August 3, 2005
Fourteenth Release Version 3.0 December 7, 2005

Thanks to all who have submitted comments and corrections.

� WIDGET ENGINE 3.0 REFERENCE | �

The Basics

The Yahoo! Widget Engine (or simply the 'Widget Engine' or at times 'engine' as used
in this document) uses XML to define Widgets and the objects that make them up. This
makes a clear hierarchy for what each object is, and the order it's drawn in as well as
associating the correct attributes with each object.

A very simple Widget might look like this:

<widget>	
	 <debug>on</debug>	
	
	 <window	title="Sample	Yahoo!	Widget">	
	 	 <name>main_window</name>	
								<width>500</width>	
								<height>500</height>

	
					 <image	src="Images/Sun.png"	name="sun1">	
									 <hOffset>250</hOffset>	
									 <vOffset>250</vOffset>	
									 <alignment>center</alignment>	
					 </image>	
	
				 <text	data="Click	Here"	size="36"	style="bold">	
									 <name>text1</name>	
									 <hOffset>250</hOffset>	
									 <vOffset>100</vOffset>	
									 <alignment>center</alignment>	
									 <onMouseUp>	
														 sun1.opacity	=	(sun1.opacity	/	100)	*	90;		
									 </onMouseUp>	
					 </text>	
	 </window>	
</widget>

All it does is reduce the opacity of an image by 10% every time the user clicks on

� | WIDGET ENGINE 3.0 REFERENCE �

the text that says "Click Here". Obviously this isn't terribly useful but we'll use this
simplified example to illustrate a few points. This sample depends on one external
file, Images/Sun.png	if you run it without that it will display a "missing image"
placeholder.

Firstly, note the structure of the Widget: XML is a symmetrical language in that each
object specifier (e.g. <text>) has a corresponding terminator (</text>). Within these
pairs the attributes of the objects are defined such as screen positions, alignments, etc.
Also note that objects defined in XML (like sun1) can be manipulated in JavaScript (see
the onMouseDown handler in the text1 object). Name of objects must begin with a
letter and only letters, numbers and underscores are allowed. The XML for a Widget is
stored in a file with the extension .kon (see below for a discussion of the bundle this file
lives in).

Real Widgets can have dozens of images and text objects, multiple JavaScript sections
(often in external files) and will usually create new objects at runtime using JavaScript to
implement complex functionality.

By far the best and easiest way to get started creating Yahoo! Widgets is to take an
existing Widget and start making changes to it. The Widget Engine comes with a
selection of Widgets which perform a variety of tasks, any of which would be a good
place to start – just remember that although the XML and JavaScript in these Widgets is
freely available for reuse, the art assets are not and they must not be redistributed.

XML Syntax
We have a robust XML parser, and this means that you can use either style of tag
notation or mix and match. The two styles being:



or:

<image	src="images/image.png"	name="myImage"/>

Mixing and matching is okay too:

<image	src="images/image.png">	
	 <name>myImage</name>	
</image>

Entities
Entities are an XML construct that allow you to specify a character via a special escape
sequence. Some characters are used to parse the XML syntax and are considered
reserved. The symbol & is used as the entity escape start (and for that reason is also
a reserved character). The standard set of entities are used to represent XML special
characters:

� WIDGET ENGINE 3.0 REFERENCE | �

&	 &	
"	 "	
&apos:	 '	
<	 	 <	
>	 	 >

You can also use entities to specify a character by its unicode code point:

 	 <space	character,	decimal>	
 	 <space	character,	hex>

These arbitrary entities only work in version 2.1 or later.

JavaScript
Because the XML engine looks for the < and > symbols to mark blocks of XML data,
our JavaScript engine needs to have these symbols replaced with < and >
respectively. For example:

<onMouseUp>	
		if	(x	<	5)	
	 		displayResults();	
</onMouseUp>

Alternatively you can use XML comments to hide the JavaScript code from the XML
engine just as is commonly done in HTML, like so:

<onMouseUp>	
<!--	
		if	(x	<	5)	
	 		displayResults();	
//-->	
</onMouseUp>

This is generally preferred because it makes the code easier to read.

In version 2.1 or later, you can use CDATA sections (which are actually more correct to
use these days, and largely necessary if you put the parser into strict mode):

<onMouseUp>	
<![CDATA[
		if	(x	<	5)	
	 		displayResults();	
]]>	
</onMouseUp>

You can also make references to external JavaScript which we will cover later.

Strict Mode
In version 2.1 and later, you can put the XML parser into a 'strict' mode. This means it
enforces the rules of XML in ways the parser did not in the past. In fact, it was much too

� | WIDGET ENGINE 3.0 REFERENCE �

lenient in many ways. To enable this, you can just add the following line to the top of
your XML file:

<?konfabulator	xml-strict="true"?>

In strict mode, the following things are enforced:

1) All attribute values must be put into quotes.
2) No stray "&" characters are allowed in a normal text section (i.e.use &).
3) Entities (things that start with "&") are evaluated inside attribute values.
4) No double dash ("--") allowed inside a comment. For this reason, it's best to put code
into CDATA blocks.
5) If an external file is included, we do not replace entities such as < in that file.

CDATA blocks are available in version 2.1 or later.

File Paths
File paths in the engine are always relative to the location of the XML file. That means a
file reference without a directory (e.g. main.js) will be looked for in the same directory
as the XML file while one with a directory (e.g. javascript/main.js) will be
looked for in the specified subdirectory of the directory the XML file resides in. It is not
advised to use absolute paths (ones that begin with a /) since the disk layout of people's
machines can differ quite markedly.

Widget Packaging
On Windows the files that make up a Widget are stored in a .widget file. This is a
standard ZIP file that has had its extension changed to .widget.

On Mac OS X the files are packaged together in a bundle, which is a directory that is
treated as a single unit by the operating system. You can control-click on one of the
default Widgets and choose the Show Package Contents option to see this structure in
use.

Both the Mac OS X and Windows versions of the engine can read the zipped up .widget
files, so it is the best choice when doing cross-platform Widgets. There is a utility
available on the Yahoo! Widgets web site (in Workshop) which can assist you in building
or taking apart these .widget bundles called Widget Converter.

Whether on Windows or Mac OS X .widget bundle has the following structure:

myWidget.widget	
	 Contents	
	 	 myWidget.kon	
	 	 Resources	
	 	 	 <any	files	used	by	the	Widget>

The .kon file contains the actual Widget code (similar to the sample Widget in the
section above). At present, the .kon file must be contained in a folder called Contents.
You can put resources like pictures, etc. anywhere you like, but typically they would be

� WIDGET ENGINE 3.0 REFERENCE | �

put into a Resources folder, as shown above.

If you do not use the Widget Converter Widget and instead decide to zip these up
manually, this is best done on a PC by right clicking the .widget folder and creating a
ZIP file from that. On the Mac you can use something like DropZip.

It should be noted that while you are developing your Widget, you do not need to
create a zipped up Widget file to test each time you make a change. You can merely
double-click the .kon file.

You should never modify your Widget package at run time. That is, do not use
your Widget package to store information inside of itself. While most Widgets use
preferences to store their settings, there are some Widgets that have instead stored
information inside its own package. With the advent of our zipped format, this has
proven to be somewhat fruitless. When the Widget Engine runs a zipped Widget, it
first unzips it into a special location and then runs it from there. In recent releases, this
unzipping happens every time you run the Widget, so if you stored information in your
package, it will be lost. To help accommodate Widgets that need to store permanent
data, there is a system.widgetDataFolder folder path you can use to store your
Widget's permanent info.

Widget Runtime
This section discusses how Widgets are run and some of the issues one needs to keep in
mind to perhaps alleviate any confusion about how things work.

When a Widget is opened, it is run as a separate process. This is done to ensure one
Widget's fate does not affect the rest of the Widgets a user might be running.

A Widget that is zipped up is unzipped into a special location (/tmp on the Mac, and
C:\Documents and Settings\<user>\Local Settings\Application Data on the PC). A
Widget that is not zipped is run right from where it is located. For this reason you can
never rely on where your Widget is. Once we locate the .kon file in the Widget, we set
the current directory to the directory in which we found the .kon file. So for example,
if your .kon file is in the Contents folder as it normally would be, the current working
directory would be Contents. This allows relative paths to resources to work. A .kon file
would reference an image as Resources/Image1.png, for example, if its images were
inside a Resources folder inside Contents.

Once the .kon file is located and our current directory is set, the file is parsed and the
objects defined therein are created. Once everything is created successfully, the onLoad
handler (see the 'action' object documentation) is called. At this point your Widget can
do whatever it needs to do to initialize itself. Take care to not linger in your onLoad
handler, because it is typically executed before your Widget is made visible (i.e. many
Widgets set their window to be hidden at first and show it at the end of their onLoad
handlers). Once the onLoad handler is run successfully, your Widget is now running!

The next time your Widget is run, the Widget is unzipped again. For this reason you
cannot rely on storing information in your Widget bundle. Use widgetDataFolder as

� | WIDGET ENGINE 3.0 REFERENCE �

mentioned previously.

The Widget Engine keeps track of what Widgets are open automatically. The next time
the engine is launched, it will automatically reopen any Widgets that were running at
the time it was last quit.

Actions
Actions are the lifeblood of Widgets. These are where you get to define how a Widget
behaves when the user interacts with the Widget, etc. In versions prior to 3.0, the only
way to specify an action was to set the action to some Javascript text. This text was
evaluated and run when the user clicked, for example:

<onMouseUp>
 print("hello");
</onMouseUp>

The limitations are a) you were never able to use the Javascript 'this' object to refer
generically to the object that the action was running for, and b) if you had several objects
with the same code, you'd have to duplicate the Javascript and change the names of the
objects to reflect each object you attached the code to.

To remedy this, in version 3.0 or later, the engine now supports using proper Javascript
functions for these actions. In 3.0, no parameters are sent to the actions, but it is the
intention to pass proper parameters in the future. For example, an onMouseUp handler
would receive the x and y coordinates of the mouse instead of inspecting system.event.

To use functions, you can either tell the engine you want to use a function in the XML
by using an attribute (and only attribute, a sub-element will not work), or by setting the
property to the function to call in Javascript:

<!-- In XML -->
<onMouseUp function="_myMouseUp"/>

// in Javascript
myImage.onMouseUp = _myMouseUp;

// and someplace in your JS code, you must have the
// function defined:
function _myMouseUp()
{
 print(this.opacity);
}

Object Names
In the XML description, you can set a <name> property. This defines the global
Javascript object that will be created and bound to the object the name is a part of. For
example:

<window	name="mainWindow"	.../>

� WIDGET ENGINE 3.0 REFERENCE | �

Will end up creating a JS variable at the global scope with the name mainWindow.
Because of this, all names must be unique. Also, because internally these names are
used to track objects, they cannot be changed. Version 3.0 enforces this by making all
name properties read-only at present. Any time you create an object on the fly using
Javascript, an object is given a generic name, such as Image001. In the future, we hope
to make it such that these names can be mutable.

Debugging
Some provision is made for debugging your Widgets. There is an xml tag "debug"
which you can set to "on" (see the reference below for exact details). When set to on, a
debug output window will open when your Widget is started. Calls to log() or print() in
your JavaScript code will be routed into this window. Any errors encountered inside the
Widget Engine or your Widget will also be reported in this window.

While developing your Widget, you should always turn debug to on so you can tell
what is perhaps going wrong. For example, if you spell an attribute wrong, the output
window will tell you this, along with where in your code the problem is.

It should be noted that especially on the PC, the debug window will never open unless
debugging is on. On the Mac, there might be times where the Debug window might
open automatically, at present (especially if a Widget's onLoad handler fails).

In version 2.1 and later, you can access a debugging mode by holding down the control
and shift keys and selecting the Gear menu in the menu bar (Mac) or system tray
(Windows). Once you turn the option on, any Widget you launch will have debugging
forced on and the debug window will open. Because of this, you really don't have to use
the debug tag in your Widget definition any longer. You can also have your users use
this mode to help you diagnose issues.

Also in version 2.1 and later, the debug window has been enhanced with a new
command line field. In this field you can issues commands (see the complete list by
typing "/help" in the field) or merely evaluate some JavaScript. This is handy for
inspecting the values of varaibles, etc. You can also trace variables and functions using
the built-in commands.

Exceptions
Starting in version 2.0, the Widget Engine will throw proper exceptions when things go
awry. This is true particularly in the COM interfaces for the Windows release and for the
filesystem object for both platforms. While not everything that could throw an exception
is throwing at present, it's important to realize this and to use try/catch handlers in
places. In using COM, it's pretty much a necessity as it can help you bail out and deal
with failures to connect, etc. Currently the exception is merely a string, so worst case
you can print the string in an alert or the like. The PIM Overview uses try/catch in its
Outlook handling.

Widget Preferences
A Widget can provide a number of preference objects to allow itself to save out settings.

10 | WIDGET ENGINE 3.0 REFERENCE �

These settings are saved out in per-user preference storage. On the Mac, this is in ~/
Library/Preferences/Konfabulator. On the PC, this is in HKEY_CURRENT_USER\
Software\Yahoo\WidgetEngine.

MinimumVersion
The minimum version attribute of a <widget> tells the engine what version of the
engine is required to run a Widget. But starting in version 3.0 it also tells the engine that
this Widget has been revised for 3.0 and as such, we are using it to alter behaviors of
certain aspects of how a Widget works. This is to help us move forward and fix things
that are wrong without breaking any Widget that does not have the minimum version
set appropriately.

If you set your minimum version to 3.0 (which you should if you are taking advantage
of features in 3.0), the following behaviors come into play:

1) No views are auto-bound to the default window. This used to be the case, but with
the advent of hierarchical views in 3.0, this became problematic. As a result, you must
specify the window that an object belongs to, or use frame.addSubview() to embed an
object into a frame. If your interface is mostly constructed via XML, the simplest thing
to do is enclose your image/text/frame/scrollbar/textarea objects inside your window
object:

<window ...>
 <image src=.../>
 <text data=.../>
 <frame .../>
 <image src=.../>
 </frame>
</window>

The most common error you would probably encounter as you migrate your Widget to
3.0 is to see some of your views not appearing. This is all due to this behavioral change.
Simply double-check that all your views are bound to some window or parent frame.

2) Javascript lifetime changes. In prior releases, calling delete on an object or setting it
to null would make the object disappear from the window. This will no longer occur. If
you wish for an object to be removed, you must call <object>.removeFromSuperview().
The point of this change is to make it easier to code a Widget. In the past you'd have to
maintain lists of all your objects just to ensure they didn't disappear with the window.
With the advent of subviews, the number of objects can become very unmanageable
very quickly. Now you no longer need to care if you have a reference to an object if
you've added it to the window. This means items that would never change during the
course of your Widget never need to be tracked by you. It will make your code more
obvious in many ways and you can instead just concentrate on doing what you do best.

3) We no longer blindly replace XML entities in your .kon or .js files when files are
loaded. If you want to ensure that Javascript code that has < or > in it doesn't trip up the
parser, you should use CDATA sections, as mentioned earlier.

� WIDGET ENGINE 3.0 REFERENCE | 11

4) Rotation changes. We now properly rotate about the effective h and vOffset of an
object. This means if you center an image using hAlign and vAlign and then rotate it, it
will rotate around the center of the image.

5) Javascript code in an XML element will be read as just that, Javascript code.
Previously, the engine would try to see if it was a file by trying to read a file with the
given path. Not cool. We now only try to read a file if your action has the 'file' attribute.
If you want to include a file in the element, use include(). This should improve loading
performance as we won't hit the filesystem for every chunk of Javascript code in your
Widget.

XML Services
Starting in version 3.0 we now provide new services to allow you to work with XML
more easily. In 3.0 we now have a built-in XML parser which is significantly faster than
using the external Javascript-based xmldom.js file we've recommended in the past. This
XML parser always operates in 'strict' mode (see above notes on strict mode).

The output of the parser is a Level 1 W3C DOM and we follow the RFC for said DOM
to the letter. There are a few omissions (entities, for one), but the important core is there.
You can also create and mutate these DOM trees to make your own XML documents
and output them.

The DOM API is nice, but in general it's not very convenient to traverse an XML tree
to find the important bits. So we've also added XPath 1.0 support (minus namespace-
specific functions). This makes it much easier to pull out pieces of a XML tree than using
the DOM API.

To aid in moving code into Yahoo! Widgets, and just to help people get comfortable
we've added a real XMLHttpRequest object. This follows the minimum core API at
present. For POSTing files, we still recommend you use the URL object instead.

Yahoo! Login Support
Version 3.0 and later allow you to use APIs which require a Yahoo! login. The engine
itself takes care of the details of logging in and storing credentials. Your Widget only has
to check the current login state or request to login. Once logged in, when sending the
API request to the server, the engine automatically adds the user's credentials for you.

To behave like a good citizen, you should first check to see whether you are logged in
by calling yahooCheckLogin(). If this returns true, you are all set to access the Yahoo!
API your Widget would call. If it returns false, you should display a placard or some
other indication that your Widget cannot display its information because the user is not
currently logged in and give them a button/link/something to click to enable them to
login from your Widget.

In your onLoad handler, for example:

1� | WIDGET ENGINE 3.0 REFERENCE �

if	(yahooCheckLogin())	
	 loggedIn();	//	display	your	UI	in	the	logged	in	state.	
else	
	 loggedOut();	//	display	your	UI	in	the	logged	out	state.

It is considered bad form to blindly call yahooLogin() in your onLoad handler.

When the user clicks your button to login, call yahooLogin(). If this function returns
true, you are already logged in, so behave as such. But more likely it will return false,
meaning the user must authenticate. When yahooLogin() returns false, you must
simply go about your business and wait for an onYahooLoginChanged event to come
to your Widget (i.e. the function behaves asynchronously). You might also get your
onYahooLoginChanged handler called if the user logs in or out from the Gear menu.

When your onYahooLoginChanged handler is called, you must call
yahooCheckLogin() to see what your new state is (this call also loads up the necessary
cookies, etc.). Based on the state returned, you would either behave logged in or out,
just as shown above for onLoad.

Be warned that even if yahooCheckLogin()	returns true, your request to the API server
might fail due to expired credentials. In this case, is your Widget's responsibility to call
yahooLogout() so that other Widgets are informed of the situation.

Subviews/Frames
Starting in version 3.0, the Widget Engine now supports hierarchical views. Prior to 3.0
you could only have a flat list of objects (images, text, etc.) in a window. 3.0 introduces
the Frame object, which allows you to add objects to it and treat it as a group of items. If
you move the Frame, the subviews move with it. If you fade a frame, everything within
it fades.

When an object is put inside a frame, its hOffset and vOffset become frame-relative.
Basically, the offsets are always relative to a view's parent. So an image with an h/
vOffset of 10, 10 will appear 10 pixels down and to the right of the top left of its parent
frame. This allows you to not have to care where it necessarily is in the window at all.

Even the objects that are at the top level of the window and not apparently in any
frame are really in a root view of the window. You can access this root view through
the window object. The root is a special view and only contains those attributes and
functions necessary to allow you to traverse the tree of views successfully.

The other things that Frames bring is the ability to scroll their contents. This makes it
possible to create scrolling lists of search results and various other things. The Widget
Engine also provides a standard ScrollBar object which you can attach to a Frame
to scroll its contents. When a scroll bar is bound to a frame, mouse wheel support
is automatically enabled as well. The ScrollBar object can have its standard thumb
colorized, or if that doesn't meet your needs, you can supply your own images for the
track and thumb.

The other things that Frames bring is the ability to scroll their contents. This makes it

� WIDGET ENGINE 3.0 REFERENCE | 1�

possible to create scrolling lists of search results and various other things. The Widget
Engine also provides a standard ScrollBar object which you can attach to a Frame
to scroll its contents. When a scroll bar is bound to a frame, mouse wheel support
is automatically enabled as well. The ScrollBar object can have its standard thumb
colorized, or if that doesn't meet your needs, you can supply your own images for the
track and thumb.

Security Windows
There are two types of security windows that may appear in the Widget Engine, though
they both look similar. The first is a first run/modification window. On first run of a
Widget that the Widget Engine is not familiar with or has ever seen before, a window
will appear telling the user they are about to open a new Widget and have them
confirm the action. This is to protect against Widgets that might just run without the
user's knowledge. Also, if the user allows a Widget to run and later on that Widget is
somehow modified, another window will appear the next time the Widget is launched,
telling them of this fact. Again, the user can confirm or deny the request to launch
depending on whether or not the modification was expected.

If you are actively debugging a Widget, you can turn debug mode on (which is probably
a good idea anyway) and first run/modified security windows will be surpressed, so as
not to bug you ever time you tweak your code and reload the Widget.

The second type of window is a 'sandbox' window. Currently, the only sandboxed
action is logging into a user's Yahoo! account (more actions will be sandboxed in future
releases). The first time a Widget attempts to log into a user's Yahoo! account, a window
will appear to alert the user of this fact and ask whether the Widget should be granted
permission to use their Yahoo! data. Sandbox windows cannot be disabled.

1� | WIDGET ENGINE 3.0 REFERENCE <about-box>

XML Reference

The following sections describe the objects and attributes that make up Widgets. Objects
are organized into a hierarchy as follows:

<widget>	
	 <about-box/>	
	 <action/>	
	 <frame/>	
	 <hotkey/>	
	 <image/>	
	 <preference/>	
	 <scrollbar/>	
	 <text/>	
	 <textarea/>	
	 <window/>	
</widget>

Other blocks we read as subblocks:

<menuItem/>	
<shadow/>

Starting in version 2.1, you can now nest objects inside their containing window. This
means you can put objects like images, text, and textareas into the block for the window:

<window>	
 ...
 <image name="foo"/>
 <text .../>
</window>

Using this method, you do not need to include the window property for any of the
nested images since the window is known to be the containing window specified in the
XML. If you do specify a window, you will get an error in the debug window warning
you of this fact.

<about-box> WIDGET ENGINE 3.0 REFERENCE | 1�

<about-box>
block to define images for an about box

Attributes
image/about-image	
about-text	
about-version

Description
If used, the about-box XML block must contain one or more references to a path to an
image contained in an image block.

image/about-image
block containing a path to an image

Description
The image attribute of the about-box block must contain a valid path to an image.

If more than one image attribute is used the images will be shown sequentially to the
user. When they are the same size, they will simply replace each other, when they are
different sizes, the first will fade out and the next will fade in.

Example
<about-box>	
	 	
	 	
</about-box>

Version Notes
The about-image synonym first appeared in version 2.1.

about-text
text to display

Description
You can specify any number of text objects to be displayed in your about box. These
text items at present only appear on the first page of your about box. They can have the
following attributes:

color/colour	
data	

1� | WIDGET ENGINE 3.0 REFERENCE <about-box>

hOffset	
font	
size	
style	
shadow	
url	
vOffset

Except for shadow and url, these are all the same properties as can be used on a
full-fledged text object. See the section on text objects for information on how these
attributes are used. See the section on the shadow object for information about how that
object is structured. The url property turns the text object into a clickable link which
will open a browser targeted at the url you specify.

Availability
Available in version 2.1 or later. The url property is available in 3.0 or later.

about-version
element to describe where and how the version should be placed

Description
This is essentially a special case of the text element, described above. It has all the same
attributes, and can only be placed on the first page of an about box. The only difference
is that this tag represents where the Widget's version number will appear. The version
number is taken right from the Widget definition's version attribute.

Availability
Available in version 2.1 or later.

<action> WIDGET ENGINE 3.0 REFERENCE | 1�

<action>
code block not associated with an object

Attributes
file	
interval	
trigger

Description
The action XML block defines when and how a Widget will execute code that is
triggered automatically rather than by a user.

file
the path to an external JavaScript file

Description
Embedding JavaScript code into an XML file may present unique problems for some
developers. Your preferred text editor may not gracefully support syntax highlighting
for both XML and JavaScript at the same time, your JavaScript code may be large and
complex and need better management, or you may just be frustrated by the impositions
of having to escape common characters that would confuse the XML portion of the
Widget. In order to alleviate any or all of these we allow you to reference an external
file.

You can reference files by specifying the file attribute for the <action> block.
Alternatively, you can simply use include().

Example
<action	trigger="onLoad"	file="main.js"/>

<action	trigger="onLoad">	
				include("main.js");	
</action>

interval
time in seconds to wait between triggers

Description
The interval attribute for the action block is to be used with the onTimer trigger
attribute. It defines how many seconds, or fractions of a second, to wait between
onTimer code executions.

1� | WIDGET ENGINE 3.0 REFERENCE <action>

If no interval is defined for an on timer trigger, it will default to one minute.

Example
<!--	This	will	cause	the	Widget	to	beep	every	
					two	minutes	-->	
<action	trigger="onTimer"	interval="120">	
	 beep();	
</action>

<!--	This	will	cause	the	counter	to	increase	ten	
					times	a	second	-->	
<action	trigger="onTimer"	interval="0.1">	
	 counter	++;	
</action>

Starting in version 2.0 this mechanism is deprecated in favor of the new Timer objects
(see the section on Timers later in this manual).

trigger
the event that triggers the enclosed code

Values
onGainFocus	
onIdle	
onKeyDown	
onKeyUp	
onKonsposeActivated	
onKonsposeDeactivated	
onLoad	
onLoseFocus	
onMouseDown	
onMouseEnter	
onMouseExit	
onMouseUp	
onPreferencesChanged	
onRunCommandInBgComplete	
onScreenChanged	
onTellWidget	
onTimer	
onUnload	
onWakeFromSleep	
onWillChangePreferences	
onYahooLoginChanged

<action> WIDGET ENGINE 3.0 REFERENCE | 1�

Description
The trigger attribute for the action block defines what will trigger the contained block
of code.

onGainFocus will trigger when the Widget is activated by the user. This is useful
if you want your Widget to have an active and inactive state. This action is typically
triggered when the Widget first starts running. In version 2.0 and later, you should
generally use the onGainFocus handler on each window and reserve the Widget
onGainFocus handler for truly Widget-wide activation handling.

onIdle executes five times a second, but we do not suggest using it as it will cause
your Widget to use excessive amounts of CPU time.

onKonsposeActivated and onKonsposeDeactivated execute when the user
invokes and dismisses Konsposé mode. This gives the Widget the opportunity to
change display modes or take other actions desired at this point (for example, some
Widgets display their "focused" mode as if onGainFocus had been received when
Konsposé is active).

onLoad executes when the Widget is first loaded and is used to define and store
functions that might be used elsewhere in the Widget.

onLoseFocus will trigger when the Widget is deactivated by the user. This is useful if
you want your Widget to have an active and inactive state. In version 2.0 and later, you
should generally use the onLoseFocus handler on each window and reserve the Widget
onLoseFocus handler for truly Widget-wide activation handling.

onPreferencesChanged is executed when the user saves the preferences. Note that
nothing is executed if they cancel out of the preferences dialog as they didn't actually
change the preferences in that case.

onRunCommandInBgComplete is executed when a command started with
runCommandInBg() completes (see documentation for that call).

onScreenChanged fires if any screen size, arrangement or color depth changes are
made using the Displays System Preference panel (note that the screen the Widget itself
is on may or may not have been affected).

onTellWidget is called when another Widget or application calls the tellWidget
interface to send your Widget a message. You should be very careful about what you
decide to do with the message you receive. See the section on tellWidget later on in this
document for more detail. This trigger is available in Widget Engine 2.0 or later.

onTimer executes at regular intervals based on what's defined in the interval
attribute. If no interval attribute is defined, it will default to a one minute interval.
Note that there can only be one onTimer trigger per Widget. For this reason, in version
2.0 and later we offer a new Timer object which allows you to have multiple timers
running at different frequencies. See the section on Timers for more information.

�0 | WIDGET ENGINE 3.0 REFERENCE <action>

onUnload executes when the Widget is closed. This is useful for doing any last
minute manual preference saving (preferences set in the Widget Preferences dialog are
saved automatically when they are changed by the user), as well as making sure any
external applications you may be talking to are closed up and aware of your departure.
Note that you should not perform any lengthy operations in this trigger as Widgets
are encouraged to shutdown quickly (an example of a lengthy operation would be
retrieving something from the network).

onWakeFromSleep executes when the machine wakes from a state of sleep. It should
be noted that some desktops have a several second lag between waking up and
reconnecting to the network, so you may want to add a sleep() call to your code if
your Widget wants to connect to the internet. In version 3.0 or later, timers are stopped
when the machine goes to sleep and are not restarted until onWakeFromSleep is called.

onWillChangePreferences executes when the user asks to edit the Widget's
preferences (or when the showWidgetPreferences() JavaScript call is made).

onYahooLoginChanged executes when the user either logs in or logs out of their
Yahoo! account. When called, you can check the current state of the user login by calling
yahooCheckLogin().

The remaining triggers, onKeyDown, onKeyUp, onMouseDown, onMouseUp,
onMouseEnter and onMouseExit execute when the corresponding user action is
detected within the main window of the active Widget, and there is no other object to
receive them. Note that using the global scope mouse actions will cause your Widget to
no longer be draggable without having to hold down the command key.

Example
<!—	Redraw	the	clock	when	we	wake	from	sleep	-->	
<action	trigger="onWakeFromSleep">	
	 updateClockFace();	
</action>

<!—	Update	our	info	when	the	user	changes	the	preferences	-->	
<action	trigger="onPreferencesChanged">	
	 refreshTickerSymbols();	
</action>

<frame> WIDGET ENGINE 3.0 REFERENCE | �1

<frame>
block defining a frame object

Frame objects act as containers for other objects. As such, you can nest other view
objects inside them in the XML, as well as use Javascript to place other objects inside
them. When moved, all subviews of a frame move. Similarly, when the opacity of a
subview changes, so does the effective opacity of everything in it.

Frames also allow scrolling. You can do so manually by adjusting the scrollX and scrollY
properties, but you can also simply attach a scrollbar to a frame and have everything
just work automatically.

Attributes
contextMenuItems	
hAlign	
height	
hLineSize	
hOffset	
onContextMenu	
onDragDrop	
onDragEnter	
onDragExit	
onMouseDown	
onMouseEnter	
onMouseExit	
onMouseMove	
onMouseUp	
onMouseWheel	
onMultiClick	
opacity	
scrollX	
scrollY	
visible	
vAlign	
vLineSize	
vOffset	
width	
window	
zOrder

contextMenuItems
Specifies an array of context menu items.

Description
You can add items to the standard context menu that appears when the user right-clicks

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

the mouse button on your frame. You can also dynamically build your context items by
specifying some JavaScript to execute on your onContextMenu tag (see onContextMenu
for more information).

You specify your items by including an array of menuItem objects. See the section on
menuItem for more information about them.

JavaScript
myObjectName.contextMenuItems

Example
<frame>	
		...	
		<contextMenuItems>	
				<menuItem	title="Test"	onSelect="beep();"/>	
				<menuItem	title="Another	Test">	
						<onSelect>alert('hello');</onSelect>	
				</menuItem>	
		</contextMenuItems>	
</frame>

See the onContextMenu section for an example of building a context menu in JavaScript.

Availability
Available in version 3.0 or later.

hAlign
control the horizontal alignment of a frame

Description
The hAlign property of an object defines the initial horizontal alignment with respect to
its hOffset property. For example, an object with right alignment will be drawn so that
its right edge appears at the hOffset. The default alignment is "left".

Valid values are: "left",	"right"	or	"center".

JavaScript
myObjectName.hAlign

Example
<frame>	
	 <hAlign>right</hAlign>	
</frame>	
myFrame.hAlign	=	"left";

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

Availability
Available in version 3.0 or later.

height
the height of the object

Description
The height attribute controls the vertical dimension of an object. If no height is
specified for a frame, its height is determined automatically by the extent of its
subviews.

JavaScript
myObjectName.height

Example
<frame>	
	 <height>300</height>	
</image>

myFrame.height	=	300;

Availability
Available in version 3.0 or later.

hLineSize
the size of a line of data for use when scrolling

Description
The hLineSize property specifies how far a frame should scroll (in pixels) if the
lineLeft() or lineRight() functions are called. It is also factored in when the frame
reacts to the mouse wheel (if a scroll bar is attached). The default line size is 10 pixels.

JavaScript
myObjectName.hLineSize

Example
<frame>	
	 <hLineSize>5</hLineSize>	
</image>

myFrame.hLineSize	=	5;

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

Availability
Available in version 3.0 or later.

hOffset
the horizontal offset of an object

Description
The hOffset attribute of an object defines the horizontal (left to right) offset for the
image based on 0,0 being the upper left hand corner of the its parent view (superview).
The greater the value assigned, the farther to the right the object will appear.

JavaScript
myObjectName.hOffset

Example
<frame>	
	 <hOffset>30</hOffset>	
</frame>

Availability
Available in version 3.0 or later.

hScrollBar
the horizontal scroll bar for this frame

Description
The hScrollBar attribute of a frame defines what scroll bar object should control the
horizontal scrolling for this frame. When expressed in XML, you specify the name of a
<scrollbar> object you wish to bind to the frame for its hScrollBar. If the scroll bar
object does not exist, an error will appear in the Widget's debug window.

Attaching a scroll bar will do all the automatic setup for communicating between the
frame and the scroll bar.

JavaScript
myObjectName.hScrollBar

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

Example
<frame>	
	 <hScrollBar>my_scrollbar</hScrollBar>	
</frame>	
<scrollbar	name="my_scrollbar"	...	/>	
	
//	in	Javascript:	
myFrame.hScrollBar	=	my_scrollbar;

Availability
Available in version 3.0 or later.

onContextMenu
called when a context menu is about to appear

Description
The simplest way to specify context menu items that get added to the standard context
menu for a Widget is to use the contextMenuItems tag in the XML. However, for those
Widgets that need to build their items dynamically, the onContextMenu handler is your
hook to do so. When the menu is about to be presented, this is called for all elements
under the mouse from front to back in the view order until some view responds.
When handling this, you should simply build your context menu items and set your
contextMenuItems property to the array of items.

JavaScript
myFrame.onContextMenu

Example
<onContextMenu>	
var	items	=	new	Array();	
items[0]	=	new	MenuItem();	
items[0].title	=	"This	is	the	title";	
items[0].enabled	=	false;	
items[0].checked	=	true;	
items[0].onSelect	=	"alert('you	chose	it!');";	
	
items[1]	=	new	MenuItem();	
items[1].title	=	"This	is	the	second	title";	
items[1].onSelect	=	"beep();";	
	
myImage.contextMenuItems	=	items;	
</onContextMenu>

Availability
Available in version 3.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

onDragDrop
called when something is dropped on the object

Description
The onDragDrop trigger fires when a file, URL or string is dragged from another
application and dropped on the object.

In the onDragDrop action objects can access system.event.data to see what was
dropped. This is an array of strings whose first element specifies what type of object was
dropped: "filenames", "urls" or "string" The remaining elements of the array are the
items that were dropped.

JavaScript
myObjectName.onDragDrop

Example
<frame>	
	 <onDragDrop>	
	 	 if	(system.event.data[0]	==	"filenames")	
							{	
									processDroppedFiles(system.event.data);	
							}	
	 </onDragDrop>	
</frame>

myFrame.onDragDrop	=	"handleDragDrop();";

Availability
Available in version 3.0 or later.

onDragEnter
called when an item is dragged into the object

Description
The onDragEnter attribute of the image block is a wrapper for JavaScript code that
will execute when the user has dragged an item from another application into the object.
This happens before the item is dropped (indeed it may not be dropped as the user can
change their mind).

This is useful for triggering a visual change of the object to indicate to the user that the
dragged object will be accepted or rejected if it is dropped. Information about the item
being dragged is contained in system.event.data (see onDragDrop for details).

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

JavaScript
myObjectName.onDragEnter

Example
<frame>
 <onDragEnter>
 highlightDropTarget(well);
 </onDragEnter>
</frame>

well.onDragEnter	=	"highlightDropTarget(well);";	 	

Availability
Available in version 3.0 or later.

onDragExit
called when an item is dragged out of the object

Description
The onDragExit attribute of the image block is a wrapper for JavaScript code that will
execute when the user has dragged an item from another application into the object and
then out again.

This is useful for undoing things that were done in onDragEnter.

JavaScript
myObjectName.onDragExit

Example
<frame>	
	 <onDragExit>	
	 	 unhighlightDropTarget(well);	
	 </onDragExit>	
</frame>	
	
well.onDragExit	=	"unhighlightDropTarget();";

Availability
Available in version 3.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

onMouseDown
called when the mouse button is down inside the object

Description
The onMouseDown property specifies JavaScript code that will execute when the user
presses the mouse button down within the object.

JavaScript
myObjectName.onMouseDown

Example
<frame>	
	 <onMouseDown>	
	 	 beep();	
	 </onMouseDown>	
</frame>

myFrame.onMouseDown	=	"beep();";

Availability
Available in version 3.0 or later.

onMouseEnter
called when the mouse enters the object

Description
The onMouseEnter property specifies JavaScript code that will execute when the user
has moved the cursor within the object.

This is useful for triggering a visual change of the object based on a rollover state.

JavaScript
myObjectName.onMouseEnter

Example
<frame>	
	 <onMouseEnter>	
	 	 print("Mouse	entered!");	
	 </onMouseEnter>	
</frame>

myFrame.onMouseEnter	=	"handleEntered();";

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

Availability
Available in version 3.0 or later.

onMouseExit
called when the mouse exits an object

Description
The onMouseExit	property specifies JavaScript code that will execute when the user
has moved the cursor from within the object to outside the object.

This is useful for triggering a visual change of the object based on a rollover state.

JavaScript
myObjectName.onMouseExit

Example
<frame>	
	 <onMouseExit>	
	 	 print("Sadly,	the	mouse	has	left	us.");	
	 </onMouseExit>	
</frame>	 	

myFrame.onMouseExit	=	"handleMouseExit();";

Availability
Available in version 3.0 or later.

onMouseMove
called when the mouse moves within an object and the mouse is down

Description
The onMouseMove property specifies JavaScript code that will execute when the user
drags the mouse cursor within the bounds of an object. The current mouse position is
available in the system.event object.

JavaScript
myObjectName.onMouseMove

�0 | WIDGET ENGINE 3.0 REFERENCE <frame>

Example
<frame>	
	 <onMouseMove>	
				print(system.event.x	+	",	"	+	system.event.y);	
	 </onMouseMove>	
</frame>	 	

myFrame.onMouseMove	=	"handleMouseMove();";

Availability
Available in version 3.0 or later.

onMouseUp
called on mouse up in an object

Description
The onMouseUp property specifies JavaScript code that will execute when the user has
released the mouse after having it down within the object.

This is useful for triggering a visual change of the object based on a pressed state.

Please note that onMouseUp will trigger even if the mouse is not inside the object when
the mouse is released. In order to create buttons which have correct mouse events you
must employ the use of all four mouse event handlers in order to communicate the
state of the mouse, and its intersection status (see the included Calendar Widget for an
example of this).

JavaScript
myObjectName.onMouseUp

Example
<frame>	
	 <onMouseUp>	
	 	 handleOnMouseUp();	
	 </onMouseUp>	
</frame>

myFrame.onMouseUp	=	'handleOnMouseUp();';

Availability
Available in version 3.0 or later.

<frame> WIDGET ENGINE 3.0 REFERENCE | �1

onMouseWheel
called when the mouse wheel is moved while over the frame

Description
The onMouseWheel property specifies JavaScript code that will execute when the user
moves the mouse wheel while hovering over the object. The delta can be gotten from
system.event.scrollDelta.

You normally don't need to use this hook, as when a scroll bar is attached to a frame, the
mouse wheel is handled for you automatically.

JavaScript
myObjectName.onMouseWheel

Example
<frame>	
	 <onMouseWheel>	
	 	 handleOnMouseWheel(system.event.scrollDelta);	
	 </onMouseWheel>	
</frame>

myFrame.onMouseWheel	=	'handleOnMouseWheel(
	 	 	 	 	 system.event.scrollDelta);';

Availability
Available in version 3.0 or later.

onMultiClick
a multiple click just occurred

Description
You can easily trap double-clicks (or triple-clicks, etc.) using the onMultiClick handler.
Whenever your onMultiClick handler is called, you can inspect system.event.
clickCount to see what the value is. It will always be 2 (for a double-click) or greater.

It is also possible to inspect this system.event.clickCount in an onMouseUp handler
as well in lieu of using onMultiClick. However, the advantage to using onMultiClick
is that it does not interfere with window dragging the way that onMouseUp does, i.e.
a mouse up handler on an image will prevent a window from being dragged if you
click that image. If your image only needs to respond to multi-clicks, you can use
onMultiClick and the Widget will still be able to be dragged as usual.

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

<onMultiClick>	
			if	(system.event.clickCount	==	2)	
						alert("Double	Click!");	
</onMultiClick>

Availability
Available in version 3.0 or later.

opacity
the opacity of an object

Description
The opacity property allows you to specify a value from 0 to 255 which controls the
alpha value with which the object is rendered. An opacity of 0 is completely transparent
(invisible) and has such side effects as preventing the object from reacting to mouse
events. A value of 255 will render the image at its natural opacity.

Example
<frame>	
	 <opacity>128</opacity>	
</frame>

myFrame.opacity	=	33;

Availability
Available in version 3.0 or later.

scrollX
the horizontal scrolling offset

Description
The scrollX property allows you to specify the horizontal scrolling offset. Setting
this property to -10 would scroll a frame's contents to the left 10 pixels, for example.
Normally you don't need to modify this property directly. Simply attaching a scroll bar
to a frame will cause this property to get updated as necessary to scroll the contents.

Example
<frame>	
	 <scrollX>-10</scrollX>	
</frame>

myFrame.scrollX	=	-20;

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

Availability
Available in version 3.0 or later.

scrollY
the vertical scrolling offset

Description
The scrollY	property allows you to specify the vertical scrolling offset. Setting this
property to -10 would scroll a frame's contents upward 10 pixels, for example. Normally
you don't need to modify this property directly. Simply attaching a scroll bar to a frame
will cause this property to get updated as necessary to scroll the contents.

Example
<frame>	
	 <scrollY>-10</scrollY>	
</frame>

myFrame.scrollY	=	-20;

Availability
Available in version 3.0 or later.

vAlign
controls the vertical alignment of an object

Description
The vAlign property of an object defines how it is positioned vertically relative to its
vOffset. For example, an image with a bottom alignment will be drawn so that its
bottom edge appears at the vOffset. If this tag is not specified, the default value is
"top".

Valid values are: "top",	"bottom"	or	"center".

JavaScript
myObjectName.vAlign

Example
<frame>	
	 <vAlign>bottom</vAlign>	
</frame>

myFrame.vAlign	=	"bottom";

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

Availability
Available in version 3.0 or later.

visible
controls the visibility of an image

Description
You can set the visible property of an image to show or hide it by setting it to true or
false, respectively. This allows you to hide objects without affecting their opacity, or
having to save off the current opacity to restore it later. The default visibility for any
object if not specified is true.

JavaScript
myObjectName.visible

Example
<frame>	
	 <visible>false</visible>	
</frame>

myFrame.visible	=	true;

Availability
Available in version 3.0 or later.

vLineSize
the size of a line of data for use when scrolling

Description
The vLineSize property specifies how far a frame should scroll (in pixels) if the
lineUp() or lineDown() functions are called. It is also factored in when the frame
reacts to the mouse wheel (if a scroll bar is attached). The default line size is 10 pixels.

JavaScript
myObjectName.vLineSize

Example
<frame>	
	 <vLineSize>5</vLineSize>	
</image>

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

myFrame.vLineSize	=	5;

Availability
Available in version 3.0 or later.

vOffset
the vertical offset of an image

Description
The vOffset property defines the vertical (top to bottom) offset for the object based on
0, 0 being the upper left hand corner of the object's parent view (superview). The greater
the value assigned, the farther down the object will appear.

JavaScript
object.vOffset

Example
<frame>	
	 <vOffset>20</vOffset>	
</frame>

Availability
Available in version 3.0 or later.

vScrollBar
the vertical scroll bar for this frame

Description
The vScrollBar attribute of a frame defines what scroll bar object should control the
vertical scrolling for this frame. When expressed in XML, you specify the name of a
<scrollbar> object you wish to bind to the frame for its vScrollBar. If the scroll bar
object does not exist, an error will appear in the Widget's debug window.

Attaching a scroll bar will do all the automatic setup for communicating between the
frame and the scroll bar.

JavaScript
myObjectName.vScrollBar

�� | WIDGET ENGINE 3.0 REFERENCE <frame>

Example
<frame>	
	 <vScrollBar>my_scrollbar</vScrollBar>	
</frame>	
<scrollbar	name="my_scrollbar"	...	/>	
	
//	in	Javascript:	
myFrame.vScrollBar	=	my_scrollbar;

Availability
Available in version 3.0 or later.

width
the width of an object

Description
The width property controls the horizontal size of an object. If none is specified (or it's
set to -1), a frame will use the vertical extent of its subviews to determine its size.

JavaScript

myObjectName.width

Example
<frame>	
	 <width>300</width>	
</frame>

myFrame.width	=	200;

Availability
Available in version 3.0 or later.

window
the window to which this object belongs.

Description
You can specify the window an object belongs to by specifying its name in the XML or
its variable in JavaScript. If you do not specify a window, the object is automatically
attached to the first window found in the XML description of a Widget.

<frame> WIDGET ENGINE 3.0 REFERENCE | ��

JavaScript
myObjectName.window

Example
<window	name="fred"	width="100"	height="100"/>	
<frame>	
	 <window>fred</window>	
</frame>	
	
//	Or	in	code	
var	myWind	=	new	Window();	
myFrame.window	=	myWind;	
	
//	You	can	also	specify	it	in	the	constructor	
	
var	myFrame	=	new	Frame(myWind);

Availability
Available in version 3.0 or later.

zOrder
the stacking order of an object

Description
The zOrder property defines the stacking order of an object. Objects with a higher
zOrder are drawn on top of those with lesser zOrders. Normally the zOrder is
determined by the order in which objects are defined in the XML file with earlier
objects being drawn under later ones but it can also be manipulated using JavaScript at
runtime.

JavaScript
myObjectName.zOrder

Example
<frame>	
	 <zOrder>10</zOrder>	
</frame>

myFrame.zOrder	=	customZOrder++;

Availability
Available in version 3.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE <hotkey>

<hotkey>
block defining a hotkey and associated default properties

Attributes
key	
modifier	
name	
onKeyDown	
onKeyUp

Description
The hotkey block in the XML file defines the initial key and modifier for a hotkey in
a Widget. Hotkeys are system level key triggers which allow Widgets to be accessed
via the keyboard. So, for example, a search Widget could be coded to come to the
foreground with a sequence like Control+Shift+F2.

Hotkey objects can also be created and destroyed dynamically via the JavaScript engine.
This can be useful if you allow the user to customize your Widget's hotkeys.

Note that some key combinations are reserved by the system (e.g. Control+Tab	on
Windows or Command+Tab on Mac OS X). On Mac OS X, if more than one Widget or
application uses the same hotkey then all receive a notification when the user presses
those keys. On Windows, only the first to try gets the hotkey.

JavaScript
newObjectName	=	new	HotKey()	
delete	newObjectName

Example
<hotkey	name="hkey1">	
		<key>F4</key>	
		<modifier>control+shift</modifier>	
		<onKeyDown>focusWidget();</onKeyDown>	
</hotkey>

key
the name of the function key

Description
On Mac OS X hotkeys can be defined for any of the following keys:

Delete,	End,	Escape,	ForwardDelete,	F1,	F2,	F3,	F4,	F5,	F6,	F7,	
F8,	F9,	F10,	F11,	F12,	F13,	F14,	F15,	F16,	Help,	Home,	PageDown,	
PageUp,	Space,	Tab

<hotkey> WIDGET ENGINE 3.0 REFERENCE | ��

On Windows the following keys can be used:

UpArrow,	DownArrow,	LeftArrow,	RightArrow,	F1,	F2,	F3,	F4,	F5,	
F6,	F7,	F8,	F9,	F10,	F11,	F12,	F13,	F14,	F15,	F16,	Insert,	
ForwardDelete,	Home,	End,	PageUp,	PageDown,	Help,	Clear,	
PrintScreen,	ScrollLock,	Pause,	Enter,	Return,	Backspace,	Delete,	
Space,	Tab,	Escape

At least one modifier is required which is Command on Mac OS X and Control on
Windows by default.

Hotkeys can also be defined for any letter or punctuation key but two modifiers must
be specified in this case (to avoid confusing users by having familiar key combinations
have unexpected effects).

JavaScript
myObjectName.key

Example
<hotkey	name="hkey1">	
	 <key>F2</key>	
</hotkey>

hkey1.key	=	"F2";

modifier
the modifier keys for the hotkey

Description
The modifier attribute can be any combination of:

On Mac OS X:	 	 command,	control,	option,	shift

On Windows:	 	 control,	alt,	shift

A modifier is always used and is Command on Mac OS X or Control on Windows by
default.

JavaScript
myObjectName.key

�0 | WIDGET ENGINE 3.0 REFERENCE <hotkey>

Example
<hotkey	name="hkey1">	
	 <key>Home</key>	
		<modifier>control+shift</modifier>	
</hotkey>

hkey1.key	=	"F2";

name
the reference name of an hotkey

Description
The name attribute of the hotkey block defines the name of the key when referenced by
JavaScript. Since the name is used for reference in code, it must not contain any spaces
or non ASCII characters.

The name of an object cannot be changed once it's assigned.

When creating a dynamic object via JavaScript, you use the name of the variable to
represent the new name of the object.

JavaScript
newObjectName	=	new	HotKey()

Example
<hotkey	name="hkey1">	
	 <key>F2</key>	
</hotkey>

hkey1.key	=	"F2";

onKeyDown
the code that is activated when a hotkey is pressed

Description
The code to be run when the hotkey is pressed is specified with the onKeyDown
attribute. Note, on Mac OS X it is generally best to attach key code to the onKeyUp
action as that is what users expect. However, note that only onKeyDown fires on
Windows.

JavaScript
newObjectName	=	new	HotKey()

<hotkey> WIDGET ENGINE 3.0 REFERENCE | �1

Example
<hotkey	name="hkey1">	
	 <key>F10</key>	
		<modifier>control</modifier>	
		<onKeyDown>	
				print("Hotkey	"	+	system.event.keyString	+		
										"	pressed");	
		</onKeyDown>	
</hotkey>

onKeyUp
the code that is activated when a hotkey is released

Description
The code to be run when the hotkey is released is specified with the onKeyUp attribute.

A common action to perform when a Widget's hotkey is pressed is focusWidget().

JavaScript
newObjectName	=	new	HotKey()

Example
<hotkey	name="hkey1">	
	 <key>F10</key>	
		<modifier>control</modifier>	
		<onKeyUp>focusWidget();</onKeyUp>	
</hotkey>

Windows Note
This trigger is not available on Windows.

�� | WIDGET ENGINE 3.0 REFERENCE 

alignment
direction the image is drawn from the defined origin point

Description
The alignment property of an image defines the initial horizontal alignment of the
image being rendered. For example, an image with a right alignment will be drawn so
that its right edge appears at the hOffset (see below). The default alignment is left.

Valid values are: left,	right	or	center.

JavaScript
myObjectName.alignment

�� | WIDGET ENGINE 3.0 REFERENCE 

myButton.alignment	=	"left";

clipRect
Controls what part of an image is visible.

Description
You can limit what part of an image is drawn by applying a clip rectangle to it.
Coordinates are given in X, Y, width, height order.

JavaScript
myObjectName.clipRect

Example
If you have a 100x100 image and only want to show the area starting at 20, 20 and
extending to 50, 50, you would add this tag to your image:



You can set or clear it at any time in Javascript as well:

myImage.clipRect	=	"20,	20,	30,	30";	
myImage.clipRect	=	null;

You can clear by setting to an empty string as well as null.

Availability
Available in version 2.0 or later.

colorize
Controls the overall colorization of an image.

Description
Colorize essentially turns an image into grayscale and, given a color, maps the color
onto the gray ramp. The image turns all shades of whatever color you specify. You can



To clear any colorization, just set it to null or an empty string in your code:

myImage.colorize	=	"";

Windows note: some 8-bit image formats (GIF) may not play well with colorization.

Availability
Available in version 2.0 or later. In version 3.0 or later, the format "r:0; g:0; b:0" can be
used.

contextMenuItems
Specifies an array of context menu items.

Description
You can add items to the standard context menu that appears when the user right-
clicks the mouse button on your Widget by adding contextMenuItems to your image.
This tag is actually valid for text, textArea, and window objects as well. You can also
dynamically build your context items by specifying some JavaScript to execute on your
onContextMenu tag (see onContextMenu for more information).

You specify your items by including an array of menuItem objects. See the section on
menuItem for more information about them.

JavaScript
myObjectName.contextMenuItems

�� | WIDGET ENGINE 3.0 REFERENCE 

See the onContextMenu section for an example of building a context menu in JavaScript.

Availability
Available in version 2.0 or later.

fillMode
Controls how an image fills its area.

Description
Normally, an image will always stretch to fill the area it should occupy if you specify a
width and height for the image. This tag allows you to override this and instead either
stretch or tile the image by specifying either "tile" or "stretch". If you were to use tiling,
you also might need to use the tileOrigin tag (described later).

If this tag is not specified, the default fill mode is "stretch".

JavaScript
myObjectName.fillMode

Example


You can also set these attributes of an image in JavaScript.

Availability
Available in version 2.0 or later.



myButton.height	=	30;

hAlign
Control the horizontal alignment of an image.

Description
This is a synonym for the alignment tag. See the description of that tag for information.

Availability
Available in version 2.0 or later.

hOffset
the horizontal offset of an image

Description
The hOffset attribute of the image block defines the horizontal (left to right) offset
for the image based on 0,0 being the upper left hand corner of the object's parent view
(superview). The greater the value assigned, the farther to the right the image will be
drawn.

JavaScript
myObjectName.hOffset

�� | WIDGET ENGINE 3.0 REFERENCE 

hRegistrationPoint
the horizontal offset for defining a registration point

Description
The hRegistrationPoint attribute of the image block defines the horizontal offset to
use for placing and/or rotating the image. For example, if you have an 8x8 image, and
you set the hRegistrationPoint to be 4, the image would draw centered based on
the hOffset you gave it.

JavaScript
myObjectName.hRegistrationPoint

Example
<image	src="hourHand.png">	
	 <hRegistrationPoint>4</hRegistrationPoint>	
</image>

Note
This attribute does not work correctly with hAlign/vAlign. Please use those tags if you
are trying to align something to an edge or to center it and reserve this tag for rotation
purposes.

hslAdjustment
Adjusts an image by adjusting it by HSL (Hue-Saturation-Lightness).

Description
HSL Adjustment works basically like you'd see in Photoshop's Adjust Hue/Saturation
dialog when "Colorize" is not checked. You can shift the hue as well as increase color
saturation and lightness. Hue can be adjusted from -180 to +180, saturation can be
adjusted from -100 to +100. And lightness can be adjusted from -100 to +100. Adjusting
the lightness upward may affect the saturation as well, so keep that in mind. You might
use this for a throbbing effect where you need to shift all pixel hues evenly. This is also
highly useful for doing things like changing an image to look selected by darkening it
(decrease the lightness by about -55).



To clear any adjustment, just set it to null or an empty string in your code:

myImage.hslAdjustment	=	"";

Windows note: some 8-bit image formats (GIF) may not play well with this feature.

Availability
Available in version 2.0 or later.

hslTinting
Colorize an image using HSL tweaking.

Description
HSL Tinting works basically like you'd see in Photoshop's Adjust Hue/Saturation
dialog when "Colorize" is checked. You can set the hue and color saturation while
adjusting lightness. Hue can be set from 0 to 360, saturation can be adjusted from 0 to
+100. And lightness can be adjusted from -100 to +100. Adjusting the lightness upward
may affect the saturation as well.

JavaScript
myObjectName.hslTinting

Example


To clear any tinting, just set it to null or an empty string in your code:

myImage.hslTinting	=	"";

Windows note: some 8-bit image formats (GIF) may not play well with this feature.

�0 | WIDGET ENGINE 3.0 REFERENCE 

Availability
Available in version 3.0 or later.

missingSrc
path to an image to display if the src cannot be loaded

Description
This property is used to customize the image that is displayed when an image's src
attribute cannot be loaded. The Widget Engine has a default 'missing' image for this
situation, but it might not be adequate for all situations. Typically you'd use this when
loading a remote source which might not exist or be accessible.

JavaScript
myImage.missingSrc = "images/missing.png";

Example
<image	src="http://www.imadethisup.com/notthere.jpg">	
	 <missingSrc>images/missing.png</missingSrc>	
</image>



myButton.hOffset	=	22;

onContextMenu
A context menu is about to appear. Time to add your items.

Description
The simplest way to specify context menu items that get added to the standard context
menu for a Widget is to use the contextMenuItems tag in the XML. However, for those
Widgets that need to build their items dynamically, the onContextMenu handler is your
hook to do so. When the menu is about to be presented, this is called for all elements
under the mouse from front to back in the view order until some view responds.
When handling this, you should simply build your context menu items and set your
contextMenuItems property to the array of items.

JavaScript
myImage.onContextMenu

�� | WIDGET ENGINE 3.0 REFERENCE 



myButton.onDragDrop	=	"handleDragDrop();";

onDragEnter
the script that gets called when an item is dragged into the object

Description
The onDragEnter attribute of the image block is a wrapper for JavaScript code that
will execute when the user has dragged an item from another application into the
object. This happens before the item is dropped (indeed it may not be dropped as the
user can change their mind).

This is useful for triggering a visual change of the object to indicate to the user that the
dragged object will be accepted or rejected if it is dropped. Information about the item
being dragged is contained in system.event.data (see onDragDrop for details).

JavaScript
myObjectName.onDragEnter

Example
<image src="well.png">
 <name>well</name>
 <onDragEnter>
 highlightDropTarget(well);
 </onDragEnter>
</image>

well.onDragEnter	=	"highlightDropTarget(well);";	 	

onDragExit
the script that gets called when an item is dragged out of the object

Description
The onDragExit attribute of the image block is a wrapper for JavaScript code that will
execute when the user has dragged an item from another application into the object and
then out again.

This is useful for undoing things that were done in onDragEnter.

�� | WIDGET ENGINE 3.0 REFERENCE 

well.onDragExit	=	"unhighlightDropTarget(well);";	

onImageLoaded
called when an asynchronously loaded image is finally loaded

Description
If the src property of an image points to a remote image, and the remoteAsync property
is set to true, images are fetched asynchronously. If you need to know when the image
finally loads, you can use this action to get notified when the image is done loading. You
might resize the image to the current native size of the image, or proportionally size it,
for example.

JavaScript
myObjectName.onImageLoaded

Example
<image src="http://www.some.remote.image.com/image.png">
 <onImageLoaded>
 print("image done loading");
 </onImageLoaded>
</text>
myImage.onImageLoaded = "print('image loaded');";

Availability
Available in version 3.0 or later.

onMouseDown
the script called when the mouse button is down inside the object

Description
The onMouseDown attribute of the image block is a wrapper for JavaScript code that



<image	src="button.png"	name="myButton">	
	 <onMouseDown>buttonCode.js</onMouseDown>	
</image>

myButton.onMouseDown	=	"doButtonHighlight(myButton);";

onMouseEnter
the script that gets called when the mouse rolls into the object

Description
The onMouseEnter attribute of the image block is a wrapper for JavaScript code that
will execute when the user has moved the cursor within the object.

This is useful for triggering a visual change of the object based on a rolled over state, or
for showing an object that's hidden unless you're hovering over the Widget.

JavaScript
myObjectName.onMouseEnter

Example
<image	src="button.png">	
	 <name>myButton</name>	
	 <onMouseEnter>	
	 	 myButton.src	=	"buttonOver.png";	
	 </onMouseEnter>	
</image>

myButton.onMouseEnter	=	"handleMouseEnter(myButton);";

�� | WIDGET ENGINE 3.0 REFERENCE 	 	

myButton.onMouseExit	=	"handleMouseExit(myButton);";

onMouseMove
the script that gets called when the mouse moves within an object

Description
The onMouseMove	attribute of the image block is a wrapper for JavaScript code that
will execute when the user drags the mouse cursor within the bounds of an object. The
current mouse position is available in the system.event object.

This is useful for moving an object around the Widget. The volume slider in the iTunes
Remote Widget is implemented using this action.

JavaScript
myObjectName.onMouseMove

	 	

myButton.onMouseMove	=	"handleMouseMove(myButton);";

onMouseUp
the script that gets called on mouse up in an object

Description
The onMouseUp attribute of the image block is a wrapper for JavaScript code that will
execute when the user has released the mouse after having it down within the object.

This is useful for triggering a visual change of the object based on a pressed state.

Please note that onMouseUp	will trigger even if the mouse is not inside the object with
the mouse is released. In order to create buttons which have correct mouse events you
must employ the use of all four mouse event handlers in order to communicate the
state of the mouse, and its intersection status (see the included Calendar Widget for an
example of this).

JavaScript
myObjectName.onMouseUp

Example
<image	src="button.png">	
	 <name>myButton</name>	
	 <onMouseUp>	
	 	 myButton.src	=	"button.png";	
	 </onMouseUp>	
</image>

myButton.onMouseUp	=	'handleOnMouseUp(myButton);';

onMultiClick
A multiple click just occurred.

Description
You can easily trap double-clicks (or triple-clicks, etc.) using the onMultiClick handler.

�� | WIDGET ENGINE 3.0 REFERENCE 

myButton.opacity	=	33;

remoteAsync
specifies whether remote images should be fetched asynchronously

Description
When set to true, remoteAsync tells the image object to load the image source in the
background, allowing your Widget to do other things in the meantime. If you wish to
specify an image to display while the image is being fetched, you can set the loadingSrc



myImage.remoteAsync = true;

Availability
Available in version 3.0 or later.

rotation
the degrees clockwise in which the image is rotated

Description
The rotation attribute of the image block defines by what degree, or fraction of a
degree, the image is rotated.

Rotation can be used for any number of purposes, but the most obvious example is to
accurately represent the hands of an analog clock.

JavaScript
myObjectName.rotation

Example
<image	src="hourHand.png">	
				<rotation>	
	 				180	
				</rotation>	
</image>	 	

src
the path to the image being displayed

Description
The src attribute for the image block defines the source of the image. It takes a path to
the file on your hard drive relative to the XML file of the Widget it's referenced from.

�0 | WIDGET ENGINE 3.0 REFERENCE 

They are also perfectly settable in Javascript.

Availability
Available in version 2.0 or later.

tooltip
the tooltip for an image object

Description
The tooltip attribute defines the text displayed in a popup tooltip window when the
mouse cursor rests over an image	object.

JavaScript
object.tooltip

Example
<image	src="Example.png">	
	 <tooltip>Example	tooltip</tooltip>	
</image>

�� | WIDGET ENGINE 3.0 REFERENCE 

vAlign
Controls the vertical alignment of an image

Description
The vAlign property of an image defines how it is positioned vertically relative to its



myButton.vAlign	=	"bottom";

Availability
Available in version 2.0 or later.

visible
Controls the visibility of an image

Description
You can set the visible property of an image to show or hide it by setting it to true or
false, respectively. This allows you to hide objects without affecting their opacity, or
having to save off the current opacity to restore it later. The default visibility for any
object if not specified is true.

JavaScript
myObjectName.visible

Example
<image	src="button.png">	
	 <visible>false</visible>	
</image>

myButton.visible	=	true;

Availability
Available in version 3.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE 

vRegistrationPoint
the vertical offset for defining a registration point

Description
The vRegistrationPoint attribute of the image block defines the vertical offset to
use for placing and/or rotating the image. For example, if you have an 8x8 image, and
you set the vRegistrationPoint to be 4, the image would draw centered on the
vOffset you gave it.

JavaScript
myObjectName.vRegistrationPoint

Example
<image	src="hourHand.png">	
	 <vRegistrationPoint>36</vRegistrationPoint>	
</image>

Note
This attribute does not work correctly with hAlign/vAlign. Please use those tags if you
are trying to align something to an edge or to center it and reserve this tag for rotation
purposes.



myButton.width	=	20;

window
The window to which this image belongs.

Description
You can specify the window an image belongs to by specifying its name in the XML or
its variable in JavaScript. If you do not specify a window, the image is automatically
attached to the first window found in the XML description of a Widget.

JavaScript
myObjectName.window

Example
<window	name="fred"	width="100"	height="100"/>	
<image	src="button.png">	
	 <window>fred</window>	
</image>	
	
//	Or	in	code	
var	myWind	=	new	Window();	
myImage.window	=	myWind;	
	
//	You	can	also	specify	it	in	the	constructor	for	an	image	
	
var	myImage	=	new	Image(myWind);

�� | WIDGET ENGINE 3.0 REFERENCE 

myButton.zOrder	=	customZOrder++;

<menuitem> WIDGET ENGINE 3.0 REFERENCE | ��

<menuItem>
block to define a menu item

Attributes
checked	
enabled	
onSelect	
title

Description
Menu items are used by the context menu arrays and handlers to provide extra items
for the standard Widget context menu.

Availability
Available in version 2.0 or later.

checked
Specifies an item is checked

Description
This attribute merely specifies that the item should have a check mark next to it when
displayed in the menu. If this attribute is not specified the default is false.

Example
<menuItem	name="myItem"		
			title="Widgetz	R0x0r!!!11"	checked="true"/>

//	or	in	JavaScript	
myItem.checked	=	true;

Availability
Available in version 2.0 or later.

enabled
Specifies an item is enabled

Description
This attribute merely specifies that the item should be enabled in the menu. If set to
false, the item appears grayed out and is not choosable by the user. If this attribute is
not specified, the default is true.

�� | WIDGET ENGINE 3.0 REFERENCE <menuitem>

Example

<menuItem	title="Recent	Locations"	enabled="false"/>

//	or	in	JavaScript	
myItem.enabled	=	false;

Availability
Available in version 2.0 or later.

onSelect
Specifies the JavaScript to run when an item is chosen.

Description
This attribute provides the action to carry out when an item is chosen from the context
menu.

Example

<menuItem	title="Recent	Locations"	enabled="false"	
			onSelect="beep();"/>

//	or	in	JavaScript	
myItem.onSelect	=	"beep();";

Availability
Available in version 2.0 or later.

title
Specifies the text of a menu item.

Description
This attribute provides the text to display for a menu item.

Example

<menuItem	title="I	am	the	title"/>

//	or	in	JavaScript	
myItem.title	=	"Choose	me!";

Availability
Available in version 2.0 or later.

<preference> WIDGET ENGINE 3.0 REFERENCE | ��

<preference>
block defining a preference setting and associated properties

Attributes
defaultValue	
description	
directory	
extension	
file	
group	
hidden	
kind	
maxLength	
minLength	
name	
notSaved	
option	
optionValue	
secure	
style	
ticks	
tickLabel	
title	
type	
value

Description
The preference block defines a block of information that is to be stored by the Widget
between open/closed sessions, as well as user entered data.

There are two preferences that are provided automatically:

windowLevel the level the Widget window displays at on the user's screen
floating, topMost, normal, below or desktop

windowOpacity the opacity of the Widget's window

These preferences allow the user to control how the Widget displays on their desktop.
If you want to provide this functionality yourself, all you have to do is call your
preferences the same names, windowLevel	and windowOpacity. If you want to
disable this feature, just define two preferences as follows in your Widget:

�0 | WIDGET ENGINE 3.0 REFERENCE <preference>

<preference	name="windowLevel">	
		<hidden>true</hidden>	
</preference>	
	
<preference	name="windowOpacity">	
		<hidden>true</hidden>	
</preference>

defaultValue
the default value of the preference

Description
The defaultValue attribute of the preference block specifies what the value should
be by default. This makes it possible to pre-populate your preferences as well as have
placeholders until the user enters proper data. This is the value your JavaScript code
will see if it accesses the preferences before the user has customized them.

Example
<preference	name="colorPref">	
	 <defaultValue>red</defaultValue>	
</preference>

colorPref.defaultValue	=	"red";

description
the descriptive text displayed in the preference panel

Description
The description attribute of the preference block defines the descriptive text that goes
underneath a preference when being displayed in the preference panel's user interface.

It's optional, but highly recommended, to explain the preference and its usage to your
users.

Example
<preference	name="colorPref">	
	 <description>	
	 	 Enter	the	desired	color	
	 </description>	
</preference>

<preference> WIDGET ENGINE 3.0 REFERENCE | �1

directory
the default starting directory for a preference of type selector

Description
Preferences of type selector can have their starting directory set using this attribute.

Example
<preference>	
	 <type>selector</type>	
	 <style>open</style>	
	 <directory>~/Documents</directory>	
</preference>

extension
the kind of file for a preference of type selector

Description
Preferences of type selector displaying an open system dialog can be limited to
returning only files with certain extensions using this attribute.

Example
<preference>	
	 <type>selector</type>	
	 <style>open</style>	
	 <extension>.jpg</extension>	
	 <extension>.gif</extension>	
	 <extension>.png</extension>	
</preference>

file
the default filename for a preference of type selector

Description
Preferences of type selector can have their default filename set using this attribute.

Example
<preference>	
	 <type>selector</type>	
	 <style>save</style>	
	 <file>~/Documents/myfile.foo</file>	
</preference>

�� | WIDGET ENGINE 3.0 REFERENCE <preference>

group
Group this preference belongs to

Description
As of version 2.0, the Preferences dialog for a Widget is broken into groups, and
displayed in a multi-pane dialog. This attribute tells the Widget Engine which
preference group this particular preference belongs to. If this attribute is not specified,
the preference is rolled into a 'General' group automatically.

Example
<preference>	
	 <type>selector</type>	
	 <style>save</style>	
	 <group>my_group</group>	
</preference>

The above example assumes that you've defined an appropriate preference group
called my_group in your XML someplace. See the section on preferenceGroup for more
information.

Availability
Available in version 2.0 or later.

hidden
is the preference presented to the user

Description
If a preference has the hidden attribute, the ability to edit or see that preference is not
offered to the end user. The preference can still be manipulated in JavaScript but it isn't
displayed on the Widget Preferences dialog. If a Widget has only hidden preferences,
the user is not offered the Widget Preferences option on the context menu. Hidden
preferences are often used to implement settings the user makes using controls on the
Widget rather than by opening the Widget Preferences dialog.

Example
<preference	name="colorPref">	
	 <hidden>true</hidden>	
	 <type>text</type>	
	 <defaultValue>red</defaultValue>	
</preference>

<preference> WIDGET ENGINE 3.0 REFERENCE | ��

kind
the kind of item for a preference of type selector

Description
Preferences of type selector displaying an open system dialog can be limited to
files, folders or both using this attribute.

Example
<preference>	
	 <type>selector</type>	
	 <style>open</style>	
	 <kind>folders</kind>	
</preference>

maxLength
the maximum value of a slider preference

Description
Used only for slider preferences currently, this is the maximum value the slider can
represent.

Example
<preference>	
	 <maxLength>200</maxLength>	
</preference>

minLength
the minimum value of a slider preference

Description
Used only for slider preferences currently, this is the minimum value the slider can
represent.

Example
<preference>	
	 <minLength>1</minLength>	
</preference>

�� | WIDGET ENGINE 3.0 REFERENCE <preference>

name
the reference name of a preference

Description
The name attribute of the preference block defines the name of the preference as
reference by JavaScript. Since the name is used for reference in code, it should not
contain any spaces or non ASCII characters.

Example
<preference>	
	 <name>colorPref</name>	
</preference>

notSaved
prevents a preference value from being automatically saved

Description
The notSaved attribute causes the preference not to be automatically saved in the
user's preference file for the Widget. This can be useful if you want to display a control
on the preferences panel but handle the value returned in code. In a way, this attribute is
the opposite of hidden.

Example
<preference>	
	 <notSaved>true</notSaved>	
</preference>

option
the choices for a preference of type popup

Description
Preferences of type popup are displayed as a popup menu in the Widget Preferences
dialog. Several option attributes may be used to provide a set of choices for a popup
menu.

Specifying the string (- for an option causes a separator to be displayed at that point in
the popup (which cannot be selected by the user).

<preference> WIDGET ENGINE 3.0 REFERENCE | ��

Example
<preference	name="colorPref">	
	 <type>popup</type>	
	 <option>Red</option>	
	 <option>White</option>	
	 <option>(-</option>	
	 <option>Blue</option>	
</preference>

optionValue
the values corresponding to the choices for a preference of type popup

Description
If you want the value returned when an option (see above) is choosen to be different,
specify an optionValue for each option. There should be an optionValue for every
option (note that if you use a "separator" option, see above, you will need to give it a
corresponding dummy optionValue	even though this value can never be returned).

Example
<preference	name="colorPref">	
	 <type>popup</type>	
	 <option>Red</option>	
	 <optionValue>#FF0000</optionValue>	
	 <option>White</option>	
	 <optionValue>#FFFFFF</optionValue>	
	 <option>(-</option>	
	 <optionValue>none</optionValue>	
	 <option>Blue</option>	
	 <optionValue>#0000FF</optionValue>	
</preference>

secure
specify that an attribute value should be saved securely

Description
Any type of preference can be secure which causes it's data to be saved in a manner
that cannot easily be read. This is useful for saving items such as passwords. text
preferences additionally display a "password" style user interface (bullets appear
instead of typed characters).

If the code that reads a previously secure preference is changed to be non-secure, the
value of the preference is reset to the defaultValue.

�� | WIDGET ENGINE 3.0 REFERENCE <preference>

Example
<preference>	
	 <type>text</type>	
	 <secure>yes</secure>	
</preference>

style
the dialog style for a preference of type selector

Description
Preferences of type selector can display either open or save system dialogs. The
former allows the user to choose existing files, the latter a place to save or create a new
file.

Example
<preference>	
	 <type>selector</type>	
	 <style>open</style>	
</preference>

ticks
the number of tick marks to display on a slider preference

Description
To make the slider display tick marks use the ticks attribute. A side effect of this is that
the slider also only returns values corresponding to the ticks.

For sliders, the minLength and maxLength attributes define the minimum and
maximum values that can be set. The first tick will correspond to minLength and the
last to maxLength.

Example
<preference>	
	 <type>slider</type>	
	 <ticks>10</ticks>	
	 <minLength>0</minLength>	
	 <maxLength>100</maxLength>	
</preference>

<preference> WIDGET ENGINE 3.0 REFERENCE | ��

tickLabel
labels for slider preferences

Description
To make the slider display labels under the track specify one or many tickLabels.
The labels are evenly distributed along the length of the slider.

Example
<preference>	
	 <type>slider</type>	
	 <tickLabel>One</tickLabel>	
	 <tickLabel>Volume</tickLabel>	
	 <tickLabel>Eleven</tickLabel>	
</preference>

title
the label displayed in the preference panel

Description
The title attribute of the preference block defines the label title that is displayed to the
user via the built in preference interface.

Example
<preference>	
	 <title>Color:</title>	
</preference>

type
the type of data and control to display

Description
The type attribute of the preference block defines what type of user interface object is
used to display the data choices.

Type can be one of:

checkbox	 display a checkbox to gather yes/no input. The value returned to the
Widget is either 0 or 1.

color	 display a color swatch and allow colors to be picked. The value
returned to the Widget is a standard color specifier like #123456.

�� | WIDGET ENGINE 3.0 REFERENCE <preference>

font display a font name and allow a font to be picked from those available
on the system. The font attribute of a Text object can be set to the value
returned.

hotkey	 display a hotkey and its modifier and allow alternative key
combinations to be chosen. The value returned can be used to set the
modifier and key for a Hotkey object.

popup	 display a choice and allow alternatives to be chosen from a Widget
specified list. A string is returned (either one of the options or, if
specified, one of the optionValues).

selector	 display a file name and allow other file names to be chosen. The value
returned to the Widget is the fully qualified pathname of the file (a web
style path with / separators).

slider	 display a slider and allow numeric values to be input. A numeric value
is returned.

text	 a standard text field in which the user can type text. A string is
returned (see the secure attribute for information on displaying
password style text fields).

Example
<preference>	
	 <type>checkbox</type>	
</preference>

value
the current value of the preference

Description
The value attribute of the preference contains the current value assigned to the
preference. This may have just been entered by the user or may have been read from the
Widget's preference file at startup time.

Note that the value attribute is always treated as a string even if it contains a number. If
you want to use a preference value as a number, use the appropriate conversion routine
when accessing it. For instance:

numberOfItems	=	int(preferences.numItems.value)	+	1;

<preferenceGroup> WIDGET ENGINE 3.0 REFERENCE | ��

<preferenceGroup>
A group to organize preferences

Attributes
name	
icon	
order	
title

Description
Preference groups allow you to organize your preferences when displayed in the
Preferences dialog. The dialog is displayed as a multi-pane dialog in version 2.0 and
later. You define your groups using preferenceGroups and then set the group attribute
of each preference you want in a particular group.

Availability
Preference groups were introduced in version 2.0

name
the name of this group

Description
This attribute defines the group name. This name is merely an identifier and should be
unique among all preference groups. When defining a preference item that belongs to
a group, it is this name you use to identify the group to which it belongs. It should not
be confused with the title attribute, which is the user-visible name that is shown in the
preferences window toolbar.

Example
<preferenceGroup	name="colors"	title="Colors"/>

Availability
Available in version 2.0 or later.

icon
The image to display for the group

Description
You can specify the image that is displayed in the dialog to represent your group. This
image must be 32x32 maximum at present. If you do not specify an icon, a default one

�0 | WIDGET ENGINE 3.0 REFERENCE <preferenceGroup>

will be provided for your group automatically.

Example
<preferenceGroup	icon="Resources/myPrefIcon.png"/>

Availability
Available in version 2.0 or later.

order
Defines which order your groups appear

Description
This property is used to help you control the order in which your preference groups
appear in the dialog. The numbering is completely up to you, but the lowest number is
displayed in the leftmost position.

Example
<preferenceGroup>	
	 title="First	Group"	
	 order="0"	
</preferenceGroup>	
<preferenceGroup>	
	 title="Second	Group"	
	 order="1"	
</preferenceGroup>

Availability
Available in version 2.0 or later.

title
The title of your preference group

Description
This property defines what text should appear below the icon of your preference group
in the dialog. These titles should generally be short and one or two words long.

<preferenceGroup> WIDGET ENGINE 3.0 REFERENCE | �1

Example
<preferenceGroup>	
	 title="General"	
	 order="0"	
</preferenceGroup>	
<preferenceGroup>	
	 title="Special"	
	 order="1"	
</preferenceGroup>

Availability
Available in version 2.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE <scrollbar>

<scrollbar>
specifies a scroll bar object

Properties
autoHide	
hAlign	
height	
hOffset	
max	
min	
onValueChanged	
opacity	
orientation	
pageSize	
thumbColor	
vAlign	
value	
visible	
width	
window	
zOrder

autoHide
specifies whether a scroll bar should hide when there's nothing to scroll

Description
This property is used to set the scroll bar into a mode where when there is nothing to
scroll the scroll bar will hide. The default of this property is false. If the scroll bar is not
set to auto-hide it instead becomes 50% transparent when there is nothing to scroll.

Example
<scrollbar>	
	 <autoHide>true</autoHide>	
</scrollbar>	
	
myScrollbar.autoHide	=	true;

Availability
Available in version 3.0 or later.

<scrollbar> WIDGET ENGINE 3.0 REFERENCE | ��

hAlign
control the horizontal alignment of an object

Description
The hAlign property of an object defines the initial horizontal alignment with respect to
its hOffset property. For example, an object with right alignment will be drawn so that
its right edge appears at the hOffset. The default alignment is "left".

Valid values are: "left",	"right"	or	"center".

JavaScript
myObjectName.alignment

Example
<scrollbar>	
	 <alignment>right</alignment>	
</scrollbar>	
	
myScrollbar.alignment	=	"left";

Availability
Available in version 3.0 or later.

height
the height of the object

Description
The height attribute controls the vertical dimension of an object. For horizontal
scroll bars, you do not need to specify a height. The size of the scroll bar images will
determine it. In general, you should not specify a height and instead ask the scrollbar
what its height is to layout your interface. This will insulate you from changes in the
scroll bar appearance in the future. Obviously, for a vertical scroll bar, you must set the
height to whatever your interface demands.

JavaScript

myObjectName.height

Example
<scrollbar>	
	 <height>300</height>	
</scrollbar>

myScrollbar.height	=	300;

�� | WIDGET ENGINE 3.0 REFERENCE <scrollbar>

Availability
Available in version 3.0 or later.

hOffset
the horizontal offset of an object

Description
The hOffset attribute of an object defines the horizontal (left to right) offset for the
image based on 0,0 being the upper left hand corner of the its parent view (superview).
The greater the value assigned, the farther to the right the object will appear.

JavaScript
myObjectName.hOffset

Example
<scrollbar>	
	 <hOffset>30</hOffset>	
</scrollbar>

Availability
Available in version 3.0 or later.

max
the maximum value of a scroll bar

Description
The max property defines the maximum value of a scroll bar. Together with min, it
defines the range of values the scroll bar can have. Values are pinned between min and
max.

If you merely attach a scroll bar to a frame, you would normally never need to deal with
this property. It all gets set up automatically in that situation.

If you do have a standalone scroll bar and wish to set the min, you must use the
setRange() function. You cannot modify this property directly in Javascript. However,
you can specify it in the XML for a scrollbar.

JavaScript
myObjectName.max

<scrollbar> WIDGET ENGINE 3.0 REFERENCE | ��

Example
<scrollbar>	
	 <min>0</min>	
	 <max>100</max>	
</scrollbar>

Availability
Available in version 3.0 or later.

min
the minimum value of a scroll bar

Description
The min property defines the minimum value of a scroll bar. Together with max, it
defines the range of values the scroll bar can have. Values are pinned between min and
max.

If you merely attach a scroll bar to a frame, you would normally never need to deal with
this property. It all gets set up automatically in that situation.

If you do have a standalone scroll bar and wish to set the max, you must use the
setRange() function. You cannot modify this property directly in Javascript. However,
you can specify it in the XML for a scrollbar.

JavaScript
myObjectName.min

Example
<scrollbar>	
	 <min>0</min>	
	 <max>100</max>	
</scrollbar>

Availability
Available in version 3.0 or later.

onValueChanged
called when a scroll bar's value changes

Description
This property contains the Javascript that is called whenever a scroll bar's value

�� | WIDGET ENGINE 3.0 REFERENCE <scrollbar>

changes.

If you merely attach a scroll bar to a frame, you would normally never need to specify
anything for this property. The frame will react to the scroll bar being dragged, etc.
automatically.

JavaScript
myObjectName.min

Example
<scrollbar	name="sb">	
	 <onValueChanged>	
	 	 print("Whoa!	value	is	now	"	+	sb.value);	
	 </onValueChanged>	
</scrollbar>

Availability
Available in version 3.0 or later.

opacity
the opacity of an object

Description
The opacity property allows you to specify a value from 0 to 255 which controls the
alpha value with which the object is rendered. An opacity of 0 is completely transparent
(invisible) and has such side effects as preventing the object from reacting to mouse
events. A value of 255 will render the image at its natural opacity.

Example
<scrollbar>	
	 <opacity>128</opacity>	
</scrollbar>

myScrollbar.opacity	=	33;

Availability
Available in version 3.0 or later.

<scrollbar> WIDGET ENGINE 3.0 REFERENCE | ��

orientation
the orientation of a scrollbar

Description
The orientation property allows you to specify the orientation of a scrollbar. It's
possible values are "vertical" and "horizontal". The default is "vertical".

Example
<scrollbar>	
	 <orientation>vertical</orientation>	
</scrollbar>

myScrollbar.orientation	=	"horizontal";

Availability
Available in version 3.0 or later.

pageSize
the page size of a scrollbar

Description
The pageSize property is used to help determine the size of the thumb for a
proportional scroll bar. Typically, this is the height of the view being scrolled (assuming
a vertical scroll bar).

If you have attached a scroll bar to a Frame for scrolling, you do not need to deal with
this property directly. It is all set up and handled automatically.

Example
<scrollbar>	
	 <pageSize>140</pageSize>	
</scrollbar>

myScrollbar.pageSize	=	100;

Availability
Available in version 3.0 or later.

�� | WIDGET ENGINE 3.0 REFERENCE <scrollbar>

thumbColor
the thumb color of a scrollbar

Description
The thumbColor property is used to control the tint of the thumb. The default thumb
in the standard scroll bar is a medium gray. The color you specified is applied via
colorization.

To clear the current color completely, you can set it to null in Javascript.

Example
<scrollbar>	
	 <thumbColor>#333366</thumbColor>	
</scrollbar>

myScrollbar.thumbColor	=	"#333366";	
myScrollbar.thumbColor	=	null;

Availability
Available in version 3.0 or later.

vAlign
controls the vertical alignment of an object

Description
The vAlign property of an object defines how it is positioned vertically relative to its
vOffset. For example, an image with a bottom alignment will be drawn so that its
bottom edge appears at the vOffset. If this tag is not specified, the default value is
"top".

Valid values are: "top",	"bottom"	or	"center".

JavaScript
myObjectName.vAlign

Example
<scrollbar>	
	 <vAlign>bottom</vAlign>	
</scrollbar>

myScrollbar.vAlign	=	"bottom";

Availability
Available in version 3.0 or later.

<scrollbar> WIDGET ENGINE 3.0 REFERENCE | ��

value
the current value of the scroll bar

Description
The value property contains the current value of the scroll bar. You can also use it to
set the value to some value between the scroll bar's minimum and maximum values. If
you specify a value less than the minimum or greater than the maximum, the value is
pinned to those values.

JavaScript

myObjectName.value

Example
<scrollbar>	
	 <min>-100</min>	
	 <max>100</max>	
	 <value>0</value>	
</scrollbar>

myScrollbar.value	=	10;

Availability
Available in version 3.0 or later.

visible
controls the visibility of an image

Description
You can set the visible property of an image to show or hide it by setting it to true or
false, respectively. This allows you to hide objects without affecting their opacity, or
having to save off the current opacity to restore it later. The default visibility for any
object if not specified is true.

JavaScript
myObjectName.visible

Example
<scrollbar>	
	 <visible>false</visible>	
</scrollbar>

myScrollbar.visible	=	true;

�0 | WIDGET ENGINE 3.0 REFERENCE <scrollbar>

Availability
Available in version 3.0 or later.

vOffset
the vertical offset of an image

Description
The vOffset property defines the vertical (top to bottom) offset for the object based on
0, 0 being the upper left hand corner of the object's parent view (superview). The greater
the value assigned, the farther down the object will appear.

JavaScript
object.vOffset

Example
<scrollbar>	
	 <vOffset>20</vOffset>	
</scrollbar>

Availability
Available in version 3.0 or later.

width
the width of an object

Description
The width attribute controls the horizontal dimension of an object. For vertical scroll
bars, you do not need to specify a width. The size of the scroll bar images will determine
it. In general, you should not specify a width and instead ask the scrollbar what its
width is to layout your interface. This will insulate you from changes in the scroll bar
appearance in the future. Obviously, for a horizontal scroll bar, you must set the width
to whatever your interface demands.

JavaScript

myObjectName.width

Example
<scrollbar>	
	 <width>300</width>	
</scrollbar>

<scrollbar> WIDGET ENGINE 3.0 REFERENCE | �1

myScrollbar.width	=	200;

Availability
Available in version 3.0 or later.

window
the window to which this object belongs.

Description
You can specify the window an object belongs to by specifying its name in the XML or
its variable in JavaScript. If you do not specify a window, the object is automatically
attached to the first window found in the XML description of a Widget.

JavaScript
myObjectName.window

Example
<window	name="fred"	width="100"	height="100"/>	
<scrollbar>	
	 <window>fred</window>	
</scrollbar>	
	
//	Or	in	code	
var	myWind	=	new	Window();	
myScrollbar.window	=	myWind;	
	
//	You	can	also	specify	it	in	the	constructor	
	
var	myFrame	=	new	ScrollBar(myWind);

Availability
Available in version 3.0 or later.

zOrder
the stacking order of an object

Description
The zOrder property defines the stacking order of an object. Objects with a higher
zOrder are drawn on top of those with lesser zOrders. Normally the zOrder is
determined by the order in which objects are defined in the XML file with earlier
objects being drawn under later ones but it can also be manipulated using JavaScript at
runtime.

�� | WIDGET ENGINE 3.0 REFERENCE <shadow>

JavaScript
myObjectName.zOrder

Example
<scrollbar>	
	 <zOrder>10</zOrder>	
</scrollbar>

myScrollbar.zOrder	=	customZOrder++;

Availability
Available in version 3.0 or later.

<shadow> WIDGET ENGINE 3.0 REFERENCE | ��

<shadow>
specifies shadow parameters for an object

Attributes
color/colour	
hOffset	
opacity	
vOffset

Description
The shadow element is currently only used in about-box text items. It allows you to
set a solid shadow on an item with a certain color and opacity. The h and vOffsets you
specify are offsets from the object you are shadowing (currently, text).

Availability
Available in version 2.1 or later.

color/colour
the color of the shadow

Description
Specifies the color of the shadow to cast.

Example
<shadow	color="#333333"/>

Availability
Available in version 2.1 or later.

hOffset
the horizontal offset of the shadow

Description
Specifies the horizontal offset from the original object to cast the shadow. A value of 1
would mean the shadow was offset 1 pixel to the right of the object.

Example
<shadow	hOffset="1"/>

�� | WIDGET ENGINE 3.0 REFERENCE <shadow>

Availability
Available in version 2.1 or later.

opacity
the opacity of the shadow

Description
Specifies the opacity of the shadow from 0 to 255, where 0 is completely transparent and
255 is completely opaque.

Example
<shadow	opacity="255"/>

Availability
Available in version 2.1 or later.

vOffset
the vertical offset of the shadow

Description
Specifies the vertical offset from the original object to cast the shadow. A value of 1
would mean the shadow was offset 1 pixel to below the object.

Example
<shadow	vOffset="1"/>

Availability
Available in version 2.1 or later.

<text> WIDGET ENGINE 3.0 REFERENCE | ��

<text>
block defining a text object and associated default properties

Attributes
alignment	
bgColor	
bgOpacity	
color	
contextMenuItems	
data	
font	
height	
hAlign	
hOffset	
name	
onContextMenu	
onDragDrop	
onDragEnter	
onDragExit	
onKeyUp	
onKeyDown	
onMouseDown	
onMouseEnter	
onMouseExit	
onMouseMove	
onMouseUp	
onMultiClick	
opacity	
shadow	
size	
style	
truncation	
visible	
vOffset	
width	
window	
zOrder

Description
The text block in the XML file defines the initial placement and mouse event scripts for
a static text object in a Widget.

Text objects can also be created and destroyed dynamically via the JavaScript engine.
This can be useful if you're creating a Widget that lists an indeterminate number of
items.

When you create more than one dynamic object with the same name, only the last

�� | WIDGET ENGINE 3.0 REFERENCE <text>

object created will receive property changing events via JavaScript. As a result you
should make sure that you're calling each dynamic object a unique name so they can be
referenced properly (using a JavaScript Array is often a good way to achieve this). For
more information on how to do this, look at how this works in our Stock Ticker Widget.

You can remove a dynamic object once you create it using the JavaScript delete
instruction.

JavaScript
newObjectName	=	new	Text()	
delete	newObjectName

alignment
direction the text draws from the defined origin point

Description
The alignment property of the text block defines the initial horizontal alignment of the
text being rendered.

Valid values are: left,	right	or	center.

Example
<text	data="Example	Text">	
	 <alignment>right</alignment>	
</text>

bgColor
the background color of a text object

Description
Sets the color of the background of a text object. Colors are specified as browser style
hex RGB triplets. For example:

#FF0000

is red.

Note that this property is closely linked with the bgOpacity property – both should be
set to get a visible result.

<text> WIDGET ENGINE 3.0 REFERENCE | ��

Example
<text	data="Example	Text">	
	 <bgColor>#FFFFFF</bgColor>	
	 <bgOpacity>150</bgOpacity>	
</text>

bgOpacity
the opacity of the background of a text object

Description
Set the opacity of the background of a text object. Opacities are specified as a number
between 0 and 255.

Note that this property is closely linked with the bgColor property – both should be
set to get a visible result.

Example
<text	data="Example	Text">	
	 <bgColor>#FFFFFF</bgColor>	
	 <bgOpacity>150</bgOpacity>	
</text>

color
color that the text object draws in

Description
Set the color of the text object. Colors are specified as browser style hex RGB triplets. For
example:

#FF0000

is red.

Example
<text	data="Example	Text">	
	 <color>#F42DA6</color>	
</text>

�� | WIDGET ENGINE 3.0 REFERENCE <text>

contextMenuItems
Specifies an array of context menu items.

Description
You can add items to the standard context menu that appears when the user right-clicks
the mouse button on your Widget by adding contextMenuItems to your text object.
This tag is actually valid for image, textArea, and window objects as well. You can also
dynamically build your context items by specifying some JavaScript to execute on your
onContextMenu tag (see onContextMenu for more information).

You specify your items by including an array of menuItem objects. See the section on
menuItem for more information about them.

JavaScript
myObjectName.contextMenuItems

Example
<text>	
...	
		<contextMenuItems>	
				<menuItem	title="Test"	onSelect="beep();"/>	
				<menuItem	title="Another	Test">	
						<onSelect>alert('hello');</onSelect>	
				</menuItem>	
		</contextMenuItems>	
</text>

See the onContextMenu section for an example of building a context menu in JavaScript.

Availability
Available in version 2.0 or later.

data
the text that the text object draws

Description
The text to be displayed. Note that any new lines or carriage returns in the text will be
converted to spaces before display.

Example
<text>	
		<data>Example	Text</data>	
</text>

<text> WIDGET ENGINE 3.0 REFERENCE | ��

font
the font that the text object draws using

Description
The name of the font to be used to render the text. If the specified font cannot be found
then the default System Font is used. Separate multiple font names with commas to
specify fallbacks (fonts that used in the event a preceding font isn't found on the user's
system).

Example
<text	data="Example	Text">	
	 Palatino	
</text>

text1.font	=	"Monaco,	Courier";

hAlign
Control the horizontal alignment of a text object.

Description
This is a synonym for the alignment tag. See the description of that tag for information.

Availability
Available in version 2.0 or later.

height
how tall the text object is made

Description
The height attribute controls the vertical dimension of the text object. If none is
specified, the object occupies just enough space to fit the text (rendered in the specified
font, size, etc). It is not usually necessary to specify the height of a text object.

JavaScript
myObjectName.height

Example
<text	data="Example	Text">	
	 <height>30</height>	
</text>

100 | WIDGET ENGINE 3.0 REFERENCE <text>

myLabel.height	=	30;

hOffset
the horizontal offset of a text object

Description
The hOffset attribute of the text block defines the horizontal (left to right) offset
for the text based on 0,0 being the upper left hand corner of the object's parent view
(superview). The greater the value assigned, the farther to the right the text will be
drawn.

JavaScript
myObjectName.hOffset

Example
<text	data="Example	Text">	
	 <hOffset>30</hOffset>	
</text>

name
the reference name of a text object

Description
The name attribute of the text block defines the name of the text object when
referenced by JavaScript. Since the name is used for reference in code, it must not
contain any spaces or non ASCII characters.

The name of an object cannot be changed once it's assigned.

When creating a dynamic object via JavaScript, you use the name of the variable to
represent the new name of the object.

JavaScript
newObjectName	=	new	Image()

Example
<text	data="Example	Text">	
	 <name>myText</name>	
</text>

myText.hOffset	=	22;

<text> WIDGET ENGINE 3.0 REFERENCE | 101

onContextMenu
A context menu is about to appear. Time to add your items.

Description
The simplest way to specify context menu items that get added to the standard context
menu for a Widget is to use the contextMenuItems tag in the XML. However, for those
Widgets that need to build their items dynamically, the onContextMenu handler is your
hook to do so. When the menu is about to be presented, this is called for all elements
under the mouse from front to back in the view order until some view responds.
When handling this, you should simply build your context menu items and set your
contextMenuItems property to the array of items.

JavaScript
myText.onContextMenu

Example
<onContextMenu>	
var	items	=	new	Array();	
items[0]	=	new	MenuItem();	
items[0].title	=	"This	is	the	title";	
items[0].enabled	=	false;	
items[0].checked	=	true;	
items[0].onSelect	=	"alert('you	chose	it!');";	
	
items[1]	=	new	MenuItem();	
items[1].title	=	"This	is	the	second	title";	
items[1].onSelect	=	"beep();";	
	
myText.contextMenuItems	=	items;	
</onContextMenu>

Availability
Available in version 2.0 or later.

onDragDrop
the script called when something is dropped on the object

Description
The onDragDrop trigger fires when a file, URL or string is dragged from another
application (e.g. the Finder) and dropped on the object.

In the onDragDrop action objects can access system.event.data to see what was
dropped. This is an array of strings the first element of which tells you what kind of
thing was dropped: filenames, urls or string. The remaining elements of the array

10� | WIDGET ENGINE 3.0 REFERENCE <text>

are the items that were dropped.

JavaScript
myObjectName.onDragDrop

Example
<text	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragDrop>	
	 	 if	(system.event.data[0]	==	"filenames")	
							{	
									processDroppedFiles(system.event.data);	
							}	
	 </onDragDrop>	
</text>

<text	data="Drop	Stuff	Here">	
	 <onDragDrop>dragCode.js</onDragDrop>	
</text>

dropper.onDragDrop	=	"handleDragDrop();";

onDragEnter
the script that gets called when an item is dragged into the object

Description
The onDragEnter attribute of the text block is a wrapper for JavaScript code that will
execute when the user has dragged an item from another application into the object.
This happens before the item is dropped (indeed it may not be dropped as the user can
change their mind).

This is useful for triggering a visual change of the object to indicate to the user that the
dragged object will be accepted or rejected if it is dropped. Information about the item
being dragged is contained in system.event.data (see onDragDrop for details).

JavaScript
myObjectName.onDragEnter

Example
<text	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragEnter>	
	 	 highlightDropTarget(dropper);	
	 </onDragEnter>	
</text>

<text> WIDGET ENGINE 3.0 REFERENCE | 10�

well.onDragEnter	=	"highlightDropTarget(well);";	 	

onDragExit
the script that gets called when an item is dragged out of the object

Description
The onDragExit attribute of the text block is a wrapper for JavaScript code that will
execute when the user has dragged an item from another application into the object and
then out again.

This is useful for undoing things that were done in onDragEnter.

JavaScript
myObjectName.onDragExit

Example
<text	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragExit>	
	 	 unhighlightDropTarget(dropper);	
	 </onDragExit>	
</text>

dropper.onDragExit	=	"unhighlightDropTarget(dropper);";	 	

onMouseDown
the script called when the mouse button is down inside the object

Description
The onMouseDown attribute of a text block is a wrapper for JavaScript code that will
execute when the user presses the mouse button down within the object.

This is useful for triggering a visual change of the object based on a pressed state.

JavaScript
myObjectName.onMouseDown

10� | WIDGET ENGINE 3.0 REFERENCE <text>

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <onMouseDown>	
	 	 myLabel.color	=	"#FF0000";	
	 </onMouseDown>	
</text>

<text	data="Example	Text"	name="myLabel">	
	 <onMouseDown>labelCode.js</onMouseDown>	
</text>

myLabel.onMouseDown	=	"doLabelHighlight(myLabel);";

onMouseEnter
the script that gets called when the mouse rolls into the object

Description
The onMouseEnter attribute of the text block is a wrapper for JavaScript code that
will execute when the user has moved the cursor within the object.

This is useful for triggering a visual change of the object based on a rolled over state, or
for showing an object that that's hidden unless you're hovering over the Widget.

JavaScript
myObjectName.onMouseEnter

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <onMouseEnter>	
	 	 myLabel.color	=	"#EEEEEE";	
	 </onMouseEnter>	
</text>

myLabel.onMouseEnter	=	"handleMouseEnter(myLabel);";	 	

onMouseExit
the script that gets called when the mouse rolls out of an object

Description
The onMouseExit	attribute of the text block is a wrapper for JavaScript code that
will execute when the user has moved the cursor from within the object to outside the

<text> WIDGET ENGINE 3.0 REFERENCE | 10�

object.

This is useful for triggering a visual change of the object based on a rolled over state, or
for re-hiding an object that that's hidden unless you're hovering over the Widget.

JavaScript
myObjectName.onMouseExit

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <onMouseExit>	
	 	 myLabel.color	=	"#FFFFFF";	
	 </onMouseExit>	
</text>		

myLabel.onMouseExit	=	"handleMouseExit(myLabel);";

onMouseMove
the script that gets called when the mouse moves within an object

Description
The onMouseMove	attribute of the text block is a wrapper for JavaScript code that
will execute when the user drags the mouse cursor within the bounds of an object. The
current mouse position is available in the system.event object.

This is useful for moving an object around the Widget. The volume slider in the iTunes
Remote Widget is implemented using this action.

JavaScript
myObjectName.onMouseMove

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <onMouseMove>	
				print(system.event.x	+	",	"	+	system.event.y);	
	 </onMouseMove>	
</text>		

myLabel.onMouseMove	=	"handleMouseMove(myLabel);";

10� | WIDGET ENGINE 3.0 REFERENCE <text>

onMouseUp
the script that gets called on mouse up in an object

Description
The onMouseUp attribute of the text block is a wrapper for JavaScript code that will
execute when the user has released the mouse after having it down within the object.

This is useful for triggering a visual change of the object based on a pressed state.

Please note that onMouseUp	will trigger even if the mouse is not inside the object with
the mouse is released. In order to create buttons which have correct mouse events you
must employ the use of all four mouse event handlers in order to communicate the
state of the mouse, and its intersection status (see the included Calendar Widget for an
example of this).

JavaScript
myObjectName.onMouseUp

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <onMouseUp>	
	 	 myLabel.color	=	"#FFFFFF";	
	 </onMouseUp>	
</text>

myLabel.onMouseUp	=	'handleOnMouseUp(myLabel);';

onMultiClick
A multiple click just occurred.

Description
You can easily trap double-clicks (or triple-clicks, etc.) using the onMultiClick handler.
This handler can be set on image, text, text area, and window objects. Whenever your
onMultiClick handler is called, you can inspect system.event.clickCount to see what the
value is. It will always be 2 (for a double-click) or greater.

It is also possible to inspect this system.event.clickCount in an onMouseUp handler as
well in lieu of using onMultiClick. However, the advantage to using onMultiClick is that
it does not interfere with window dragging the way that onMouseUp does, i.e. a mouse
up handler on a text item will prevent a window from being dragged if you click that
item. If your text item only needs to respond to a multi-clicks, you can use onMultiClick
and the Widget will still be able to be dragged as usual.

<text> WIDGET ENGINE 3.0 REFERENCE | 10�

<onMultiClick>	
			if	(system.event.clickCount	==	2)	
						alert("Double	Click!");	
</onMultiClick>

Availability
Available in version 2.0 or later.

opacity
how translucently the text displays

Description
The opacity attribute allows you to specify a value from 0 to 255 which controls the
alpha value with which the text is rendered. An opacity of 0 is completely transparent
(invisible) and has such side effects as preventing the object from reacting to mouse
events. A value of 255 will render the text 100% opaque.

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <opacity>128</opacity>	
</text>

myLabel.opacity	=	33;

scrolling
direction and type of animated scrolling

Description
The scrolling attribute can take values of off (the default), left, right,
autoLeft, or autoRight. If set, the text in the object scrolls continuously in the
direction specified reappearing on the opposite edge as it disappears.

The "auto" variants only scroll if the text is too big for the area specified for its display
(this is the most common use of scrolling, to make long text visible in a small space).

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <scrolling>autoLeft</scrolling>	
</text>

myLabel.scrolling	=	"off";

10� | WIDGET ENGINE 3.0 REFERENCE <text>

shadow
sets shadow parameters for a text object

Description
You can specify a shadow to be displayed underneath a text object using the shadow
attribute. To clear it, just set the shadow property to null. The shadow XML is the same
as that described in the <shadow> section.

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <shadow	hOffset="1"	vOffset="1"	color="#000000"/>	
</text>	
	
var	s	=	new	Shadow();	
s.hOffset	=	1;	
s.vOffset	=	1;	
s.color	=	"#000000";	
myLabel.shadow	=	s;	
myLabel2.shadow	=	s;

Availability
Available in version 3.0 or later.

size
font size for the text block

Description
The point size for the text object.

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <size>22</size>	
</text>

myLabel.size	=	33;

<text> WIDGET ENGINE 3.0 REFERENCE | 10�

style
the style of the text to display

Description
The style in which to render the text. Style can be any combination of:

italic,	bold,	narrow,	expanded,	condensed,	smallcap,	poster,	
compressed,	fixed

For example:

textObject.style	=	"bold;italic";

requests a bold, italic variation of the font named in the font attribute.

Note that the font must have the requested variation or else the style is ignored. Most
fonts support only two or three variations.

Windows Note: only Bold and Italic are valid styles.

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <style>bold</style>	
</text>

myLabel.style	=	'italic';

truncation
Specifies whether to truncate text with an ellipsis or not.

Description
Normally, a text object will draw without any truncation. If there is no room for the
entire text object to draw, it merely gets clipped. This tag allows you to instead specify
that if the width of the text object is too small for the text, truncate it intelligently using
an ellipse.

This tag only takes effect if there is a width specified for the text item, the text item is
longer than the width, and no scrolling attribute is specified. Valid values are "none",
"center", and "end".

110 | WIDGET ENGINE 3.0 REFERENCE <text>

Example
<text	data="Example	Text">	
	 <name>myLabel</name>	
	 <width>50</width>	
	 <truncation>end</truncation>	
</text>	
myLabel.truncation	=	"none";

Availability
Available in version 2.1 or later. "center" truncation is available in version 3.0 or later
only.

tooltip
the tooltip for a text object

Description
The tooltip attribute defines the text displayed in a popup tooltip window when the
mouse cursor rests over a text	object.

JavaScript
object.tooltip

Example
<text	data="Example	Text">	
	 <tooltip>Example	tooltip</tooltip>	
</text>

visible
Controls the visibility of a text object

Description
You can set the visible property of a text object to show or hide it by setting it to true
or false, respectively. This allows you to hide objects without affecting their opacity, or
having to save off the current opacity to restore it later. The default visibility for any
object if not specified is true.

JavaScript
myObjectName.visible

<text> WIDGET ENGINE 3.0 REFERENCE | 111

Example
<text	data="Example	Text">	
	 <visible>false</visible>	
</text>

myText.visible	=	true;

Availability
Available in version 3.0 or later.

vOffset
the vertical offset of a text object

Description
The vOffset attribute of the text block defines the vertical (top to bottom) offset
for the text based on 0,0 being the upper left hand corner of the object's parent view
(superview). The greater the value assigned, the farther down the text will be drawn.

JavaScript
object.vOffset

Example
<text	data="Example	Text">	
	 <vOffset>20</vOffset>	
</text>

width
how wide the text object is made

Description
The width attribute controls the horizontal dimension of the text object. If none is
specified, the object occupies just enough space to fit the text (rendered in the specified
font, size, etc). It is sometimes useful to specify the width of a text object when using the
scrolling attribute.

JavaScript
myObjectName.width

11� | WIDGET ENGINE 3.0 REFERENCE <text>

Example
<text	data="Example	Text">	
	 <width>30</width>	
</text>

myLabel.width	=	30;

window
The window to which this text belongs.

Description
You can specify the window a text object belongs to by specifying its name in the XML
or its variable in JavaScript. If you do not specify a window, the object is automatically
attached to the first window found in the XML description of a Widget.

JavaScript
myObjectName.window

Example
<window	name="fred"	width="100"	height="100"/>	
<text>	
	 <window>fred</window>	
</text>	
	
//	Or	in	code	
var	myWind	=	new	Window();	
myText.window	=	myWind;	
	
//	You	can	also	specify	it	in	the	constructor	
var	myText	=	new	Image(myWind);

Availability
Available	in	version	2.0	or	later.

zOrder
the stacking order of a text object

Description
The zOrder attribute of the text block defines the stacking order of the text. Objects
with a higher zOrder are drawn on top of those with lesser zOrders. Normally the
zOrder is determined by the order in which objects are defined in the XML file with
earlier objects being drawn under later ones but it can also be manipulated using

<text> WIDGET ENGINE 3.0 REFERENCE | 11�

JavaScript at runtime.

JavaScript
myObjectName.zOrder

Example
<text	data="Example	Text">	
	 <zOrder>10</zOrder>	
</text>

myLabel.zOrder	=	customZOrder++;

11� | WIDGET ENGINE 3.0 REFERENCE <textarea>

<textarea>
block defining a textarea object and associated default properties

Attributes
alignment	
bgColor	
bgOpacity	
color	
columns	
contextMenuItems	
bgColor	
bgOpacity	
data	
editable	
font	
height	
hAlign	
hOffset	
lines	
name	
onContextMenu	
onDragDrop	
onDragEnter	
onDragExit	
onGainFocus	
onKeyUp	
onKeyDown	
onKeyPress	
onLoseFocus	
onMouseDown	
onMouseEnter	
onMouseExit	
onMouseUp	
onMultiClick	
opacity	
secure	
scrollbar	
size	
spellcheck	
style	
tooltip	
visible	
vAlign	
vOffset	
width	
window	
zOrder

<textarea> WIDGET ENGINE 3.0 REFERENCE | 11�

Description
The textarea block in the XML file defines the initial placement and mouse event
scripts for an editable text object in a Widget.

textarea objects can also be created and destroyed dynamically via the JavaScript
engine.

When you create more than one dynamic object with the same name, only the last
object created will receive property changing events via JavaScript. As a result you
should make sure that you're calling each dynamic object a unique name so they can be
referenced properly (using a JavaScript Array is often a good way to achieve this).

You can remove a dynamic object once you create it using the JavaScript delete
instruction.

JavaScript
newObjectName	=	new	TextArea()	
delete	newObjectName

alignment
how the object is positioned relative to the given origin

Description
The alignment property of the textarea block defines how the object is positioned
relative to its hOffset and vOffset.

Valid values are: left,	right	or	center.

Note that this does not define the alignment of text within the textarea, rather how the
object is positioned within the Widget. left is the most usual value for this property.

Example
<textarea	data="Example	Text">	
	 <alignment>left</alignment>	
</textarea>

bgColor
the background color of a textarea object

Description
Set the color of the background of a textarea object. Colors are specified as browser style
hex RGB triplets. For example:

11� | WIDGET ENGINE 3.0 REFERENCE <textarea>

#FF0000

is red.

Note that this property is closely linked with the bgOpacity property – both should be
set to get a visible result.

Example
<textarea	data="Example	Text">	
	 <bgColor>#FFFFFF</bgColor>	
	 <bgOpacity>150</bgOpacity>	
</textarea>

bgOpacity
the opacity of the background of a textarea object

Description
Set the opacity of the background of a textarea object. Opacities are specified as a
number between 0 and 255.

Note that this property is closely linked with the bgColor property – both should be set
to get a visible result.

Example
<textarea	data="Example	Text">	
	 <bgColor>#FFFFFF</bgColor>	
	 <bgOpacity>150</bgOpacity>	
</textarea>

color
color that the text draws in

Description
Set the color of the text. Colors are specified as browser style hex RGB triplets. For
example:

#00FF00

is green.

If you set the color and bgColor to the same value you won't be able to see the text.

<textarea> WIDGET ENGINE 3.0 REFERENCE | 11�

Example
<textarea	data="Example	Text">	
	 <color>#F42DA6</color>	
</textarea>

columns
number of columns wide to make the object

Description
Instead of giving a width and height for textarea objects, their size can be specified in
terms of a number of columns and lines of text in the current font.

Note that using a proportional font makes the number of columns approximate.

Example
<textarea>	
	 <columns>40</columns>	
		<lines>10</lines>	
</textarea>

contextMenuItems
Specifies an array of context menu items.

Description
You can add items to the standard context menu that appears when the user right-
clicks the mouse button on your Widget by adding contextMenuItems to your text
area. This tag is actually valid for image, text, and window objects as well. You can also
dynamically build your context items by specifying some JavaScript to execute on your
onContextMenu tag (see onContextMenu for more information).

You specify your items by including an array of menuItem objects. See the section on
menuItem for more information about them.

JavaScript
myObjectName.contextMenuItems

11� | WIDGET ENGINE 3.0 REFERENCE <textarea>

Example
<textarea>	
		...	
		<contextMenuItems>	
				<menuItem	title="Test"	onSelect="beep();"/>	
				<menuItem	title="Another	Test">	
						<onSelect>alert('hello');</onSelect>	
				</menuItem>	
		</contextMenuItems>	
</textarea>

See the onContextMenu section for an example of building a context menu in JavaScript.

Availability
Available in version 2.0 or later.

data
the text that the textarea object contains

Description
The text to be edited. This is optional. If omitted, the user will be presented with an
empty text entry field.

Example
<textarea>	
		<data>Example	Text</data>	
</textarea>

editable
sets whether the text can be edited

Description
Set editable to false to make the textarea display only.

Example
<textarea	data="Example	Text">	
	 <editable>false</editable>	
</textarea>

ta1.editable	=	true;

<textarea> WIDGET ENGINE 3.0 REFERENCE | 11�

font
the font that the textarea uses

Description
The name of the font to be used to render the text. If the specified font cannot be found
then the default System Font is used. Separate multiple font names with commas to
specify fallbacks (fonts that used in the event a preceding font isn't found on the user's
system).

Example
<textarea	data="Example	Text">	
	 Palatino	
</textarea>

ta1.font	=	"Palatino,	Times";

hAlign
Control the horizontal alignment of a textarea object.

Description
This is a synonym for the alignment tag. See the description of that tag for information.

Availability
Available in version 2.0 or later.

height
how tall the textarea object is made

Description
The height attribute controls the vertical dimension of the textarea object.

JavaScript
myObjectName.height

Example
<textarea	data="Example	Text">	
	 <height>30</height>	
</textarea>

ta1.height	=	30;

1�0 | WIDGET ENGINE 3.0 REFERENCE <textarea>

hOffset
the horizontal offset of a textarea object

Description
The hOffset attribute of the text block defines the horizontal (left to right) offset
for the text based on 0,0 being the upper left hand corner of the object's parent view
(superview). The greater the value assigned, the farther to the right the text will be
drawn.

JavaScript
myObjectName.hOffset

Example
<textarea	data="Example	Text">	
	 <hOffset>30</hOffset>	
</textarea>

lines
number of lines high to make the object

Description
Instead of giving a width and height for textarea objects their size can be specified in
terms of a number of columns and lines of text in the current font.

Specifying a value of 1 for lines changes the behavior of the textarea object slightly.
Instead of wrapping, the text scrolls sideways when then the edge of the object is
reached while typing.

Example
<textarea>	
	 <columns>40</columns>	
		<lines>10</lines>	
</textarea>

name
the reference name of a textarea object

Description
The name attribute of the text block defines the name of the textarea object when
referenced by JavaScript. Since the name is used for reference in code, it must not
contain any spaces or non ASCII characters.

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1�1

The name of an object cannot be changed once it's assigned.

When creating a dynamic object via JavaScript, you use the name of the variable to
represent the new name of the object.

JavaScript
newObjectName	=	new	TextArea()

Example
<textarea	data="Example	Text">	
	 <name>myText</name>	
</textarea>

myText.hOffset	=	22;

onContextMenu
A context menu is about to appear. Time to add your items.

Description
The simplest way to specify context menu items that get added to the standard context
menu for a Widget is to use the contextMenuItems tag in the XML. However, for those
Widgets that need to build their items dynamically, the onContextMenu handler is your
hook to do so. When the menu is about to be presented, this is called for all elements
under the mouse from front to back in the view order until some view responds.
When handling this, you should simply build your context menu items and set your
contextMenuItems property to the array of items.

JavaScript
myTextArea.onContextMenu

Example
<onContextMenu>	
var	items	=	new	Array();	
items[0]	=	new	MenuItem();	
items[0].title	=	"This	is	the	title";	
items[0].enabled	=	false;	
items[0].checked	=	true;	
items[0].onSelect	=	"alert('you	chose	it!');";	
	
items[1]	=	new	MenuItem();	
items[1].title	=	"This	is	the	second	title";	
items[1].onSelect	=	"beep();";	
	
myTextArea.contextMenuItems	=	items;	
</onContextMenu>

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

onDragDrop
the script called when something is dropped on the object

Description
The onDragDrop trigger fires when a file, URL or string is dragged from another
application (e.g. the Finder) and dropped on the object.

In the "onDragDrop" action objects can access system.event.data to see what was
dropped. This is an array of strings the first element of which tells you what kind of
thing was dropped: filenames, urls or string. The remaining elements of the array
are the items that were dropped.

JavaScript
myObjectName.onDragDrop

Example
<textarea	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragDrop>	
	 	 if	(system.event.data[0]	==	"filenames")	
	 	 {	
	 	 	 dropper.data	=	runCommand("cat	"	+		
																												system.event.data[1]);	
	 	 }	
	 </onDragDrop>	
</textarea>

<textarea	data="Drop	Stuff	Here">	
	 <onDragDrop>dragCode.js</onDragDrop>	
</textarea>

dropper.onDragDrop	=	"handleDragDrop();";

onDragEnter
the script that gets called when an item is dragged into the object

Description
The onDragEnter attribute of the textarea block is a wrapper for JavaScript code
that will execute when the user has dragged an item from another application into the
object. This happens before the item is dropped (indeed it may not be dropped as the
user can change their mind).

This is useful for triggering a visual change of the object to indicate to the user that the
dragged object will be accepted or rejected if it is dropped. Information about the item
being dragged is contained in system.event.data (see onDragDrop for details).

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

JavaScript
myObjectName.onDragEnter

Example
<textarea	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragEnter>	
	 	 highlightDropTarget(dropper);	
	 </onDragEnter>	
</textarea>

well.onDragEnter	=	"highlightDropTarget(well);";	 	

onDragExit
the script that gets called when an item is dragged out of the object

Description
The onDragExit attribute of the textarea block is a wrapper for JavaScript code that
will execute when the user has dragged an item from another application into the object
and then out again.

This is useful for undoing things that were done in onDragEnter.

JavaScript
myObjectName.onDragExit

Example
<textarea	data="Drop	Stuff	Here">	
	 <name>dropper</name>	
	 <onDragExit>	
	 	 unhighlightDropTarget(dropper);	
	 </onDragExit>	
</textarea>

dropper.onDragExit	=	"unhighlightDropTarget(dropper);";	 	

onGainFocus
called when a textarea gets the keyboard focus

Description
This is called when a text area acquires the keyboard focus via a call to textarea.focus(),

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

or the user clicks in the text area. You might use this to draw a focus adornment to
indicate focus. Only editable text areas get the keyboard focus, and as such this action
will only be called for an editable text area.

JavaScript
NewObjectName.onGainFocus

Example
<textarea	data="Type	Stuff	Here">	
	 <name>typomatic</name>	
	 <onGainFocus>	
	 	 print("I	am	the	focus!");	
	 </onGainFocus>	
</textarea>

typomatic.onGainFocus	=	"print('focus	gained!');";

onKeyDown
the code that is activated when a key is pressed

Description
The code to be run when a key is pressed and the mouse cursor is within the bounds of
the textarea object is specified with the onKeyDown attribute. Note that it is generally
best to attach key code to the onKeyPress action for textareas as that works the way
users expect.

JavaScript
NewObjectName.onKeyDown

Example
<textarea	data="Type	Stuff	Here">	
	 <name>typomatic</name>	
	 <onKeyDown>	
	 	 print(system.event.key);	
	 </onKeyDown>	
</textarea>

typomatic.onKeyDown	=	"keypressed	=	true";

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

onKeyPress
the script called when a key is pressed and the textarea has focus

Description
The onKeyPress attribute of a textarea block is a wrapper for JavaScript code that
will execute when the user presses a key that will affect the object (unless steps are
taken, see below).

This is useful for performing validation of text entry. Normally any key pressed is
processed by the system and the appropriate change made to the textarea (adding a
character, deleting a word, etc), you can override this behavior by calling the textarea
method rejectKeyPress() which causes the key press to be ignored (it is always
available in system.event.key).

JavaScript
myObjectName.onKeyPress

Example
<textarea>	
	 <name>ta1</name>	
		<onKeyPress>	
						//	Convert	input	to	uppercase	
						var	key	=	system.event.key;	
						if	(key.charCodeAt(0)	>=	"A".charCodeAt(0)	&&	
										key.charCodeAt(0)	<=	"z".charCodeAt(0))	
						{	
								//	Tell	the	text	area	to	ignore	this	keyPress	
								ta1.rejectKeyPress();

	
								//	Append	an	upper	case	copy	of	the	key	pressed	
								ta1.replaceSelection(key.toUpperCase());	
						}	
		</onKeyPress>	
</textarea>

<textarea	data="Example	Text"	name="ta1">	
	 <onKeyPress>textareaCode.js</onKeyPress>	
</textarea>

ta1.onKeyPress=	"doProcessKeys(ta1);";

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

onKeyUp
the code that is activated when a key is released

Description
The code to be run when a key is pressed and the mouse cursor is within the bounds
of the textarea object is specified with the onKeyUp attribute (note that onKeyPress is
generally a better way to handle keystrokes in a textarea).

JavaScript
NewObjectName.onKeyUp

Example
<textarea	data="Type	Stuff	Here">	
	 <name>typomatic</name>	
	 <onKeyUp>	
	 	 print(system.event.key);	
	 </onKeyUp>	
</textarea>

typomatic.onKeyUp	=	"keypressed	=	true";

onLoseFocus
called when a textarea loses focus

Description
This is called when a text area that was previous focused via focus() has lost its focus.
You might use this to clear any focus adornment you might draw around the text area
to indicate focus. Only editable text areas get the keyboard focus, and as such this action
will only be called for an editable text area.

JavaScript
NewObjectName.onLoseFocus

Example
<textarea	data="Type	Stuff	Here">	
	 <name>typomatic</name>	
	 <onLoseFocus>	
	 	 print("I	lost	focus!");	
	 </onLoseFocus>	
</textarea>

typomatic.onLoseFocus	=	"print('focus	lost!');";

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

onMouseDown
the script called when the mouse button is down inside the object

Description
The onMouseDown attribute of a textarea block is a wrapper for JavaScript code that
will execute when the user presses the mouse button down within the object.

Since the mouse is used to move the insertion point, select text, etc care should be taken
when specifying mouse actions on textarea objects.

JavaScript
myObjectName.onMouseDown

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <onMouseDown>	
	 	 ta1.color	=	"#FF0000";	
	 </onMouseDown>	
</textarea>

<textarea	data="Example	Text"	name="ta1">	
	 <onKeyPress>textareaCode.js</onKeyPress>	
</textarea>

ta1.onMouseDown	=	"doHighlight(ta1);";

onMouseEnter
the script that gets called when the mouse rolls into the object

Description
The onMouseEnter attribute of the text block is a wrapper for JavaScript code that
will execute when the user has moved the cursor within the object.

Since the mouse is used to move the insertion point, select text, etc care should be taken
when specifying mouse actions on textarea objects.

JavaScript
myObjectName.onMouseEnter

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <onMouseEnter>	
	 	 ta1.color	=	"#EEEEEE";	
	 </onMouseEnter>	
</textarea>

ta1.onMouseEnter	=	"handleMouseEnter(ta1);";	 	

onMouseExit
the script that gets called when the mouse rolls out of an object

Description
The onMouseExit	attribute of the text block is a wrapper for JavaScript code that
will execute when the user has moved the cursor from within the object to outside the
object.

Since the mouse is used to move the insertion point, select text, etc care should be taken
when specifying mouse actions on textarea objects.

JavaScript
myObjectName.onMouseExit

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <onMouseExit>	
	 	 ta1.color	=	"#FFFFFF";	
	 </onMouseExit>	
</textarea>	 	

ta1.onMouseExit	=	"handleMouseExit(ta1);";

onMouseUp
the script that gets called on mouse up in an object

Description
The onMouseUp attribute of the text block is a wrapper for JavaScript code that will
execute when the user has released the mouse after having it down within the object.

Since the mouse is used to move the insertion point, select text, etc care should be taken
when specifying mouse actions on textarea objects.

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

Please note that onMouseUp	will trigger even if the mouse is not inside the object with
the mouse is released.

JavaScript
myObjectName.onMouseUp

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <onMouseUp>	
	 	 ta1.color	=	"#FFFFFF";	
	 </onMouseUp>	
</textarea>

ta1.onMouseUp	=	'handleOnMouseUp(ta1);';

onMultiClick
A multiple click just occurred.

Description
You can easily trap double-clicks (or triple-clicks, etc.) using the onMultiClick handler.
This handler can be set on image, text, text area, and window objects. Whenever your
onMultiClick handler is called, you can inspect system.event.clickCount to see what the
value is. It will always be 2 (for a double-click) or greater.

It is also possible to inspect this system.event.clickCount in an onMouseUp handler
as well in lieu of using onMultiClick. However, the advantage to using onMultiClick
is that it does not interfere with window dragging the way that onMouseUp does, i.e.
a mouse up handler on an textarea will prevent a window from being dragged if you
click that textarea. If your textarea only needs to respond to a multi-clicks, you can use
onMultiClick and the Widget will still be able to be dragged as usual.

<onMultiClick>	
			if	(system.event.clickCount	==	2)	
						alert("Double	Click!");	
</onMultiClick>

Availability
Available in version 2.0 or later.

1�0 | WIDGET ENGINE 3.0 REFERENCE <textarea>

opacity
how translucently the text displays

Description
The opacity attribute allows you to specify a value from 0 to 255 which controls the
alpha value with which the text is rendered. An opacity of 0 is completely transparent
(invisible) and has such side effects as preventing the object from reacting to mouse
events. A value of 255 will render the text 100% opaque.

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <opacity>128</opacity>	
</textarea>

ta1.opacity	=	33;

secure
sets the textarea to display bullets instead of text

Description
This property is used to mimick a password field, where the user cannot see the actual
text being typed, but rather just a series of bullet characters (small circles). This should
generally be used with 1 row of text.

Example
<textarea	data	=	"hello!">	
 <secure>true</secure>
</textarea>

Availability
Available in version 2.1 or later.

scrollbar
controls the display of a scrollbar on the textarea

Description
By default a textarea will display a vertical scrollbar. Use this attribute to turn it off.

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1�1

Example
<textarea	data="Example	Text">	
	 <scrollbar>false</scrollbar>	
</textarea>

ta1.scrollbar	=	true;

size
font size for the textarea block

Description
The point size for the textarea object.

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <size>22</size>	
</textarea>

ta1.size	=	33;

spellcheck
controls continuous spellchecking in the textarea

Description
By default a textarea will highlight spelling errors as the user types, this can be turned
off using this attribute.

Example
<textarea	data="Example	Text">	
	 <spellcheck>false</spellcheck>	
</textarea>

ta1.spellcheck	=	true;

style
font style for the textarea block

Description
The style in which to render the text. Style can be any combination of:

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

italic,	bold,	narrow,	expanded,	condensed,	smallcap,	poster,	
compressed,	fixed

For example:

textAreaObject.style	=	"bold;italic";

requests a bold, italic variation of the font named in the font attribute.

Note that the font must have the requested variation or else the style is ignored. Most
fonts support only two or three variations.

Example
<textarea	data="Example	Text">	
	 <name>ta1</name>	
	 <style>bold</style>	
</textarea>

ta1.style	=	'italic';

thumbColor
the thumb color of the scrollbar

Description
The thumbColor property is used to control the tint of the scroll bar thumb if your text
area has a scroll bar specified. The default thumb in the standard scroll bar is a medium
gray. The color you specified is applied via colorization.

To clear the current color completely, you can set it to null in Javascript.

Example
<scrollbar>	
	 <thumbColor>#333366</thumbColor>	
</scrollbar>

myScrollbar.thumbColor	=	"#333366";	
myScrollbar.thumbColor	=	null;

Availability
Available in version 3.0 or later. Currently only available on Windows.

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

tooltip
the tooltip for a textarea object

Description
The tooltip attribute defines the text displayed in a popup tooltip window when the
mouse cursor rests over a textarea.

JavaScript
object.tooltip

Example
<textarea	data="Example	Text">	
	 <tooltip>Example	tooltip</tooltip>	
</textarea>

visible
Controls the visibility of a textarea object

Description
You can set the visible property of a textarea object to show or hide it by setting it to
true or false, respectively. This allows you to hide objects without affecting their opacity,
or having to save off the current opacity to restore it later. The default visibility for any
object if not specified is true.

JavaScript
myObjectName.visible

Example
<textarea	data="Example	Text">	
	 <visible>false</visible>	
</textarea>

myTextArea.visible	=	true;

Availability
Available in version 3.0 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

vAlign
Controls the vertical alignment of a text area.

Description
The vAlign property of a text area defines how it is positioned vertically relative to its
vOffset. For example, a text area with a bottom alignment will be drawn so that its
bottom edge appears at the vOffset (see below). If this tag is not specified, the default
value is top.

Valid values are: top,	bottom	or	center.

JavaScript
myObjectName.vAlign

Example
<textarea	src="button.png">	
	 <vAlign>bottom</vAlign>	
</textarea>

myTextArea.vAlign	=	"bottom";

Availability
Available in version 2.0 or later.

vOffset
the vertical offset of a textarea object

Description
The vOffset attribute of the textarea block defines the vertical (top to bottom) offset
for the text based on 0,0 being the upper left hand corner of the object's parent view
(superview). The greater the value assigned, the farther down the text will be drawn.

JavaScript
object.vOffset

Example
<textarea	data="Example	Text">	
	 <vOffset>20</vOffset>	
</textarea>

<textarea> WIDGET ENGINE 3.0 REFERENCE | 1��

width
how wide the textarea object is made

Description
The width attribute controls the horizontal dimension of the textarea object.

JavaScript
myObjectName.width

Example
<textarea	data="Example	Text">	
	 <width>30</width>	
</textarea>

ta1.width	=	30;

See Also
columns

window
The window to which this textarea belongs.

Description
You can specify the window a textarea belongs to by specifying its name in the XML or
its variable in JavaScript. If you do not specify a window, the textarea is automatically
attached to the first window found in the XML description of a Widget.

JavaScript
myObjectName.window

Example
<window	name="fred"	width="100"	height="100"/>	
<textarea>	
	 <window>fred</window>	
</textarea>	
	
//	Or	in	code	
var	myWind	=	new	Window();	
myTextArea.window	=	myWind;	
	
//	You	can	also	specify	it	in	the	constructor	
var	myTextArea	=	new	Image(myWind);

1�� | WIDGET ENGINE 3.0 REFERENCE <textarea>

Availability
Available	in	version	2.0	or	later.

zOrder
the stacking order of a textarea object

Description
The zOrder attribute of the text block defines the stacking order of the text. Objects
with a higher zOrder are drawn on top of those with lesser zOrders. Normally the
zOrder is determined by the order in which objects are defined in the XML file with
earlier objects being drawn under later ones but it can also be manipulated using
JavaScript at runtime.

JavaScript
myObjectName.zOrder

Example
<textarea	data="Example	Text">	
	 <zOrder>10</zOrder>	
</textarea>

ta1.zOrder	=	customZOrder++;

<timer> WIDGET ENGINE 3.0 REFERENCE | 1��

<timer>
block to define a timer

Attributes
interval	
name	
ticking	
onTimerFired

Methods
reset()

Description
Timer objects allow you to perform a task at a periodic interval (e.g every 5 seconds)
or can be used to simply fire once at a later time. They are a replacement for the older
onTimer triggers in actions. They allow you to create multiple timers all running on
different frequencies. They can also be started and stopped without having to delete
them.

The intervals are not guaranteed to be exact. Timers run 'cooperatively' meaning that
they fire when the Widget is not busy doing other things. You cannot do high-precision
time-based actions in a timer.

Availability
Available in version 2.0 or later.

interval
This is simply the interval, in seconds the timer should fire. It can be expressed in floating
point, so if you want a timer to fire every half second, just specify 0.5 for this property. Each
time the timer fires, it executes the Javascript in the onTimerFired property.

JavaScript
object.interval

Example
<timer	name="myTimer">	
	 <interval>1.0</interval>	
</window>

myTimer.interval	=	1.0;

Availability
Available in version 2.0 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE <timer>

name
the reference name of a timer

Description
The name attribute of the preference block defines the name of the global variable to be
created in Javascript. Since the name is used for reference in code, it should not contain
any spaces or non ASCII characters. Once the name is used to build the object, it should
be considered to be invalid.

Example
<timer name="my_timer"/>

// then later in Javascript, you can reference by that name:
my_timer.interval = 10;

Availability
Available in version 2.0 or later.

ticking
This allows you to turn a timer on and off by setting it to true and false, respectively. If
you want to disable a timer for a while, just set ticking to false. Later, set it to true, and it
will start firing again. Once restarted, the next time it fires will be 'now' plus the interval.
So if you have a one second timer, it will fire one second after you set ticking to true.

JavaScript
object.ticking

Example
<timer	name="myTimer">	
	 <ticking>false</ticking>	
</timer>

myTimer.ticking	=	true;

Availability
Available in version 2.0 or later.

onTimerFired
This property contains the Javascript you want to execute when the timer is fired.

<timer> WIDGET ENGINE 3.0 REFERENCE | 1��

JavaScript
object.onTimerFired

Example
<timer	name="myTimer">	
	 <onTimerFired>alert('hello!');</onTimerFired>	
</timer>

myTimer.onTimerFired	=	"alert('fired!');";

Availability
Available in version 2.0 or later.

1�0 | WIDGET ENGINE 3.0 REFERENCE <widget>

<widget>
block to define the scope of the Widget

Attributes
author	
company	
copyright	
debug	
defaultTracking	
image	
minimumVersion	
option	
requiredPlatform	
version

Description
The outermost scope in the XML file is defined by the widget block. This groups
together all the objects that make up the Widget.

In version 3.0 and later, the widget object is accessible through the global object named,
surprisingly, 'widget'. Currently all attributes are read-only.

author
specifies the author's name
You can provide this optional piece of information for your Widget. In version 3.0 this
is used to display in our 'first run' security dialog so that people can see who wrote the
Widget (along with the 'company' attribute). In the future, this information will be used
in other areas of the interface, so it's a good idea to supply author and/or company and
copyright attributes.

Availability
Available in version 3.0 or later.

company
specifies the company name
You can provide this optional piece of information for your Widget. In version 3.0 this is
used to display in our 'first run' security dialog so that people can see what company is
publishing the Widget. In the future, this information will be used in other areas of the
interface, so it's a good idea to supply author and/or company and copyright attributes.

<widget> WIDGET ENGINE 3.0 REFERENCE | 1�1

Availability
Available in version 3.0 or later.

copyright
specifies the Widget's copyright string
You can provide this optional piece of information for your Widget. In the future, this
information will be used in other areas of the interface, so it's a good idea to supply
author and/or company and copyright attributes.

Availability
Available in version 3.0 or later.

debug
control if the debug console is shown for this Widget

Description
If you need to enable or suppress debug output, add this block inside the widget block.

<debug>errors</debug>	
Turns Widget debug information on if an error occurs while the Widget is running.
Errors can be JavaScript or Widget Engine runtime messages. This is the default.

<debug>on</debug>	
Turns Widget debug information on when the Widget is opened (useful when
developing a Widget).

<debug>off</debug>	
Keeps Widget debug information off when the Widget is opened even if errors occur.
This mode should only be used when a Widget is thoroughly debugged. Note that if a
Widget generates 10 errors the debug console is displayed no matter what the setting of
this option is.

<debug>verbose</debug>	
Turns Widget debug information on when the Widget is opened and causes information
about object actions and other automatically triggered events to be displayed (useful
when developing a Widget).

Notes
In version 2.0.1 or later, you can hold control-option while selecting the Gear menu and
a "Debug Mode" option will be presented. Checking that will enable debugging for any
Widget launched after that option is turned on. This means you don't necessarily need
to set the debug attribute in a Widget any longer.

1�� | WIDGET ENGINE 3.0 REFERENCE <widget>

defaultTracking
set the default tracking style for images

Description
The defaultTracking attribute specifies whether the default cursor tracking style for
images. It can be either opacity (the default) or rectangle which makes images
clickable anywhere inside their bounding rectangle instead of only on their non-
transparent parts.

Example
<widget	defaultTracking="rectangle">	
	 ...	
</widget>

image
specifies the Widget's icon/image
You can provide this optional piece of information for your Widget. This attribute
contains the relative path to a 150x150 image to display to represent your Widget.
Currently, this image is only displayed in our standard Security dialog when an
unknown Widget is run for the first time, or has been modified since last run. In the
future it will be used in other areas of the interface, so it's a good idea to supply an
image for your Widget along with author/company/copyright information.

Availability
Available in version 3.0 or later.

minimumVersion
the minimum version of the Widget Engine that is required to run this Widget

Description
Specifying minimumVersion for a Widget causes the Widget Engine to check it against
the version of the engine that is currently running. If the current version is less than the
version specified, an error message is displayed to the user and the Widget won't run.

Example
<widget	minimumVersion="1.5">	
	 ...	
</widget>

Starting in version 3.0 and later, this attribute also tells the Widget Engine that it can
enable new behaviors. We use this as a clue that the Widget has been modified to

<widget> WIDGET ENGINE 3.0 REFERENCE | 1��

work with the minimum version specified and as such, has been adjusted to behave
correctly with that version. With this mechanism, we allow older Widgets to continue
to run unmodified, but newer/modified Widgets who advertise their support for 3.0 to
possibly require modifications to run in the new environment. This basically allows us
to change the way things work without breaking existing Widgets.

option
various Widget options

Description
These options affect the behavior of the Widget as a whole.

<option>allowCustomObjectAttributes</option>	
When this Widget attribute is specified, custom object attributes are allowed, and will
not trigger debug errors. This is an advanced feature for people who are comfortable
with the JavaScript object model and has the drawback that simple typos in object
attribute names (e.g. hOffset) can be very difficult to locate.

<option>dontRememberWindowPosition</option>	
This option tells the Widget Engine to not save the window position of this Widget
when it is closed. Normally, the positions of all Widgets are remembered between
invocations of the Widget Engine so the user can lay out their desktop just as they like
but some kinds of Widgets work better by positioning themselves programmatically
each time they run.

<option>allowArbitraryXML</option>	
This turns off checking for valid XML tags and attribute names. If you want to embed
XML not recognized by the Widget Engine in your Widget you should specify this
option to avoid getting errors (note that the additional XML must be well formed). It is
rare that this option is required.

requiredPlatform
specifies if this Widget requires a particular platform to run
While it is preferred that Widgets run on all platforms that the Widget Engine supports,
at times Widgets might make use of highly specific platform features (such as COM on
Windows). To indicate that your Widget requires a particular platform, you can specify
this attribute with the values "macintosh" or "windows".

Availability
Available in version 1.8 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE <widget>

version
the version number of your Widget
You can specify the current version of your Widget in this attribute. If you make use of
the <about-version> object in your <about-box> object, this is the information that gets
displayed.

Availability
Available in version 1.5 or later.

<window> WIDGET ENGINE 3.0 REFERENCE | 1��

<window>
block that defines the main window of the Widget

Attributes
alignment	
contextMenuItems	
height	
hOffset	
level	
name	
onContextMenu	
onFirstDisplay	
onGainFocus	
onLoseFocus	
onMultiClick	
opacity	
shadow	
title	
visible	
vOffset	
width

Description
The window block describes the size and position of a Widget window. This window is
always transparent and only the images and text objects you put in it are visible to the
user.

Multiple Windows
Starting in version 2.0, you can have multiple windows in your Widgets. You attach the
objects (images, text, etc.) to your window by specifying the variable of a window as the
window attribute of the object. This way, each object knows where they live.

If you give your window a name (either in the XML or in a JavaScript constructor), the
Widget Engine will track the windows position and save it to preferences automatically
for you. Unnamed windows will not have their preferences saved (they are usually a
small transient window such as a bezel so there's no point).

Each window maintains its own window level. However, if the user sets the Widget's
level in the Preferences dialog to a value, all windows will be set to that value. If
you don't wish a window to take on such a value, reset it to what you like in an
onPreferencesChanged handler.

1�� | WIDGET ENGINE 3.0 REFERENCE <window>

alignment
how the window is aligned relative to its screen position

Description
This specifies the alignment of the Widget's window relative to its hOffset and
vOffset. Possible values are left, right or center. A window that is left aligned
will have its top left corner positioned at the specified offsets; a right aligned window
will have its top right corner positioned at the offsets; a center aligned window will be
positioned so that its top center falls on the offsets.

The default window alignment is center.

JavaScript
object.alignment

Example
<window	title="My	Widget">	
	 <alignment>left</alignment>	
</window>

myWindow.alignment	=	"left";

contextMenuItems
Specifies an array of context menu items.

Description
You can add items to the standard context menu that appears when the user right-
clicks the mouse button on your Widget by adding contextMenuItems to your window.
This tag is actually valid for text, textArea, and image objects as well. You can also
dynamically build your context items by specifying some JavaScript to execute on your
onContextMenu tag (see onContextMenu for more information).

You specify your items by including an array of menuItem objects. See the section on
menuItem for more information about them.

JavaScript
myObjectName.contextMenuItems

<window> WIDGET ENGINE 3.0 REFERENCE | 1��

Example
<window>	
...	
<contextMenuItems>	
			<menuItem	title="Test"	onSelect="beep();"/>	
			<menuItem	title="Another	Test">	
						<onSelect>alert('hello');</onSelect>	
			</menuItem>	
</contextMenuItems>	
...	
</window>

See the onContextMenu section for an example of building a context menu in
JavaScript.

Availability
Available in version 2.0 or later.

height
how tall the window can be

Description
This specifies the height of the Widget's window in pixels.

JavaScript
object.height

Example
<window	title="My	Widget">	
	 <height>200</height>	
</window>

myWindow.height	=	250;

hOffset
what the initial horizontal placement of the window is

Description
The hOffset attribute of the window block defines the horizontal (left to right) offset
for the window based on 0,0 being the upper left hand corner of the screen. The greater
the value assigned, the farther across the screen the window will appear.

1�� | WIDGET ENGINE 3.0 REFERENCE <window>

If you do not specify a value for hOffset in the XML then it will appear as –1
(minus one) in the onLoad action of the Widget. This allows you to programmatically
determine the initial window position (for example, place it in the lower right corner no
matter the screen resolution).

JavaScript
object.hOffset

Example
<window	title="My	Widget">	
	 <hOffset>200</hOffset>	
</window>

myWindow.hOffset	=	250;

level
where the window sits in relation to others

Description
This attribute can have one of the following values: konspose,	desktop,	below,	
normal,	topmost	or	floating. It specifies how the window behaves with respect
to other windows on the desktop, whether it appears below others or floats above
everything (konspose means it only appears in Konsposé mode). The default is
normal.

JavaScript
object.level

Example
<window	title="My	Widget">	
	 <level>below</level>	
</window>

myWindow.level	=	'normal';

name
name of the window

Description
Name used to identify the window in JavaScript.

<window> WIDGET ENGINE 3.0 REFERENCE | 1��

JavaScript
object.name

Example
<window	title="My	Widget">	
	 <name>myWindow</name>	
</window>

print(myWindow.name);

onContextMenu
A context menu is about to appear. Time to add your items.

Description
The simplest way to specify context menu items that get added to the standard context
menu for a Widget is to use the contextMenuItems tag in the XML. However, for those
Widgets that need to build their items dynamically, the onContextMenu handler is your
hook to do so. When the menu is about to be presented, this is called for all elements
under the mouse from front to back in the view order until some view responds.
When handling this, you should simply build your context menu items and set your
contextMenuItems property to the array of items. The window always gets a chance to
add items, regardless of if a view in front of it handled this message itself.

JavaScript
myWindow.onContextMenu

Example
<onContextMenu>	
var	items	=	new	Array();	
items[0]	=	new	MenuItem();	
items[0].title	=	"This	is	the	title";	
items[0].enabled	=	false;	
items[0].checked	=	true;	
items[0].onSelect	=	"alert('you	chose	it!');";	
	
items[1]	=	new	MenuItem();	
items[1].title	=	"This	is	the	second	title";	
items[1].onSelect	=	"beep();";	
	
myWindow.contextMenuItems	=	items;	
</onContextMenu>

Availability
Available in version 2.0 or later.

1�0 | WIDGET ENGINE 3.0 REFERENCE <window>

onFirstDisplay
Specifies an action to carry out the very first time a window is displayed.

Description
The very first time a window is ever shown in a Widget (i.e. we see that it has no saved
preferences for position, etc.), any onFirstDisplay handler on the window is called.
This allows a Widget to decide where it should appear the very first time the Widget is
launched.

Example
<onFirstDisplay>	
				setInitialPosition();	
</onFirstDisplay>

Remember, this is only sent the first time the window appears. Once the prefs are saved
for that window, you will never receive this message again.

Availability
Available in version 2.0 or later.

onGainFocus
Handle window-specific activation.

Description
This handler allows you to be informed when your window becomes active. You can
use this time to put up adornments, etc. to show that you are active if you wish. In
versions prior to 2.0 you could only do this at the Widget level. With the advent of
multiple windows in 2.0, you should generally move to use window-specific handlers
instead.

Example
<onGainFocus>	
			showPlayButton();	
</onGainFocus>

Availability
Available in version 2.0 or later.

<window> WIDGET ENGINE 3.0 REFERENCE | 1�1

onLoseFocus
Handle window-specific deactivation.

Description
This handler allows you to be informed when your window becomes inactive. You
can use this time to remove any adornments, etc. you might have been showing while
active. In versions prior to 2.0 you could only do this at the Widget level. With the
advent of multiple windows in 2.0, you should generally move to use window-specific
handlers instead.

Example
<onLoseFocus>	
			hidePlayButton();	
</onLoseFocus>

Availability
Available in version 2.0 or later.

onMultiClick
A multiple click just occurred.

Description
You can easily trap double-clicks (or triple-clicks, etc.) using the onMultiClick handler.
This handler can also be set on image, text, and text area objects. Whenever your
onMultiClick handler is called, you can inspect system.event.clickCount to see what the
value is. It will always be 2 (for a double-click) or greater.

It is also possible to inspect this system.event.clickCount in an onMouseUp handler as
well in lieu of using onMultiClick.

<onMultiClick>	
			if	(system.event.clickCount	==	2)	
						alert("Double	Click!");	
</onMultiClick>

Availability
Available in version 2.0 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE <window>

opacity
how translucently the window displays

Description
A value from 0 to 255 which affects the opacity of the entire window and its contents.

JavaScript
object.opacity

Example
<window	title="My	Widget">	
	 <opacity>180</opacity>	
</window>

myWindow.opacity	=	255;

shadow
if the window casts an Aqua generated shadow

Description
Controls whether the Widget has an Aqua shadow.

This attribute is not applicable on Windows.

Note: as of Mac OS X 10.2, there's an additional gray border that gets placed around the
window when you turn on this feature. Keep this in mind when designing your Widget.

JavaScript
object.shadow

Example
<window	title="My	Widget">	
	 <shadow>false</shadow>	
</window>

myWindow.shadow	=	true;

Windows Note
Window shadows are not currently supported on the Windows platform. If you decide
to render your artwork with your own shadows, be sure to set the shadow property of
your window to 0. If not, when and if Windows does support shadows you'll end up
with a double-shadow.

<window> WIDGET ENGINE 3.0 REFERENCE | 1��

title
name of the window for display

Description
This is currently used as the name for the Widget in the context menu.

JavaScript
object.title

Example
<window>	
	 <title>My	Widget</title>	
</window>

myWindow.title	=	"My	New	Widget";

visible
if the window is visible to the user

Description
Useful for hiding an initial building of a dynamic Widget by setting it to false in the
XML definition of the window and then setting it to true at end of the onLoad trigger
once the Widget has been constructed.

Note that if the visible attribute is false your Widget won't appear on the screen and
you won't be able to interact with it.

JavaScript
object.visible

Example
<window	title="My	Widget">	
	 <visible>false</visible>	
</window>

myWindow.visible	=	true;

1�� | WIDGET ENGINE 3.0 REFERENCE <window>

vOffset
what the initial vertical placement of the window is

Description
The vOffset attribute of the window block defines the vertical (top to bottom) offset
for the window based on 0,0 being the upper left hand corner of the screen. The greater
the value assigned, the farther down the window will appear.

If you do not specify a value for vOffset in the XML then it will appear as –1 (minus
one) in the onLoad action of the Widget. This allows you to programmatically determine
the initial window position (for example, place it in the lower right corner no matter the
screen resolution).

JavaScript
object.vOffset

Example
<window	title="My	Widget">	
	 <vOffset>200</vOffset>	
</window>

width
how wide the window can be

Description
This specifies the width of the Widget's window in pixels.

JavaScript
object.width

Example
<window	title="My	Widget">	
	 <width>200</width>	
</window>

myWindow.width	=	250;

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

JavaScript Reference

This section describes the extensions to JavaScript that are provided by the Widget
Engine. If JavaScript is new to you, consider obtaining a guide to the language to help
with its syntax and structure. The Yahoo! Widget Engine implements a JavaScript
engine (Mozilla Spidermonkey) that conforms to the JavaScript 1.5 standard (ECMA-
262, revision 3).

The Widget Engine's extensions fall into several categories:

• global functions

• system functions

• system attributes

• system objects

• Widget Engine object methods

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Global Functions
These can be used anywhere in your JavaScript.

alert()
display an alert dialog

Synopsis
alert(string, [button one, button two, button three])

Attributes

string	 The text contents of the alert that that will be displayed.

button	one	 The text presented on the first (or only) button shown on the alert.
This argument is optional.

button	two	 The text presented on the second button of the alert. This argument
is optional.

button	three	 The text presented on the third button shown on the alert. This
argument is optional.

Returns

Once the alert dialog is presented to the user, the dialog returns 1, 2, or 3 based on which
button was pressed.

Description
Used to give the user an immediate message in a standard alert dialog, or to ask them
to pick from up to three options. The return value can be 1, 2, or 3 to indicate which of
three optional buttons were pressed.

Example
alert("The	time	is	now	"	+	Date());

answer	=	alert("Do	you	wish	to	continue?",	"Yes",	"No");

if	(answer	==	2)	
	 closeWidget();

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

appleScript()
execute an AppleScript

Synopsis
appleScript(appleScriptCode[, timeout])

Parameters

appleScriptCode
A string that contains a complete AppleScript code snippet that you want to have executed. If the
string consists only of a valid filename then the code is loaded from that file.

timeout
The optional number of seconds to wait for the AppleScript to complete. For compatibility
reasons the default timeout is 2 seconds.

Description
Using this function, your Widget can control an element of the System or an application
via an AppleScript call.

The AppleScript must be formatted as a non-breaking line, using new-line characters to
connote a physical break. We suggest pre-formatting and validating your AppleScript in
Apple's Script Editor application before using it in a Widget.

The iTunes Remote Widget makes extensive use of the appleScript() call.

Example
//	Note	the	embedded	new-lines	that	are	required	
//	in	AppleScripts.	
appleScript('tell	application	"Internet	Explorer"\nOpenURL	("'	+	
newURL	+	'")\nend	tell\n');

beep()
play the alert sound

Synopsis
beep()

Description
This function will cause the user's Mac to beep. This can be useful if you need to get
their attention, would like to notify them of a completed task, or for debugging your
Widget's script.

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Example
if	(done)		
				beep();

bytesToUIString()
Turns a number of bytes into a UI-friendly string

Synopsis
string	=	bytesToUIString(integer)

Description
Often times it is desirable to turn a given number of bytes into a string such as "1K" or
"34.2M". This function does exactly that.

Example
print("There	is	"	+	bytesToUIString(numBytes)	+	"	memory	
available");

Availability
Available in version 2.0 or later.

chooseColor()
Puts up a standard color picker dialog box and allows the user to choose a color

Synopsis
string	=	chooseColor([string]);

Description
You can use this function to display the standard color picker for the platform and allow
the user to select a color. You can optionally pass the initial color that is selected as a
parameter. This function will return the color as a hex string (e.g. "#FF0000") or null if
the user cancelled the dialog.

Example
print(chooseColor("#EEEEEE"));	

Availability

Available in version 2.0 or later.

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

chooseFile()
Puts up a standard file dialog box and allows the user to choose a file

Synopsis
file	=	chooseFile([string	|	array]);

Description
You can use this function to display the standard open dialog for the platform and allow
the user to select a file. You can also optionally pass a single extension or an array of
extensions into this function to limit what kinds of files the user can choose. If the dialog
is cancelled by the user, null is returned.

Example
print(chooseFile());	//	select	anything	
print(chooseFile(".png"));	//	just	PNG	files	
print(chooseFile(new	Array(".png",	".jpg")))

Availability
Available in version 2.0 or later.

chooseFolder()
Puts up a standard file dialog box and allows the user to choose a folder

Synopsis
file	=	chooseFolder();

Description
You can use this function to display the standard open dialog for the platform and allow
the user to select a folder. If the dialog is cancelled by the user, null is returned.

Example
print(chooseFolder());	

Availability

Available in version 2.0 or later.

1�0 | WIDGET ENGINE 3.0 REFERENCE Global�Functions

convertPathToHFS()
converts a UNIX style path to an HFS one

Synopsis
convertPathToHFS(myPath[, localize])

Description
Converts a UNIX style path (with '/'s) to a Mac HFS style path (with a volume name
and ':'s). If the optional second boolean parameter is true then the returned path is
localized in the current system language. Note that the file referenced by the path must
exist for conversion to succeed if the localized path is requested.

Example
convertPathToHFS('/Users/joe/foo.txt');

yields:

Macintosh	HD:Users:joe:foo.txt

On a German system:

convertPathToHFS('~/Movies',	true)	

yields:

Macintosh	HD:Benutzer:joe:Filme	

Windows Notes
This function returns an empty string on Windows.

convertPathToPlatform()
converts a JavaScript style path to a platform specific one

Synopsis
convertPathToPlatform(myPath[, forDisplay])

Description
Converts a JavaScript style file path ("/foo/bar/baz") to a platform style path (e.g.
on Windows, "\\foo\\bar\\baz"). Note that by default the path is escaped (has any
backslashes doubled), ready for use with runCommand(). If you want a path suitable
for display to a user, specify true for the optional second parameter.

On the Macintosh this function does nothing (paths are already in the correct format).

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1�1

Example
convertPathToPlatform('c:/temp/foo.txt');

On Windows yields:

c:\\temp\\foo.txt	

And

convertPathToPlatform('c:/temp/foo.txt',	true);

On Windows yields:

c:\temp\foo.txt

closeWidget()
closes the Widget

Synopsis
closeWidget()

Description
Shuts down the currently running Widget as if the user had selected Close Widget from
the context menu.

Example
answer	=	alert("Do	you	wish	to	continue?",	"Yes",	"No");

if	(answer	==	2)	
	 closeWidget();

escape()
encode a string to safely be used as a URL

Synopsis
escape(string)

Attributes

String	 A string containing text that is intended for use as a URL.

Returns

A string that contains the argument but with characters unsuitable for URLs converted

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

to their escaped counterparts.

Description
This is useful if you're collecting information from a user preference that you would like
to pass via a URL. It saves having to validate the strings yourself before passing them
off to the URL handler.

Example
//	The	single	quote,	spaces	and	ampersand	will	be		
//	replaced	with	URL	escape	characters	
mySearch	=	"Konfabulator's	FAQ	&	JavaScript	Reference";	
openURL("google.com/search?q="	+	escape(mySearch);

See Also
unescape()

focusWidget()
brings the Widget to the foreground

Synopsis
focusWidget()

Description
Brings the Widget to the foreground on the user's desktop. Useful when responding to a
hotkey.

Note that if a Widget comes to the foreground when not requested the user will become
annoyed and will probably trash the Widget.

Example
<hotkey	name="hkey1">	
	 <key>F2</key>	
		<modifier>command+control</modifier>	
		<onKeyUp>focusWidget();</onKeyUp>	
</hotkey>

form()
preference-like form generation for acquiring user input via a dialog

Synopsis
form(fieldArray, [dialogTitle], [confirmButtonLabel],

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

[cancelButtonLabel])

Description
form() takes up to four arguments, the first is an Array of FormField objects (which
have the same arguments as preference objects which are defined in the XML). The
array of form fields is used to define a dialog which is displayed to the user. When
the user presses the "confirm" button the form() function returns an array of strings
representing the values entered in the form (if the "dismiss" button is pressed, null is
returned). The remaining arguments are, in order, a title for the dialog, the label for
the "confirm" button and the label for the "dismiss" button. The last 3 arguments are
optional.

Example
var	formfields	=	Array();

formfields[0]	=	new	FormField();	
formfields[0].name	=	'name1';	
formfields[0].type	=	'text';	
formfields[0].title	=	'Text	Pref	Title';	
formfields[0].defaultValue	=	20;	
formfields[0].description	=	'This	is	a	description	of	a	text	field.';

formfields[1]	=	new	FormField();	
formfields[1].title	=	'Basic	Field';

formfields[3]	=	new	FormField();	
formfields[3].name	=	'name4';	
formfields[3].title	=	Checkbox	Pref	Title';	
formfields[3].type	=	'checkbox';	
formfields[3].defaultValue	=	1;	
formfields[3].description	=	'This	is	a	description	of	a	checkbox	
field.';

formResults	=	form(formfields,	'my	title',	'Save	It	And	Continue');

if	(formResults	!=	null)	{	
				print("formResults	=	"	+	formResults);	
}	else	{	
				print("form	was	cancelled");	
}

include()
include the contents of another JavaScript file

Synopsis
include(string)

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Description
Include the contents of the specified file at the current point in the script. This is done in
a manner internally equivalent to the old style method:

eval(runCommand("cat	onload.js"));

The only difference being that include() arranges for any error messages to have
correct filenames and line numbers.

Example
include("onload.js");

isApplicationRunning()
returns true if a given application is running

Synopsis
isApplicationRunning(string)

Description
You can use this function to decide if an application is currently running. This is
often useful before you do something like invoke AppleScript on the Mac or COM on
Windows. Pass the name of the application you are interested in, not a full path.

Example

//	On	Mac	
if	(isApplicationRunning("iTunes"))	
	
//	OnWindows	
if	(isApplicationRunning("itunes.exe"))

Platform Notes
Please note that this is an area where you have to use the exact name for the platform.
As shown above, on Windows, you might use "itunes.exe" whereas on Macintosh you'd
use just "itunes" for the application name parameter.

Availability
Available in version 2.0 or later.

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

konfabulatorVersion()
returns the current version of the Widget Engine as a string

Synopsis
konfabulatorVersion()

Description
You can use this function for informational purposes, or perhaps to control how your
code behaves on different versions of the Widget Engine.

Example
print("This	version	is	"	+	konfabulatorVersion());

log()
display a string in the debug window with a timestamp

Synopsis
log(string)

Description
Often used for debugging. Note you will need to specify:

<debug>on</debug>

in the Widget's XML to see the output.

Example
log("idx	=	"	+	idx);

openURL()
open the specified URL in the default web browser

Synopsis
openURL(validURL)

Description
Using this function to launch a URL will cause the URL to be launched using the
appropriate application set in the user's Internet System Preferences. This function will
return true if the argument is a well formed URL, otherwise false is returned. Note that
even a well formatted URL may point to a non-existent resource so the Widget Engine

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

would return true while your browser may still complain.

Example
openURL("http://widgets.yahoo.com");	
openURL("ftp://myname:pa55w0rd@ftp.mysite.com");

See Also
escape(),	unescape(),	URL.fetch()

play()
play a sound file

Synopsis
play(pathToSound[, truncate])

Description
Supported formats are MP3, AIFF, AU, WAV and SND. The call returns immediately
and the sound is played asynchronously. pathToSound must point to a valid sound file
either somewhere on the user's hard drive, or inside the Widget's bundle. The optional
second boolean parameter specifies whether the new sound should truncate (stop) any
currently playing sounds.

Examples
play("sounds/sample.mp3");

play("sounds/bark.aiff",	true);

popupMenu()
displays a popup menu at a specified location

Synopsis
popupMenu(menuItems, x, y);

Description
This function allows you to display a popup menu at a specified location. You pass an
array of menuItem objects in the first parameter, much like you would for a context
menu. The x and y coordinates are passed in window coordinates.

You should only call this function while handling a mouse down event.

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

Example
//	put	up	a	popup	menu	where	the	mouse	is	
<onMouseDown>	
		var	items	=	new	Array;	
	
		items[0]	=	new	MenuItem;	
		items[0].title	=	"This	is	item	1";	
		items[0].enabled	=	true;	
		items[1]	=	new	MenuItem;	
		items[1].title	=	"this	is	item	2";	
		items[1].enabled	=	true;	
	
		popupMenu(items,	system.event.hOffset,	
						system.event.vOffset);	
</onMouseDown>

Availability
Available in version 2.1 or later.

print()
print a string in the debug window

Synopsis
print(string)

Description
Often used for debugging. Note you will need to specify:

<debug>on</debug>

in the Widget's XML to see the output.

Example
print("idx	=	"	+	idx);

prompt()
text entry field for user input

Synopsis
prompt(<promptText>,	[defaultValue], [dialogTitle],
 [confirmButtonLabel], [cancelButtonLabel])

promptText

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Prompt to be displayed to the user.

defaultValue
Value to populate the text field with (and the value that will be returned if the user does
not change anything).

dialogTitle
Title that will be used for the dialog.

confirmButtonLabel
Label for the button that confirms the user's changes to the dialog.

cancelButtonLabel
Label used for the button that cancels the dialog.

Description
Used to get a string of text back from the user. This is a subset of the functionality found
in form(), and is provided for ease of coding. Note that null is returned if the user
cancels this dialog.

Example
result	=	prompt("Name:",	"Your	Name","Name	Dialog",	"OK",	
"Cancel");

if	(!result)	
				result	=	"no	name";

random()
return a random number

Synopsis
random([lower_limit, upper_limit])

Description
Generate a random number, optionally within given limits. Note that the lower limit
may be included in the returned values while the upper never is.

Example
//	This	will	return	a	random	number	between	0	and	64K	
number	=	random();	
//	This	will	return	a	random	number	between	0	and	100	
percentage	=	random(100);	
//	This	will	return	a	random	number	between	27	and	72	
number	=	random(27,72);

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

reloadWidget()
causes the Widget to reload itself

Synopsis
reloadWidget()

Description
Sometimes it's desirable to have a Widget restart. Calling this function gives the same
result as if the user had held down Command while choosing the Widget in the gear
menu.

See Also
closeWidget(),	focusWidget()

resolvePath()
normalize a file system file path

Synopsis
resolvePath(pathToFile)

Description
This function can make the following changes in the provided path:

• Expand an initial tilde expression (e.g. ~/Pictures) to the correct directory (e.g. /
Users/joe)

• Reduce empty components and references to the current directory (that is, the sequences
"//" and "/./") to single path separators.

• In absolute paths only, resolve references to the parent directory (that is, the component
"..") to the real parent directory if possible, which consults the file system to resolve each
potential symbolic link.

• In relative paths, because symbolic links can't be resolved, references to the parent
directory are left in place.

• Remove an initial component of /private from the path if the result still indicates an
existing file or directory (checked by consulting the file system).

• If the path is an HFS+ alias, the file name that is the target of the alias is returned (note
that this only works for the final path element, aliases embedded in paths will not be
resolved and may have to be handled specially if expected).

• If the given path is ".", it is expanded to the fully qualified path of the current directory.

1�0 | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Example
realPath	=	resolvePath(myPath);

resumeUpdates()
allows Widgets to visually update dynamically

Synopsis
resumeUpdates()

Description
JavaScript code can affect the layout of all the objects in the Widgets window. If the
Widget is complex it can be quite inefficient (and possibly unattractive) to have these
changes appear individually. By bracketing areas of code that rearrange the visible parts
of the Widget with suppressUpdates() and resumeUpdates() the Widget author can
control what the user sees.

See Also
suppressUpdates(),	updateNow()

runCommand()
executes a shell command and returns the result

Synopsis
runCommand(string)

Description
This function allows any command in the UNIX layer of the operating system to be
executed and the results saved in a string variable. Note that only commands the user
has privilege for can be run.

If the last character of the result is a newline it is removed.

Example
	 str	=	runCommand("ls	-l	/");	
	 print(str);

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1�1

runCommandInBg()
executes a shell command in the background

Synopsis
runCommandInBg(string, tag)

Description
This takes a UNIX command and a tag, runs the command in the background (i.e. does
not wait for it to complete) and when it does complete causes a global action called
onRunCommandInBgComplete to be triggered and sets the value of a variable called
tag to the results of the command (the value of system.event.data is set to the name
of the tag). The order in which commands finish may be unrelated to the order which
they were started.

Note that the value of system.event.data changes whenever a background
command finishes and that this can happen in the middle of an action if you have
multiple commands in the background at one time. You should save the value at the
beginning of the onRunCommandInBgComplete action to avoid unexpected results.
Also note that the tag specifies the name of the variable which will receive the data, not
the variable itself.

Example
<action	trigger="onLoad">	
		var	yahooData;	
		runCommandInBg("curl	www.yahoo.com",	"yahooData");	
</action>

<action	trigger="onRunCommandInBgComplete">	
		print("onRunCommandInBgComplete	for	tag:	"	+							
									system.event.data);	
		print("Yahoo's	home	page	is	"	+		
									yahooData.length	+	"	bytes");	
</action>

saveAs
Display standard SaveAs dialog box

Synopsis
string	=	saveAs()

Description
At times it might be useful to ask the user where to save a file. This function allows you
to display the standard dialog box to allow the user to choose a destination folder. The
path to the folder will be returned. If the user cancelled the dialog box, null is returned.

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Example
destination	=	saveAs();	
if	(destination	!=	null)	
				saveFileTo(destination);

Availability
Available in version 2.0 or later.

savePreferences()
saves the Widget's preferences

Synopsis
savePreferences()

Description
Normally a Widget's preferences are automatically saved whenever the user edits
them using the Widget Preferences panel or when the Widget exits. If a Widget is
manipulating preference values in JavaScript it can ensure they are saved to disk in a
timely manner by calling this function.

showWidgetPreferences()
opens the Widget's preference panel

Synopsis
showWidgetPreferences()

Description
This opens the Widget Preferences panel just as if the user had selected Widget
Preferences from the context menu. It is often used to provide a preferences button on
the face of the Widget or to get initial preferences the first time a Widget runs.

sleep()
suspend script execution

Synopsis
sleep(number)

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

Description
Suspends execution of the Widget's code for the specified number of milliseconds (one
thousandth of a second).

Example
//	pause	script	for	one	second	
sleep(1000);

speak()
speak text

Synopsis
speak(string)

Synopsis
speak(theText)

Description
This function speaks the given text in the default voice of the computer (which can be
set using the Speech panel in the System Preferences).

Example
speak("Now	there's	something	you	don't	see	everyday.");	
speak("Unless	you're	me.");

suppressUpdates()
makes Widgets wait to visually update

Synopsis
suppressUpdates()

Description
Suppresses screen updating until a corresponding call to resumeUpdates().
Alternatively, updates can be performed manually using updateNow(). Suppressing
updates can improve performance or hide messy interim states from the Widget user.

See Also
resumeUpdates(),	updateNow()

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

tellWidget()
Sends a message to another Widget.

Synopsis
tellWidget(nameOrPath, message);

Description
You can use tellWidget to do inter-Widget messaging. In order for this to work
successfully, the Widget you are sending the message to must have an onTellWidget
handler. The message is passed in system.event.data. It's completely up to the Widget
author to decide what is an acceptable message. In its simplest form, you could send
Javascript over and eval() it. That is not very safe however, because you have no idea
what the JavaScript in question might do. So Widget authors might want to consider a
special set of terms that they support via messaging like this. For example, a webcam
might support 'reload' as an action it supports.

<action	trigger="onTellWidget">	
			if	(system.event.data	==	"reload")	
						reloadCamPicture();	
</action>

In our PIM Overview Widget, we settled on the following structure:

msg	=	action	":"	params	
params	=	(param)	(";"	param)*	
param	=	name	"="	value

"action", "name" and "value" are merely strings. Value could be placed in quotes,
perhaps.

You will note that you can send a message to either the name of the Widget (as long as it
is either running, or lives in the user's Widgets folder), or the path to the Widget. Also,
at present, this is a one-way message. Later versions will allow a response to be sent
back.

This is implemented in AppleScript on Mac and COM on Windows. This means you
could write scripts in AppleScript on the Mac, or on Windows, you could use JScript or
VB, etc. to send messages to a Widget.

Availability
Available in version 2.0 or later.

Platform Notes
Currently, Windows will launch the Widget if it can find it. Mac will only launch the
Widget if it's not running and you give it a full path. In the future there will instead be a
boolean parameter to control this more exactly.

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

Security Notes
You should always double-check the input message and never merely eval() the
message.

unescape()
unencode string that contains URL escapes

Synopsis
unescape(string)

Description
This is the inverse of escape().

Example
encURL	=	escape(url);

url	=	unescape(encURL);

updateNow()
force a Widget's visual update

Synopsis
updateNow()

Description
By using suppressUpdates() and calling updateNow() as needed the Widget author
can completely control how their Widget is displayed. Note that if your code fails to call
updateNow() when updates are suppressed then the screen may not reflect the true
state of the Widget.

Example
updateNow();

See Also
resumeUpdates(),	suppressUpdates()

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

yahooCheckLogin()
verify whether a Widget is currently logged in

Synopsis
boolean	yahooCheckLogin()

Description
This function is used to see whether the user is currently logged into their Yahoo!
account. If the function returns true, they are, and if it returns false, well guess what:
they're not. You can use this to predicate whether or not you can use Yahoo! APIs which
require a logged in user successfully.

Example
var	loggedIn	=	yahooCheckLogin();

See Also
yahooLogin(),	yahooLogout()

Availability
Available in version 3.0 or later.

yahooLogin()
ensure a user is logged in, authenticating if necessary

Synopsis
boolean	yahooLogin()

Description
This function is used to log into a user's Yahoo! account if you are using Web APIs that
require a logged in user. If yahooCheckLogin() returns false, you'd normally call this
function. It will present the standard Yahoo! Widget Engine login dialog to prompt the
user for their user name and password.

This call generally works asynchronously. If the user is already logged in, yahooLogin()
will simply return true and you are done. If yahooLogin() returns false, then the user
needs to authenticate. This will happen automatically while your Widget is free to do
other things. When the user finally authenticates, you will receive notification via the
onYahooLoginChanged action. In there you can call yahooCheckLogin() to see if the
user is now logged in.

In general you should always wait for the onYahooLoginChanged event if you are
not logged in when your Widget starts up before trying to do anything with APIs that
require a logged-in user.

Global�Functions WIDGET ENGINE 3.0 REFERENCE | 1��

Example
var	loggedIn	=	yahooCheckLogin();	
	
if	(!loggedIn)	
	 yahooLogin();	
	
//	go	about	our	business	while	the	user	authenticates.	
	
//	In	your	XML:	
<action	trigger="onYahooLoginChanged">	
	 if	(yahooCheckLogin())	
	 	 RefreshInformation();	
	 else	
	 	 LoggedOut();	
</action>

Note that in our onYahooLoginChanged action we also have to deal with the case where
we've logged out. When this happens, you might need to clear your display and present
a way for the user to log in again. You might get logged out at unexpected times, so you
must be prepared to deal with this.

Availability
Available in version 3.0 or later.

See Also
yahooCheckLogin(),	yahooLogout()

Availability
Available in version 3.0 or later.

yahooLogout()
log out of a user's Yahoo! account

Synopsis
yahooLogout()

Description
This function requests that the Widget Engine log out of a user's Yahoo! account. This
will return immediately while the request is pending. On completion, all Widgets
will receive an onYahooLoginChanged action and yahooCheckLogin will return false.
Widgets must be prepared to deal with the situation where the user has logged out. This
might happen if the previously valid credentials have timed out, so always be prepared
to deal with a logout. Also, keep in mind this call affects all Widgets who require the
user's Yahoo! credentials to use Yahoo! APIs. It does not just affect the current Widget.

1�� | WIDGET ENGINE 3.0 REFERENCE Global�Functions

Example
yahooLogout();	
	
//	go	about	our	business	while	the	logout	occurs.	
	
//	In	your	XML:	
<action	trigger="onYahooLoginChanged">	
	 if	(yahooCheckLogin())	
	 	 RefreshInformation();	
	 else	
	 	 LoggedOut();	
</action>

Availability
Available in version 3.0 or later.

See Also
yahooCheckLogin(),	yahooLogout()

Availability
Available in version 3.0 or later.

COM WIDGET ENGINE 3.0 REFERENCE | 1��

System Attributes and Functions

These give JavaScript code access to various system settings and hardware information.

COM
functions to call COM interfaces on Windows

Functions
createObject	
connectObject	
disconnectObject

Description
The COM object is an interface to enable your Widgets to call an a COM interface in the
system. For example, you could use it to talk to iTunes (if you didn't use our built-in
support), MSN Messenger, Outlook, etc.

You can connect to any COM object using COM.createObject(progID|CLSID).

Example
var	it	=	COM.createObject("iTunes.Application");	
	
track	=	it.CurrentTrack;	
	
print(track.Album);	
print(track.Artist);

Here's another sample which prints some info from MSN Messenger:

messenger	=	COM.createObject("Messenger.UIAutomation");	
	
contacts	=	messenger.MyContacts;	
num	=	contacts.Count;	
for	(i	=	0;	i	<	num;	i++)	{	
			contact	=	contacts.Item(i);	
			print("	"	+	contact.FriendlyName	+	"	"	+	contact.Status);	
}

This code works only when logged into MSN Messenger. Things like the Status of a
contact can be found out via the web, MSDN, etc.

It is also possible to hook up an 'event sink'. This allows you to have an application
inform you when things change (like buddy status, etc.) as opposed to having to poll
for that information. COM.connectObject tells the Widget Engine that you want to be
informed of an objects events. COM.disconnectObject tells us that you no longer wish

1�0 | WIDGET ENGINE 3.0 REFERENCE COM

to be informed of those events. You should always disconnect a sink when you are done
with it.

And finally, a note on object references. You should try to be sure to clear your references
out to null whenever you know you are through with an interface. This is because COM
requires a certain amount of refcounting to work, and Javascript's garbage collection
mentality can confuse it a bit. For those reasons, it's good to always clear your references
to interfaces (COM objects) you've gotten when you are done with them. It's not strictly
required, but you'll feel better about yourself.

Availability
COM support is available in version 2.0 and later.

COM.connectObject
connect an event sink to listen to an object's events

Synopsis
COM.connectObject(object,	prefix)

Description
This function allows you to connect to an object created or otherwise received from
using the COM interface to listen to events. Many objects in the COM world have an
event interface which you can listen to for events. For example, you can connect to the
main iTunes application object and it will tell you when the player starts and stops, as
well as when the application is about to quit.

The object you pass in must have been either created via COM.createObject or gotten via
a call to a COM object that you created (e.g if you receive a track from iTunes, you can
use that iTunes track, provided it has an event interface).

For the second parameter, you pass a prefix for a function that will be called when an
event occurs. For example, the iTunes COM interface will send out "OnPlayerPlayEvent"
when the player starts a track, passing it the track that it started to play. The prefix helps
us find the function to call. When the event occurs, it will try to call a function called
<prefix>OnPlayerPlayEvent(). The following example shows us listening to that event.

Example
var	iTunesObj	=	COM.createObject("iTunes.Application");	
	
COM.connectObject(iTunesObj,	"iTunes_");	
	
function	iTunes_OnPlayerPlayEvent(track)	
{	
			print("Started	to	play	"	+	track.Name);	
}

COM WIDGET ENGINE 3.0 REFERENCE | 1�1

Note that our function is called iTunes_OnPlayerPlayEvent which is the combination
of the prefix we specified, and the name of the COM method which gets invoked. Also
note that we were passed a parameter which is another COM object representing the
track. From there we are able to reference its Name property.

When you are done with an object and listening to its events, you should take care to
call disconnectObject.

There can be only one established event sink per object at a time.

Notes
This function will throw an exception if it cannot successfully connect. It is
recommended to call this inside a try/catch handler.

Availability
Available in version 2.0 or later.

COM.createObject
creates a COM object via ProgID or CLSID

Synopsis
COM.createObject(progID	|	CLSID)

Description
This is the main place to start your romp through the COM forest. The trick here is to
find out what interfaces you can call. Unfortunately, there's no simple way to figure this
out short of looking in a COM browser and using trial and error. Some information is
available via the web (a quick Yahoo search will yield stuff if you search for things like
"automation" "COM" and your favorite application). You can also use regedit to look for
ProgIDs. But really, the COM browser provided by Visual Studio is probably the best
way (and cheapest if you already have Visual Studio).

Example

var	iTunesObj	=	COM.createObject("iTunes.Application");

Availability
Available in version 2.0 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE COM

COM.disconnectObject
disconnect an event sink previously established with connectObject

Synopsis
COM.disconnectObject(object)

Description
After you are done with an event sink created with a call to connectObject you should
call this function to break the connection. It is in some cases important that you do this
before releasing the main COM object due to the way some applications are written.

Example
COM.disconnectObject(iTunesObj);

Availability
Available in version 2.0 or later.

filesystem WIDGET ENGINE 3.0 REFERENCE | 1��

filesystem
get information from and interact with the file system

Synopsis
filesystem

Description
The filesystem object provides access to the underlying files and directories of the
system on which the Widget is running. See below for details of the individual functions
and attributes.

Attributes
volumes

Functions
copy()

emptyRecycleBin()/emptyTrash()	
getDirectoryContents()	
getDisplayName()	
getFileInfo()	
getRecycleBinInfo()/getTrashInfo()	
isDirectory()	
itemExists()	
move()	
moveToRecycleBin()/moveToTrash()	
open()	
openRecycleBin()/openTrash()	
readFile()	
reveal()	
writeFile()

Availability
The filesystem object is available in version 1.8 or later.

filesystem.copy()
Copies a file or files to a location

Synopsis
filesystem.copy(path,	destination);

1�� | WIDGET ENGINE 3.0 REFERENCE filesystem

Description

This function allows you to copy a file or files to a specified destination. The source can
be a single path, or an array of paths.

If copying one file, the destination need not exist. In this case, it is assumed the
destination is a new file name for the file. If the destination does exist, it is assumed it
specifies a directory in which to copy the new file.

If copying multiple files, the destination must be a directory that exists.

This function returns true if successful, false otherwise.

Example
//	to	copy	a	file	to	a	folder	
filesystem.copy("myfile.txt",	"/Users/evoas");	
	
//	to	duplicate	a	file	
filesystem.copy("myfile.txt",	"myfile_copy.txt");

Availability
Available in version 2.0 or later.

filesystem.emptyRecycleBin()
filesystem.emptyTrash()
Empties the system trash

Synopsis
filesystem.emptyRecycleBin()	
filesystem.emptyTrash()

Description
This function merely empties the trash/recycle bin. If the user has their settings set to
see the warning dialog, etc. it will come up automatically.

The function has two names to reflect the different terms used on the two platforms,
Windows and Mac OS X.

Example
fileystem.emptyTrash();

Availability
Available in version 2.0 or later.

filesystem WIDGET ENGINE 3.0 REFERENCE | 1��

filesystem.getDirectoryContents()
get the names of the files in a directory

Synopsis
array	=	filesystem.getDirectoryContents(directory, recurse)

Description
Retrieves the names of the files in the specified directory optionally recursing
(descending) into each subdirectory.

Example
fileList	=	filesystem.getDirectoryContents(path,	false);

Behavior Notes
As of version 2.0, this function now behaves the same on both Mac and Windows. It
will now always return an array of names that are rooted at the directory you pass and
never a full path. Previously, Windows would return full paths if you passed in a full
path.

Availability
Available in version 1.8 or later.

filesystem.getDisplayName()
Returns the user-friendly name of a file

Synopsis
filesystem.getDisplayName(path)

Description
This function returns the display name for a file path. The display name is essentially
what you'd see in the Finder or Explorer. For example, if a file's extension is supposed to
be hidden, this function will remove it. Essentially you are guaranteed to print the same
name for a file path that you'd see in the OS.

Example
print(filesystem.getDisplayName("C:\"));

Availability
Available in version 2.0 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE filesystem

filesystem.getFileInfo()
Returns information about a file or directory

Synopsis
filesytem.getFileInfo(path)

Description
This function returns a small object which describes the file or directory passed to it. The
object has the following attributes:

size	
isDirectory	
isHidden	
lastModified

While there is an isDirectory function, this information comes with that tidbit as well to
save the number of filesystem operations necessary to traverse a tree of files.

Example
info	=	filesystem.getFileInfo("myfile.txt");

print("myfile	is	"	+	bytesToUIString(info.size)	+	"	in	size");

Availability
Available in version 2.0 or later.

filesystem.getRecycleBinInfo()
filesystem.getTrashInfo()
get information about files that have been deleted but not yet purged

Synopsis
filesystem.getRecycleBinInfo()	
filesystem.getTrashInfo()

Description
Retrieves the number and total size of files that are in the user's trash or recycle bin. An
object with two members is returned, numItems and size.

The function has two names to reflect the different terms used on the two platforms,
Windows and Mac OS X.

filesystem WIDGET ENGINE 3.0 REFERENCE | 1��

Example
mytrash	=	filesystem.getRecycleBinInfo();	
mesg	=	myTrash.numItems	+	"	items	("	+	myTrash.size	+	
															"	bytes)";

Availability
Available in version 1.8 or later.

filesystem.isDirectory()
determine if a given path is a directory

Synopsis
filesystem.isDirectory(path)

Description
Returns true if the given path is a directory, false otherwise.

Example
isDir	=	filesystem.isDirectory(path);

Availability
Available in version 1.8 or later.

filesystem.itemExists()
determine if a given path exists

Synopsis
filesystem.itemExists(path)

Description
Returns true if the given path exists (is a file or a directory), false otherwise.

Example
exists	=	filesystem.itemExists(path);

Availability
Available in version 1.8 or later.

1�� | WIDGET ENGINE 3.0 REFERENCE filesystem

fileystem.move()
Moves a file or files to a location

Synopsis
filesystem.move(path,	destination);

Description

This function allows you to move a file or files to a specified destination. The source can
be a single path, or an array of paths. The destination must be a directory that exists.
This function returns true if successful, false otherwise.

Note that at present you cannot use this function to rename a file. In fact, there is no
rename facility in the current release.

Example
filesystem.move("myfile.txt",	"/Users/evoas");

Availability
Available in version 2.0 or later.

filesystem.moveToRecycleBin()
filesystem.moveToTrash()
delete items by moving them to the trash or recycle bin

Synopsis
filesystem.moveToRecycleBin(files)	
filesystem.moveToTrash(files)

Description
Sends the specified file or files (provide an array of Strings to delete multiple files at a
time).

The function has two names to reflect the different terms used on the two platforms,
Windows and Mac OS X.

Example
filesystem.moveToTrash(myTmpFile);

Availability
Available in version 1.8 or later.

filesystem WIDGET ENGINE 3.0 REFERENCE | 1��

filesystem.open()
Opens a file based on its file type/extension

Synopsis
filesystem.open(path)

Description
You can use this function to open an arbitrary file with the correct application. For
example, passing a Widget file path into this function will open the Widget in the
Yahoo! Widget Engine (i.e. it will run the Widget, as expected). Passing a folder in will
open it in Finder/Explorer.

Example
filesystem.open("PIM	Overview.widget");

Availability
Available in version 2.0 or later.

filesystem.openRecycleBin()
filesystem.openTrash()
Opens the folder that contains the items in the trash/recycle bin.

Synopsis
filesystem.openRecycleBin()	
filesystem.openTrash()

Description
This function is the equivalent of double-clicking on the Trash or Recycle Bin icons. It
opens up a window showing the contents of the Trash/Recycle Bin.

The function has two names to reflect the different terms used on the two platforms,
Windows and Mac OS X.

Example
filesytem.openTrash();

Availability
Available in version 2.0 or later.

1�0 | WIDGET ENGINE 3.0 REFERENCE filesystem

filesystem.readFile()
read a text file into a string or array

Synopsis
filesystem.readFile(path	[,asLines])

Description
This function is used to read in a text file into either a string or array variable. If the
optional second parameter is true, the file is read and broken into lines and an array of
those lines is returned. Else just one long string of the contents is returned.

The Widget Engine can read most of the typical text file formats, but works best with
either UTF-16 or UTF-8 encodings.

Example
var	data	=	filesystem.readFile("myfile.txt");	
	
var	lines	=	filesystem.readFile("myfile.txt",	true);

Availability
Available in verison 2.0 or later.

filesystem.reveal()
make the system file browser display an item in context

Synopsis
filesystem.reveal(path)

Description
Causes the system file browser (Explorer on Windows, the Finder on Mac OS X) to
display the directory containing the specified item. This is useful for revealing file
system items to the user.

Example
filesystem.reveal(myPath);

Availability
Available in version 1.8 or later.

 WIDGET ENGINE 3.0 REFERENCE | 1�1

filesystem.volumes
Array of currently mounted volumes

Descripton
The volumes property of the filesystem object contains an array of all the currently
mounted volumes. Each entry in the array is a small object with the following attributes:

path	
freeBytes	
totalBytes

You can use these in concert with functions like bytesToUIString or filesystem.
getDisplayName.

Example
vols	=	filesystem.volumes;	
for	(a	in	vols)	
{	
			print("Volume	"	+	
						filesystem.getDisplayName(vols[a].path)	+	
						"	(path	"	+	vols[a].path	+	")	has	a	capacity	of	"	+	
						bytesToUIString(vols[a].totalBytes)	+	"	and	"	+	
						bytesToUIString(vols[a].freeBytes)	+	"	free.");	
}

Availability
Available in version 2.0 or later.

filesystem.writeFile()
Writes a string or array to a text file

Synopsis
filesystem.writeFile(path,	string	|	array)

Description
This function writes out a file given either a string or an array of strings. If given a
string, the data is written out as-is. If passed an array, the data is written out separated
by return characters "\n". Currently, this function always writes files as UTF-8.

Example
filesystem.writeFile("myfile.txt",	myData);

1�� | WIDGET ENGINE 3.0 REFERENCE filesystem

Availability
Available in verison 2.0 or later.

screen WIDGET ENGINE 3.0 REFERENCE | 1��

screen
Information about the display

Attributes
availHeight	
availLeft	
availTop	
availWidth	
colorDepth	
height	
pixelDepth	
resolution	
width

Synopsis
screen

Description
The screen object has various attributes which describe the metrics of the current
screen (the display the main window of a Widget is mostly on). See below for details of
the individual attributes.

Example
for	(a	in	screen)	
	 print("screen."	+	a	+	":	"	+	eval("screen."	+	a));

screen.availHeight
the current screen's available height

Synopsis
screen.availHeight

Description
The number of pixels available vertically on the screen most of the Widget's window
occupies. This value omits space taken by things like the system menubar and the Dock.

Example
myWindow.vOffset	=	screen.availHeight	-	30;

1�� | WIDGET ENGINE 3.0 REFERENCE screen

screen.availLeft
the leftmost available position on the screen

Synopsis
screen.availLeft

Description
The first available position at the left of the screen most of the Widget's window
occupies that is not occupied by a system feature such as the Dock.

Example
myWindow.hOffset	=	screen.availLeft	+	30;

screen.availTop
the topmost available position on the screen

Synopsis
screen.availTop

Description
The first available position at the top of the screen most of the Widget's window
occupies that is not occupied by a system feature such as the menubar.

Example
myWindow.vOffset	=	screen.availTop	+	10;

screen.availWidth
the current screen's available width

Synopsis
screen.availWidth

Description
The number of pixels available vertically on the screen most of the Widget's window
occupies. This value omits space taken by system features like the Dock.

Example
myWindow.width	=	screen.availWidth	/	4;

screen WIDGET ENGINE 3.0 REFERENCE | 1��

screen.colorDepth
the current screen's color depth

Synopsis
screen.colorDepth

Description
The number of bits per pixel available on the screen most of the Widget's window
occupies.

Example
alert("Bits	per	pixel:	"	+	screen.colorDepth);

screen.height
the current screen's height

Synopsis
screen.height

Description
The number of pixels available vertically on the screen most of the Widget's window
occupies. Normally screen.availHeight provides a more useful measure of the
screen's height.

Example
myWindow.vOffset	=	screen.availHeight	-	30;

screen.pixelDepth
the current screen's color depth

Synopsis
screen.pixelDepth

Description
The number of bits per pixel available on the screen most of the Widget's window
occupies. This is a synonym for screen.colorDepth and is provided for
compatibility.

Example
alert("Bits	per	pixel:	"	+	screen.pixelDepth);

1�� | WIDGET ENGINE 3.0 REFERENCE screen

screen.resolution
the current screen's resolution

Synopsis
screen.resolution

Description
The raster resolution in dots per inch (dpi) of the screen most of the Widget's window
occupies.

Example
alert("Screen	resolution:	"	+	screen.resolution);

screen.width
the current screen's width

Synopsis
screen.width

Description
The number of pixels available horizontally on the screen most of the Widget's window
occupies. Normally screen.availWidth provides a more useful measure of the
screen's width.

Example
myWindow.hOffset	=	screen.width	-	80;

system WIDGET ENGINE 3.0 REFERENCE | 1��

system
Information about the machine or environment

Attributes
airport/wireless	
appearance	
battery	
clipboard	
cpu	
event	
languages	
memory	
mute	
platform	
volume	
widgetDataFolder	
userDocumentsFolder	
userDesktopFolder	
userPicturesFolder	
userMoviesFolder	
userMusicFolder	
userWidgetsFolder	
applicationsFolder	
temporaryFolder	
trashFolder

Description
The system object is your interface to things about the machine you are running on or
some aspect of the environment. For example, you can get information about the state
of the battery or wireless connection if present.

system.airport
system.wireless
built in support for accessing WiFi/AirPort information

Attributes
available	 true if WiFi/AirPort is installed.
info a summary of WiFi/AirPort status.
network the name of the current network.
noise the connection's noise level.
powered true if WiFi/AirPort is powered on.
signal the connection's signal level.

1�� | WIDGET ENGINE 3.0 REFERENCE system

Description
The settings and status of an installed WiFi/AirPort card are available through the
system.airport or system.wireless object.

The WiFi/AirPort Widget makes extensive use of this object.

Example
if	(system.airport.available	&&	system.airport.powered)	
		alert("Current	network	is	"	+	system.airport.network);

if(system.wireless.available	&&	system.wireless.powered)	
		alert("Current	network	is	"+	system.wireless.network);

system.airport.available
system.wireless.available
determine if an WiFi/AirPort (or other compatible wireless card) is installed

Synopsis
system.airport.available	
system.wireless.available

Description
The available property returns a boolean true/false value that corresponds to the
availability of the wireless device capable of connecting to a network.

Example
if	(!	system.airport.available)	
				signal_status.src	=	"NoCard.png";	
else	
				signal_status.src	=	"Signal.png";

if	(!	system.wireless.available)	
				signal_status.src	=	"NoCard.png";	
else	
				signal_status.src	=	"Signal.png";

See Also
system.airport.signal,	system.wireless.signal

system WIDGET ENGINE 3.0 REFERENCE | 1��

system.airport.info
system.wireless.info
WiFi/AirPort status summary

Synopsis
system.airport.info	
system.wireless.info

Description
A brief, human readable description of WiFi/AirPort status.

Example
alert(system.airport.info);	
alert(system.wireless.info);

system.airport.network
system.wireless.network
return name of current WiFi/AirPort network

Synopsis
system.airport.network	
system.wireless.network

Description
This attribute contains the name of the current WiFi/AirPort network, if any.

Example
alert("AirPort	network	"	+	system.airport.network	+	"	in	use");

alert("WiFi	network	"	+	system.wireless.network	+	"	in	use");

system.airport.noise
system.wireless.noise
the noise level of the current WiFi/AirPort connection

Synopsis
system.airport.noise	
system.wireless.noise

�00 | WIDGET ENGINE 3.0 REFERENCE system

Description
This attribute contains a numeric value which indicates the level of noise on the current
WiFi/AirPort connection.

This value is not generally reliable.

Example
if	(system.airport.noise	>	20)	
	 status.src	=	"noisy.png";

if	(system.wireless.noise	>	20)	
	 status.src	=	"noisy.png";

Windows Note
On Windows, this attribute is always zero.

system.airport.powered
system.wireless.powered
boolean that indicates if the WiFi/AirPort card is on or off

Synopsis
system.airport.powered	
system.wireless.powered

Description
This boolean variable indicates whether the WiFi/AirPort is currently turned on or off.
Use this to decide whether to access the other WiFi/AirPort status attributes.

Example
if	(system.airport.available	&&	system.airport.powered)	
		alert("Current	network	is	"	+	system.airport.network);

if(system.wireless.available	&&	system.wireless.powered)	
		alert("Current	network	is	"+	system.wireless.network);

system.airport.signal
system.wireless.signal
return the signal strength of the current WiFi/AirPort connection

Synopsis
system.airport.signal	

system WIDGET ENGINE 3.0 REFERENCE | �01

system.wireless.signal

Description
The signal property of the WiFi/AirPort object returns a number value that
corresponds to the signal strength of the wireless network the device is connected to.

It should be noted that in this release of the Widget Engine, the range is 0-75 and is not a
linear mapping to Apple's signal strength.

Example
theStrength	=	system.airport.signal;	
if	(theStrength	=<	33)	
			signalBars.src	=	"halfFull.png"

theStrength	=	system.wireless.signal;	
if	(theStrength	=<	50)	
			signalBars.src	=	"halfFull.png"

system.appearance
the current system appearance

Synopsis
system.appearance

Description
The current appearance of the system. As of Mac OS X 10.3 this will only be Blue or
Graphite.

If your Widget uses images that you would like to be specific to the current Mac OS X
Appearance, simply use this variable to get the running Appearance and adjust your
image source file appropriately.

It should be noted that these get returned with initial caps, so make sure you test for the
words "Blue" and "Graphite", not "blue" and "graphite".

Note: in this release of the Widget Engine we do not support notifying Widgets of an
Appearance change.

On Windows, the value Blue is always returned.

Example
if	(system.appearance	==	"Graphite")	
		header.src	=	"graphiteHeader.png";	
else	
		header.src	=	"aquaHeader.png";

�0� | WIDGET ENGINE 3.0 REFERENCE system

system.battery
built in support for accessing battery and UPS information

Synopsis
system.battery

Description
The battery number is an array that's 0 based. Single battery laptops will always be
battery[0], however when run on a machine with dual batteries, the expected
primary bay registers as battery 1, and the optional battery bay registers as battery
0. The number of batteries installed in the current system is available in system.
batteryCount.

Note: in this release of the Widget Engine only one battery is supported on Windows
(however, information about it is an aggregate of all batteries in the system).

system.battery[n].currentCapacity
the charge in the battery

Synopsis
system.battery[batteryNumber].currentCapacity

Description
Current percentage charge of the battery.

system.battery[n].isCharging
charging state

Synopsis
system.battery[batteryNumber].isCharging

Description
True if battery is being charged (i.e. it is at less that 100% capacity and the system is
plugged into AC power).

system WIDGET ENGINE 3.0 REFERENCE | �0�

system.battery[n].isPresent
is battery installed

Synopsis
system.battery[batteryNumber].isPresent

Description
True if battery is physically present.

system.battery[n].maximumCapacity
the maximum charge of the battery

Synopsis
system.battery[batteryNumber].maximumCapacity

Description
Maximum capacity of the battery (since capacity is represented as a percentage, this is
always 100).

system.battery[n].name
the name of the battery

Synopsis
system.battery[batteryNumber].name

Description
The human readable name of the battery.

system.battery[n].powerSourceState
the current source of power

Synopsis
system.battery[batteryNumber].powerSourceState

Description
Returns "AC Power" or "Battery Power" based on whether the system is plugged in or
not.

�0� | WIDGET ENGINE 3.0 REFERENCE system

system.battery[n].timeToEmpty
minutes until battery is discharged

Synopsis
system.battery[batteryNumber].timeToEmpty

Description
This value is in minutes. A value of -1 means the system is still determining how fast the
battery is draining (also known as the "calculating" phase).

system.battery[n].timeToFullCharge
minutes until battery is fully charged

Synopsis
system.battery[batteryNumber].timeToFullCharge

Description
This value is in minutes. A value of -1 means the system is still determining how fast the
battery is charging (also known as the "calculating" phase).

Note, currentCapacity is generally a more reliable determination of how charged
the battery is.

Example
alert(system.battery[0].timeToFullCharge	+	'	minutes	to	full	
charge');

system.battery[n].transportType
battery communication channel

Synopsis
system.battery[batteryNumber].transportType

Description
"Internal" or method of UPS communication

system WIDGET ENGINE 3.0 REFERENCE | �0�

system.batteryCount
the number of batteries installed

Synopsis
system.batteryCount

Description
The number of batteries installed in the current system is available in system.
batteryCount.	Normally this is 1 but some laptops support more so any Widget that
intends to work with batteries should take this into account.

Example
for	(b	=	0;	b	<	system.batteryCount;	b++)	
	 totalTime	+=	system.battery[b].timeToEmpty;

Windows Notes
Currently the value of this attribute is always 1 (though the power available from all
batteries is reported).

system.clipboard
accesses the current system clipboard

Synopsis
system.clipboard

Description
system.clipboard contains the text (if any) on the system clipboard. Setting this
attribute will load the system clipboard with that data, removing anything there
previously.

Example
myText	=	system.clipboard;	
myNewText	=	"--<("	+	myText	+	")>--";

system.clipboard	=	myNewText;

�0� | WIDGET ENGINE 3.0 REFERENCE system

system.cpu
contains information about the current CPU load

Synopsis
system.cpu

Description
system.cpu is an object with several members that summarize the level of activity of
the system CPU (members are detailed below).

Note that the underlying mechanism that gathers this data has a resolution of 1 second
so that is as quickly as this information can change. In other words, polling system.
cpu more than once per second is not useful.

Example
for	(a	in	system.cpu)	
	 print("system.cpu."	+	a	+	":	"	+	eval("system.cpu."	+	a));

system.cpu.activity
returns information about the current CPU activity

Synopsis
system.cpu.activity

Description
system.cpu.activity contains the current percentage load of the CPU. If the
machine is very busy it will be near 100. It is the sum of the other system.cpu
members user, sys and nice. It represents the load of the machine as a whole, no
matter how many processors it has.

Example
load	=	system.cpu.activity;

system.cpu.idle
returns information about idle CPU cycles

Synopsis
system.cpu.idle

system WIDGET ENGINE 3.0 REFERENCE | �0�

Description
system.cpu.idle provides a measure of how much of the CPU is available for more
work. It is a percentage.

Example
idle_percent	=	system.cpu.idle;

system.cpu.nice
returns information about raised priority CPU cycles

Synopsis
system.cpu.nice

Description
system.cpu.nice is a measure of how much of the CPU is occupied with tasks
whose priority has been raised (normal processes are reported as system.cpu.user).

Example
priorityTasks	=	system.cpu.nice;

Windows Notes
The	value	of	this	attribute	is	always	zero.

system.cpu.numProcessors
returns the number of processors in the system

Synopsis
system.cpu.numProcessors

Description
system.cpu.numProcessors indicates how many processors there are in the current
system.

Example
if	(system.cpu.numProcessors	==	2)	
		system	=	"Dualie";

�0� | WIDGET ENGINE 3.0 REFERENCE system

system.cpu.sys
returns information about system CPU cycles

Synopsis
system.cpu.sys

Description
system.cpu.sys contains the percentage of the CPU occupied with system tasks (as
opposed to user tasks).

Example
systemTime	=	system.cpu.sys;

system.cpu.user
returns information about user CPU cycles

Synopsis
system.cpu.user

Description
system.cpu.user is a measure of how much of the CPU is occupied with normal
tasks (as opposed to system tasks).

Example
userTasks	=	system.cpu.user;

Example
userTasks	=	system.cpu.user;

system.event
information about the last event received

Synopsi
system.event

Description
system.event	contains a variety of information about the last event the Widget
received (typically as the result of a user action such as a mouse click). See below for
details.

system WIDGET ENGINE 3.0 REFERENCE | �0�

Example
for	(a	in	system.event)	
	 print("system.event."	+	a	+	":	"	+	eval("system.event."	+	a));

system.event.hOffset, system.event.vOffset
mouse position in window coordinates

Synopsis
system.event.hOffset,	system.event.vOffset

Description
system.event.hOffset	and system.event.vOffset contain the position of the
mouse in coordinates relative to the Widget's window.

The values are accessible in any JavaScript context so it's possible for the values to be
outside the Widget's window (they are still relative to it though).

Example
print("Mouse:	"	+	system.event.hOffset	+	",	"	+	
			system.event.hOffset);

system.event.key
the key that triggered the current key event

Synopsis
system.event.key

Description
system.event.key	contains the key that was pressed.

Example
print("Key:	"	+	system.event.key);

See Also
system.event.keyString

�10 | WIDGET ENGINE 3.0 REFERENCE system

system.event.keyString
the name of the key that triggered the current key event

Synopsis
system.event.keyString

Description
system.event.keyString	contains the name of the key that was pressed, i.e. the
name of special keys, e.g. "PageUp" or the hex value of normal keys.

Example
print("Key	Name:	"	+	system.event.keyString);

See Also
system.event.key

system.event.modifiers
the state of the modifier keys for the current key event

Synopsis
system.event.modifiers

Description
system.event.modifiers	contains the modifiers when a key event is being
processed (in an onKeyDown or onKeyUp). It can be a combination of:

shift,	capslock,	control,	option,	numlock,	help,	fkey	

For example:

shift+control

Example
print("Modifiers:	"	+	system.event.modifiers);

system WIDGET ENGINE 3.0 REFERENCE | �11

system.event.screenX, system.event.screenY
mouse position in screen coordinates

Synopsis
system.event.screenX,	system.event.screenY

Description
system.event.screenX	and system.event.screenY contain the position of the
mouse in screen coordinates.

Example
print("Mouse:	"	+	system.event.screenX	+	",	"	+	
			system.event.screenY);

system.event.scrollDelta
the delta the mouse wheel moved

Synopsis
system.event.scrollDelta

Description
system.event.scrollDelta	contains the number of lines you should scroll,
positive or negative. This is only valid during an onMouseWheel handler.	

Example
frame.scrollY	+=	(system.event.scrollDelta	*	10);

system.event.timestamp
the time at which the event occurred

Synopsis
system.event.timestamp

Description
system.event.timestamp	contains a Date object which records the time an event
occurred (as opposed to the time it is processed by JavaScript). This can be used for a
variety of things, for example, determining the length of time a key was held down.

Example
print("Event	happened	at:	"	+	system.event.timestamp);

�1� | WIDGET ENGINE 3.0 REFERENCE system

Windows Notes
Available on Windows as of version 2.1.1.

system.event.x, system.event.y
mouse position in object coordinates

Synopsis
system.event.x,	system.event.y

Description
system.event.x	and system.event.y contain the position of the mouse in
coordinates relative to the current object (the one whose action was triggered).

Example
print("Mouse:	"	+	system.event.x	+	",	"	+	
			system.event.y);

system.languages
returns the current set of languages preferred by the user

Synopsis
system.languages

Description
system.languages contains the list of languages the user has specified in the
International System Preference panel. Element 0 is their primary language, 1 their
second choice, and so forth.

You can only read this setting, it cannot be changed except by using the System
Preferences panel.

Example
print("system.languages:	"	+	system.languages);

system.languages:	en,de,ja,fr,nl,it,es,zh_TW

system WIDGET ENGINE 3.0 REFERENCE | �1�

system.memory
information about the physical/virtual memory of a machine

Attributes
availPhysical	
availVirtual	
load	
totalPhysical	
totalVirtual

Description
You can inspect the amount of memory on a machine via this system object. Please
note that at present, the virtual memory numbers are somewhat suspicious on both
platforms.

system.memory.availPhysical
amount of available physical memory

Description
Returns the number of bytes of available physical memory. Use bytesToUIString to turn
this into something more user-friendly if you wish.

Example
print("available	RAM:	"	+		
			bytesToUIString(system.memory.availPhyiscal));

Availability
Available in version 2.0 or later.

system.memory.availVirtual
amount of available virtual memory

Description
Returns the number of bytes of available virtual memory. Use bytesToUIString to turn
this into something more user-friendly if you wish.

Example
print("avail	virtual	memory:	"	+		
			bytesToUIString(system.memory.availVirtual));

�1� | WIDGET ENGINE 3.0 REFERENCE system

Availability
Available in version 2.0 or later.

Notes
This number is not quite accurate at present, particularly on Windows.

system.memory.load
percentage of used memory

Description
Returns a number from 0 to 100 indicating the current amount of physical RAM that is
in use.

Example
print("current	system	load:	"	+		
			system.memory.load	+	"%");

Availability
Available in version 2.0 or later.

system.memory.totalPhysical
amount of physical RAM installed

Description
Returns the number of bytes of installed physical memory. Use bytesToUIString to turn
this into something more user-friendly if you wish.

Example
print("Installed	RAM:	"	+		
			bytesToUIString(system.memory.totalPhysical));

Availability
Available in version 2.0 or later.

system.memory.totalVirtual
amount of total virtual memory

Description
Returns the number of bytes of total virtual memory. Use bytesToUIString to turn this

system WIDGET ENGINE 3.0 REFERENCE | �1�

into something more user-friendly if you wish.

Example
print("total	virtual	memory:	"	+		
			bytesToUIString(system.memory.totalVirtual));

Availability
Available in version 2.0 or later.

Notes
This number is not quite accurate at present, particularly on Windows.

system.mute
get or set the mute state of your system volume

Synopsis
system.mute

Description
This variable reflects whether the machine's sound is muted. Setting it to true mutes
the system sound.

Examples
//	Find	out	if	the	machine	is	muted	or	not	
if	(system.mute)	
				print("What?		I	can't	hear	you!");	
else	
				print("I	can	hear	sounds	from	my	Mac!");

//	Turn	off	system	sound	
system.mute	=	true;

system.platform
contains the type of system the Widget is running on

Synopsis
system.platform

Description
This variable contains the current platform a Widget is executing on.

�1� | WIDGET ENGINE 3.0 REFERENCE system

Example
print("platform:	"	+	system.platform);

On Mac OS X results in:

platform:	macintosh

On Windows results in:

platform:	windows

system.userDocumentsFolder
system.userDesktopFolder
system.userPicturesFolder
system.userMoviesFolder
system.userMusicFolder
system.userWidgetsFolder
system.applicationsFolder
system.temporaryFolder
system.trashFolder
system variables that contains the names of various user folders

Synopsis
system.userDocumentsFolder	
system.userDesktopFolder	
system.userPicturesFolder	
system.userMoviesFolder	
system.userMusicFolder	
system.userWidgetsFolder	
system.applicationsFolder	
system.temporaryFolder	
system.trashFolder

Description
These variables contain the paths of various user-centric and system folders. The correct
locations can be determined in a platform independent manner using these variables.

Example
print("userMusicFolder:	"	+	system.userMusicFolder);

On Mac OS X results in:

system WIDGET ENGINE 3.0 REFERENCE | �1�

userMusicFolder:	/Users/joe/Music

On Windows results in:

userMusicFolder:		
				c:/Documents	and	Settings/joe/My	Documents/My	Music

system.volume
get or set the system audio volume

Synopsis
system.volume

Description
This variable reflects the current audio volume. Setting it to a number between 0 and
16 to changes the system volume level. Setting the volume to 0 (zero) is effectively the
same as setting system.mute	to	true.

Example
//	Set	the	audio	volume	to	50%	
system.volume	=	8;

system.widgetDataFolder
name of folder where Widget can safely store data

Synopsis
system.widgetDataFolder

Description
This variable contains the name of a folder on the user's hard disk where persistent data
(or even data that needs to be cached for a short length of time) can safely be saved by
the Widget. Historically, Widgets have tried to save data inside their own bundles but
this has various drawbacks chiefly that the location may not be writable. Each Widget
gets a separate folder which is created if it does not already exist.

Example
saveFileName	=	system.widgetDataFolder	+	"/data";

Platform Notes
On the Mac, the location of this folder is "~/Library/Application Support/
Konfabulator/Widgets". On the PC, it is located in "C:\Documents and Settings\
<user>\Local Settings\Application Data\Yahoo\Widget Engine\Widget Data"

�1� | WIDGET ENGINE 3.0 REFERENCE iTunes

Application Attributes and Functions

These give JavaScript code access to certain applications allowing remote control and
retrieval of data.

Currently the only supported application is iTunes (available from http://www.apple.
com/itunes for both Windows and Mac OS X).

iTunes
get information from and interact with iTunes

Synopsis
iTunes

Description
The iTunes object allows remote control and display of iTunes track and artist
information. See below for details of the individual functions and attributes.

Availability
The iTunes object is available in version 1.8 or later.

iTunes.backTrack()
tell iTunes to move to the previous track

Synopsis
iTunes.backTrack()

Description
Tell iTunes to move to the previous track.

Example
iTunes.backTrack();

See Also
iTunes.nextTrack()

http://www.apple.com/itunes
http://www.apple.com/itunes

iTunes WIDGET ENGINE 3.0 REFERENCE | �1�

iTunes.fastForward()
tell iTunes to fast forward within the current track

Synopsis
iTunes.fastForward()

Description
Tell iTunes to skip forward within the current track.

Example
iTunes.fastForward();

See Also
iTunes.rewind()

iTunes.nextTrack()
tell iTunes to move to the next track

Synopsis
iTunes.nextTrack()

Description
Tell iTunes to move to the next track.

Example
iTunes.nextTrack();

See Also
iTunes.backTrack()

iTunes.pause()
tell iTunes to pause playback

Synopsis
iTunes.pause()

Description
Tell iTunes to pause playback.

��0 | WIDGET ENGINE 3.0 REFERENCE iTunes

Example
iTunes.pause();

See Also
iTunes.resume()

iTunes.play()
tell iTunes to start playing the current track

Synopsis
iTunes.play()

Description
Tell iTunes to play the current track.

Example
iTunes.play();

See Also
iTunes.pause()

iTunes.playPause()
tell iTunes to toggle between playing and pause

Synopsis
iTunes.playPause()

Description
Tell iTunes to play if it's currently paused, or pause if it's currently playing.

Example
iTunes.playPause();

iTunes WIDGET ENGINE 3.0 REFERENCE | ��1

iTunes.playerPosition
returns the current position within the current track

Synopsis
iTunes.playerPosition

Description
This attribute returns the current position (in seconds) within the currently playing
track. Setting it moves the playback position to the specified number of seconds into the
track.

Example
iTunes.playerPosition;

iTunes.playerStatus
returns a string describing the current state of iTunes

Synopsis
iTunes.playerStatus

Description
This attribute returns one of the following strings: stopped, paused, playing, fast
forwarding, rewinding or unknown.

Example
currentState	=	iTunes.playerStatus;

iTunes.random
iTunes.shuffle
reflects the shuffle state of iTunes

Synopsis
iTunes.random

Description
This attribute reflects the shuffle state of iTunes. If the current playlist is set to shuffle, it
is true, false otherwise. Setting the attribute changes iTunes' shuffle state.

Example
iTunes.random	=	1;

��� | WIDGET ENGINE 3.0 REFERENCE iTunes

shuffleState	=	iTunes.shuffle;

iTunes.repeatMode
reflects the current repeat mode of iTunes

Synopsis
iTunes.repeatMode

Description
This attribute returns one of the following strings: off, one or all indicating the
current repeat mode. The repeat mode can be set by setting the attributes to one of those
strings.

Example
mode	=	iTunes.repeatMode;

iTunes.repeatMode	=	'off';

iTunes.resume()
tell iTunes to resume playback

Synopsis
iTunes.resume()

Description
Tell iTunes to resume playback after being paused.

Example
iTunes.resume();

See Also
iTunes.pause()

iTunes.rewind()
tell iTunes skip backwards

Synopsis
iTunes.rewind()

iTunes WIDGET ENGINE 3.0 REFERENCE | ���

Description
Tell iTunes to skip backwards in the current track.

Example
iTunes.rewind();

See Also
iTunes.fastForward()

iTunes.running
returns whether iTunes is currently running

Synopsis
iTunes.running

Description
Use this attribute to determine if iTunes is currently running.

Example
iTunes.running;

iTunes.stop()
tell iTunes to stop playing

Synopsis
iTunes.stop()

Description
Tell iTunes to stop playing.

Example
iTunes.stop();

��� | WIDGET ENGINE 3.0 REFERENCE iTunes

See Also
iTunes.play()

iTunes.streamURL
returns the URL of the currently playing stream

Synopsis
iTunes.streamURL

Description
If iTunes is currently playing an audio stream, this attribute will contain the URL of the
stream.

Example
url	=	iTunes.streamURL;

iTunes.trackAlbum
returns the name of the current album

Synopsis
iTunes.trackAlbum

Description
This attribute contains the name of the current album (if known). If a stream is playing,
the name of the stream will appear here.

Example
currAlbum	=	iTunes.trackAlbum;

iTunes.trackArtist
returns the artist of the currently playing track

Synopsis
iTunes.trackArtist

Description
This attribute contains the name of the artist of the current album (if known). If a stream
is playing, this information is not available.

iTunes WIDGET ENGINE 3.0 REFERENCE | ���

Example
iTunes.trackArtist;

iTunes.trackLength
returns the length of the current track

Synopsis
iTunes.trackLength

Description
This attribute contains the length of the currently playing track. If a stream is playing,
this information is not available.

Example
len	=	iTunes.trackLength;

iTunes.trackRating
reflects the rating of the current track

Synopsis
iTunes.trackRating

Description
This attribute contains the rating of the currently playing track. Setting the attribute
changes the current track's rating in iTunes. If a stream is playing, this information is not
available.

Example
rating	=	iTunes.trackRating;

iTunes.trackTitle
returns the title of the current track

Synopsis
iTunes.trackTitle

Description
This attribute contains the title of the currently playing track. If a stream is playing, this
information may not be available.

��� | WIDGET ENGINE 3.0 REFERENCE iTunes

Example
title	=	iTunes.trackTitle;

iTunes.trackType
returns the type of the current track

Synopsis
iTunes.trackType

Description
This attribute contains the type of the currently playing track. It can include one of the
following: audio	file,	audio	cd	track,	audio	stream,	audio	device,	
shared	library	or	unknown

Example
tt	=	iTunes.trackType;

iTunes.version
returns the version of iTunes

Synopsis
iTunes.version

Description
This attribute contains the version of the copy of iTunes that is being controlled.

Example
log("iTunes	Version:	"	+	iTunes.version);

iTunes.volume
reflects the volume iTunes plays at

Synopsis
iTunes.volume

Description
This attribute reflects the volume iTunes is playing at. It can vary between 0 and 100.
Assign a value to the attribute to change the volume.

iTunes WIDGET ENGINE 3.0 REFERENCE | ���

Example
iTunes.volume	=	60;

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Widget Engine Object Properties and functions
This section contains Javascript functions and properties that aren't covered in the XML-
centric section of this document.

Frame Properties and Functions

Frame.addSubview()
adds a view to a frame as a subview

Synopsis
void	Frame.addSubview(object);

Description
This function adds an object to a frame. Currently Image, Text, TextArea, Frame, and
ScrollBar objects can be added to a frame object as a child.

Example
myFrame.addSubview(myImage);

Availability
Available in version 3.0 or later.

Frame.home()
scrolls a frame to the upper left

Synopsis
void	Frame.home();

Description
This function basically sets the scrollX and scrollY properties to 0, 0.

Example
myFrame.home();

Availability
Available in version 3.0 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Frame.hScrollBar
the horizontal scroll bar for a frame

Synopsis
Frame.hScrollBar

Description
You can set or query the horizontal scroll bar of a frame with this property. Attaching a
scroll bar will do all the automatic setup for communicating between the frame and the
scroll bar.

Example
myFrame.hScrollBar

Availability
Available in version 3.0 or later.

Frame.end()
scrolls a frame to the bottom left

Synopsis
void	Frame.end();

Description
This function scrolls a frame to the bottom of its contents.

Example
myFrame.end();

Availability
Available in version 3.0 or later.

Frame.lineDown()
scrolls a frame one line down

Synopsis
void	Frame.lineDown();

Description
This function scrolls a frame one line down by the amount specified by the frame's

��0 | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

vLineSize property.

Example
myFrame.lineDown();

Availability
Available in version 3.0 or later.

Frame.lineLeft()
scrolls a frame one line left

Synopsis
void	Frame.lineLeft();

Description
This function scrolls a frame one line left by the amount specified by the frame's
hLineSize property.

Example
myFrame.lineLeft();

Availability
Available in version 3.0 or later.

Frame.lineRight()
scrolls a frame one line right

Synopsis
void	Frame.lineRight();

Description
This function scrolls a frame one line right by the amount specified by the frame's
hLineSize property.

Example
myFrame.lineRight();

Availability
Available in version 3.0 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ��1

Frame.lineUp()
scrolls a frame one line up

Synopsis
void	Frame.lineUp();

Description
This function scrolls a frame one line up by the amount specified by the frame's
vLineSize property.

Example
myFrame.lineUp();

Availability
Available in version 3.0 or later.

Frame.pageDown()
scrolls a frame one page down

Synopsis
void	Frame.pageDown();

Description
This function scrolls a frame one page down by the height of the frame minus one line
height as specified by vLineHeight.

Example
myFrame.pageDown();

Availability
Available in version 3.0 or later.

Frame.pageLeft()
scrolls a frame one page left

Synopsis
void	Frame.pageLeft();

Description
This function scrolls a frame one page left by the width of the frame minus one line

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

height as specified by hLineHeight.

Example
myFrame.pageLeft();

Availability
Available in version 3.0 or later.

Frame.pageRight()
scrolls a frame one page right

Synopsis
void	Frame.pageRight();

Description
This function scrolls a frame one page right by the width of the frame minus one line
height as specified by hLineHeight.

Example
myFrame.pageRight();

Availability
Available in version 3.0 or later.

Frame.pageUp()
scrolls a frame one page up

Synopsis
void	Frame.pageUp();

Description
This function scrolls a frame one page up by the height of the frame minus one line
height as specified by vLineHeight.

Example
myFrame.pageUp();

Availability
Available in version 3.0 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Frame.removeFromSuperview()
detaches an object from its parent view

Synopsis
void	Frame.removeFromSuperview()

Description
Use this method to remove an object from a window. You might do this because you are
done with it and are reloading new information. Once detached, you can merely clear
your reference to it by setting it to null if you are done with it, or put it into another
window or frame if you like.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an
object from a window. Deleting the reference will not work.

Example
myObject.removeFromSuperview();

Availability
Available in version 3.0 or later.

Frame.subviews
array of subviews in this frame

Synopsis
array	Frame.subviews	(read-only)

Description
This property contains all the views contained in this frame, as a Javascript array. If the
frame has no subviews, this property will be set to null.

Example
var	x	=	myFrame.subviews[0];

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Frame.superview
the parent view of this view

Synopsis
frame|root	Frame.superview	(read-only)

Description
This property contains the parent view of this view. The parent can either be a Frame
object or a Root object. If the view has no parent, this property will be set to null.

Example
var	parent	=	myFrame.superview;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

Frame.vScrollBar
the vertical scroll bar for a frame

Synopsis
Frame.vScrollBar

Description
You can set or query the vertical scroll bar with this property. Attaching a scroll bar will
do all the automatic setup for communicating between the frame and the scroll bar.

Example
myFrame.vScrollBar

Availability
Available in version 3.0 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Image Properties and Functions

Image.fade()
fade in or out an image

Synopsis
Image.fade(start, end, duration)

Description
The fade() command will cause an image to fade from a starting opacity to a finishing
opacity. duration specifies the time (in tenths of a second) you want the animation to
last for.

Example
newOpacity	=	0;	
myImage.fade(myImage.opacity,	newOpacity,	1);

Image.moveTo()
move an image from point a to point b via animation

Synopsis
Image.moveTo(newX, newY, duration)

Description
The image's origin (hOffset, vOffset) is moved to the new coordinates specified
by newX and newY. duration specifies the time (in tenths of a second) you want the
animation to last for. The move of the object is animated (which is what makes this
different from just changing hOffset and vOffset).

Example
myImage.moveTo(50,	50,	3);

Image.reload()
reload an image from disk

Synopsis
Image.reload()

Description
Use this method to reload an image from disk. This is especially useful if your Widget

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

makes use of a graphic that is being constantly updated by an external process as it
defeats the normal caching behavior of the Image object.

Example
myImage.reload();

Image.removeFromSuperview()
detaches an image object from its parent view

Synopsis
Image.removeFromSuperview()

Description
Use this method to remove an image object from a window. You might do this because
you are done with it and are reloading new information. Once detached, you can
merely clear your reference to it by setting it to null if you are done with it, or put it into
another window or frame if you like.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an
object from a window. Deleting the reference will not work.

Example
myImage.removeFromSuperview();

Availability
Available in version 3.0 or later.

Image.slide()
slide an image in a specified direction and duration

Synopsis
Image.slide(direction, amountOfImageToConceal, duration)

Description
The slide() command is an animation effect used to hide and reveal parts of the user
interface. It is used when you want to slide an image in a particular direction, and have
it disappear into itself rather than just move. duration specifies the time (in tenths of a
second) you want the animation to last for.

Example
myImage.slide("up,left",	50,	3);

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Image.superview
the parent view of this view

Synopsis
frame|root	Image.superview	(read-only)

Description
This property contains the parent view of this view. The parent can either be a Frame
object or a Root object. If the view has no parent, this property will be set to null.

Example
var	parent	=	myImage.superview;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

Root Properties and Functions
The root is the container for all views in a window. When an object such as an image
has it's window property set, this is the view it is added to internally. It is here for
completeness of the view hierarchy, and has only two properties and one function. The
root can be accessed as a property of the window it belongs to. The Widget's minimum
version must be set to at least version 3.0 for this property to exist.

Root.addSubview()
adds a view to the root of a window

Synopsis
void	Root.addSubview(object);

Description
This function adds an object to a root view for a window. Currently Image, Text,
TextArea, Frame, and ScrollBar objects can be added as a child.

You can attach a view to the top level of a window by using this method, or by simply
setting the window property of an object. Both approaches yield the exact same result.

Example
myWindow.root.addSubview(myImage);

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Availability
Available in version 3.0 or later.

Root.subviews
array of subviews

Synopsis
array	Root.subviews	(read-only)

Description
This property contains all the views contained in this view, as a Javascript array. If the
root has no subviews, this property will be set to null.

Example
var	x	=	myWindow.root.subviews[0];

Availability
Available in version 3.0 or later.

Root.superview
the parent view of this view

Synopsis
null	Root.superview	(read-only)

Description
This property contains the parent view of this view. This property always returns null. It
is here for completeness of the hierarchy.

Example
var	shouldBeNull	=	myWindow.root.superview;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

ScrollBar Properties and Functions

ScrollBar.removeFromSuperview()
detaches an object from its parent view

Synopsis
ScrollBar.removeFromSuperview()

Description
Use this method to remove an scroll bar object from a window. You might do this
because you are done with it and are reloading new information. Once detached, you
can merely clear your reference to it by setting it to null if you are done with it, or put it
into another window or frame if you like.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an
object from a window. Deleting the reference will not work.

Example
myScrollbar.removeFromSuperview();

Availability
Available in version 3.0 or later.

ScrollBar.setRange()
sets the min and max of a scroll bar

Synopsis
ScrollBar.setRange(int	min,	int	max)

Description
Use this method to define the range of values that can be expressed by a scroll bar. You
cannot modify the min and max properties directly, so you must use this function to set
those properties. The value will be pinned to this range if the value falls outside of the
new range when this function is called.

You will normally not need to deal with this function if you are attaching a scrollbar to a
frame object. In that case, the range is set automatically for you.

Example
myScrollbar.setRange(0,	100);

��0 | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Availability
Available in version 3.0 or later.

ScrollBar.setThumbInfo()
replace the images that comprise the thumb of a scroll bar

Synopsis
ScrollBar.setThumbInfo(int	offset,	string|array	images)

Description
While the standard scroll bar object allows you to customize the thumb color, this might
not meet every Widget's need. To facilitate more customization, you can pass either one
or three image paths to this function as a string or array, respectively, and the thumb
will use those images to make the thumb. If you pass one image, this implies a fixed
size thumb and your scroll bar will not be proportional. This may be appropriate if you
are trying to make a slider object instead. If you pass three, the first and third image
paths specify the caps to use for top/bottom. The second image is a stretchable center.
Therefore, three part scroll bar thumbs are always proportional.

The offset parameter controls how far into the scroll bar the thumb should be
positioned. If you specify 3 for example, your scroll bar images will appear 3 pixels
to the right of the left edge of the scroll bar view. For horizontal scroll bars, this is the
number down to nudge the thumb.

Please note that at present, horizontal scroll bar images have to be created with the same
orientation as vertical ones. So you need to design your scroll bars horizontally, but
rotate them 90 degrees clockwise before chopping them up and saving out the pieces.

Example
myScrollbar.setThumbInfo(1,	new	Array("images/topCap.png",	
	 	 "images/middle.png",	"images/bottomCap.png"));

myScrollbar.setThumbInfo(0,	"images/fixedthumb.png"));

Availability
Available in version 3.0 or later.

ScrollBar.setTrackInfo()
replace the images that comprise the track of a scroll bar

Synopsis
ScrollBar.setThumbInfo(int	offset,	int	topLimit,	

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ��1

	 int	bottomLimit,	string|array	images)

Description
While the standard scroll bar object allows you to customize the thumb color, this might
not meet every Widget's need. To facilitate more customization, you can pass either one
or three image paths to this function (as a string or array, respectively), and the track
will use those images to draw itself. If you pass three, the second image is a stretchable
center.

The offset parameter controls how far into the scroll bar the track should be positioned
(perhaps you have a one-line track for a slider look). If you specify 3 for example, your
images will appear 3 pixels in from the left edge of the scroll bar view. For horizontal
scroll bars, this is the number down to nudge the track images.

The topLimit and bottomLimit parameters are used to set the limits of how far the
thumb can travel. They are basically 'bumper' limits. If you want to ensure the thumb
can not travel anywhere less than 5 pixels from the top of your scroll bar, specify 5 for
the topLimit.

Please note that at present, horizontal scroll bar images have to be created with the same
orientation as vertical ones. So you need to design your scroll bars horizontally, but
rotate them 90 degrees clockwise before chopping them up and saving out the pieces.

Example
myScrollbar.setTrackInfo(0,	2,	2,	new	Array("images/topCap.png",	
	 	 "images/middle.png",	"images/bottomCap.png"));

Availability
Available in version 3.0 or later.

ScrollBar.superview
the parent view of this view

Synopsis
frame|root	ScrollBar.superview	(read-only)

Description
This property contains the parent view of this view. The parent can either be a Frame
object or a Root object. If the view has no parent, this property will be set to null.

Example
var	parent	=	myScrollBar.superview;

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

Text Methods

Text.fade()
fade in or out a text object

Synopsis
Text.fade(start, end, duration)

Description
The fade() command will cause a text object to fade from a starting opacity to a
finishing opacity. duration specifies the time (in tenths of a second) you want the
animation to last for.

Example
newOpacity	=	0;	
myText.fade(myText.opacity,	newOpacity,	6);

Text.moveTo()
move text from point a to point b via animation

Synopsis
Text.moveTo(newX, newY, duration)

Description
The text's origin (hOffset, vOffset) is moved to the new coordinates specified by
newX and newY. duration specifies the time (in tenths of a second) you want the
animation to last for. The move of the object is animated (which is what makes this
different from just changing hOffset and vOffset).

Example
myText.moveTo(50,	50,	3);

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Text.removeFromSuperview()
detaches a text object from its parent view

Synopsis
Text.removeFromSuperview()

Description
Use this method to remove a text object from a window. You might do this because you
are done with it and are reloading new information. Once detached, you can merely
clear your reference to it by setting it to null if you are done with it, or put it into
another window or frame if you like.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an
object from a window. Deleting the reference will not work.

Example
myText.removeFromSuperview();

Availability
Available in version 3.0 or later.

Text.slide()
slide a text object in a specified direction and duration

Synopsis
Text.slide(direction, amountOfTextToConceal, duration)

Description
The slide() function is used when you want to slide a text object in a particular
direction, and have it disappear into itself rather than just move. duration specifies
the time (in tenths of a second) you want the animation to last for.

Example
myText.slide("up,left",	50,	8);

Text.superview
the parent view of this view

Synopsis
frame|root	Text.superview	(read-only)

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Description
This property contains the parent view of this view. The parent can either be a Frame
object or a Root object. If the view has no parent, this property will be set to null.

Example
var	parent	=	myText.superview;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

TextArea Methods

TextArea.focus()
make the current textarea object the focus of key presses

Synopsis
TextArea.focus()

Description
The focus() function will make the given textarea be the one to which typed keys are
sent. It is most useful when there are several textareas on a Widget and you want to
move the insertion point from one to another. The textarea must be editable for this
to be effective.

When focus is acquired, the onGainFocus action is called for the text area in version 3.0
or later.

Example
mytextarea.focus();

TextArea.loseFocus()
relinquishes keyboard focus if the text area currently is the focus

Synopsis
TextArea.loseFocus()

Description
The loseFocus() function releases the keyboard focus from the text area if the text
area is the current focus (via a call to focus()). This function is useful for clearing

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

the focus after the user perhaps enters a value in a text area used as a search field.
There is no need to call this when the window the text area loses the focus, as it will
automatically lose focus in that case.

When focus is lost, the onLoseFocus action is called for the text area in version 3.0 or
later.

Example
mytextarea.loseFocus();

Availability
Available in version 3.0 or later.

TextArea.rejectKeyPress()
control whether keys are accepted by a textarea

Synopsis
TextArea.rejectKeyPress()

Description
The rejectKeyPress() function is used in the <onKeyPress> action to control
whether the current key press will affect the textarea.

Example
				<onKeyPress>	
				<!--	
						//	Convert	all	typed	characters	to	uppercase	
						var	key	=	system.event.key;	
	
						if	(key.charCodeAt(0)	>=	"A".charCodeAt(0)	&&	
										key.charCodeAt(0)	<=	"z".charCodeAt(0))	
						{	
								//	Tell	the	text	area	to	ignore	this	keyPress	as	
								//	we	are	replacing	it	with	our	own	
								ta1.rejectKeyPress();	
	
								//	Append	an	upper	case	copy	of	the	key	pressed	
								//	(the	insertion	point	is	a	0	length	selection)	
								ta1.replaceSelection(key.toUpperCase());	
						}	
				//	-->	
				</onKeyPress>

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

TextArea.removeFromSuperview()
detaches a text area object from its parent view

Synopsis
Image.removeFromSuperview()

Description
Use this method to remove a text area object from a window. You might do this because
you are done with it and are reloading new information. Once detached, you can
merely clear your reference to it by setting it to null if you are done with it, or put it into
another window or frame if you like.

When your Widget's minimumVersion is set to 3.0, you must call this to remove an
object from a window. Deleting the reference will not work.

Example
myTextArea.removeFromSuperview();

Availability
Available in version 3.0 or later.

TextArea.replaceSelection()
replace the current selection in a textarea with a string

Synopsis
TextArea.replaceSelection(string)

Description
The replaceSelection()	function replaces the current selection in the textarea with
the given string. Note that the "cursor" or "insertion point" is actually a selection of zero
length so, if nothing is selected in the textarea, using replaceSelection()	has the
effect of inserting the given string at the current cursor position.

Example
replacement	=	"new	text";	
mytextarea.replaceSelection(replacement);

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

TextArea.select()
select text in the textarea

Synopsis
TextArea.select(start, end)

Description
The select function changes the selection in the text area. Characters from start to end
are selected. As a special case, the position –1 means "the end of the text", thus:

mytextarea.select(0,	-1);

selects all the text.

To set the position of the "cursor" or "insertion point" specify a selection of zero length,
for example:

mytextarea.select(10,	10);

To set the insertion point after any text already in the textarea you would use:

mytextarea.select(-1,	-1);

When the insertion point is set, the contents of the text area are scrolled so it is visible to
the user.

Example
mytextarea.select(5,	15);

TextArea.superview
the parent view of this view

Synopsis
frame|root	TextArea.superview	(read-only)

Description
This property contains the parent view of this view. The parent can either be a Frame
object or a Root object. If the view has no parent, this property will be set to null.

Example
var	parent	=	myTextArea.superview;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Timer Functions

Timer.reset()
Restarts a timer's countdown

Synopsis
Timer.reset()

Description
The reset() function will cause a timer to start its countdown over. For example, if
you had a timer that was on a one-minute interval, and 30 seconds after it started to run
you called reset() , it would start its one minute countdown over again. So instead of
firing in 30 seconds, it would start over and fire in one minute.

A good example of when this is useful is if you were trying to implement some sort
of idle timer. Let's say you wanted to do something in your Widget if the user hasn't
interacted with it in 15 seconds. If the user clicked your Widget, you could start a timer
that will fire in 15 seconds. If the user clicks again, you can merely reset the timer,
starting the 15 second countdown over. Eventually, after not clicking for 15 seconds, the
timer will fire.

Example

myTimer.reset();

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

URL Object
Description
The URL object encapsulates the state needed to manage a connection to a remote
resource. URLs are never defined in the XML section of a Widget.

Method
addPostFile() Add a file for a multipart POST request.

cancel() Cancel an outstanding fetchAsync request.

fetch() Retrieve the data at the specified URL as a string.

fetchAsync() Retrieve the data at the specified URL asynchronously.

getResponseHeaders() Retrieve the headers from an HTTP response.

setRequestHeader() Set a header for an HTTP request.

Attributes
autoRedirect A boolean indicating whether the URL object should follow

redirects automatically (default is true).

location A string representing the URL.

outputFile If set, URL.fetch() will place retrieved data in a file with this
name.

postData If set, URL.fetch() will perform a POST to the specified location
instead of the default GET using this string as the data to be posted.

response The HTTP response code indicating the result of the most recent
URL.fetch().

responseData The actual response data, regardless of response code.

result The result of the most recent URL.fetch() or fetchAsync().

Example
var	url	=	new	URL();	
url.location	=	"http://www.yahoo.com";	
contents	=	url.fetch();

��0 | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

URL.addPostFile()
Adds a file for a multipart POST request

Synopsis
URL.addPostFile(path)

Description
This function adds a file path to a list of files to be sent along with a POST request. The
path is not tested for existence until the POST is actually sent. When files have been
added, your request is automatically set to be a POST request.

Example

var	myURL	=	new	URL;	
myURL.addPostFile("myfile.png",	"/A/Local/File/Path.png");	
myURL.location	=	"http://mysite.com";	
myURL.fetch();

Availability
Available in version 2.1 or later.

URL.autoRedirect
indicates whether to automatically follow redirects

Synopsis
URL.autoRedirect

Description
This attribute allows you to control whether a URL object will follow redirects
automatically. The default is true. Setting this to false will allow you to get the 302
redirect response and process it as you wish.

Example

var	myURL	=	new	URL;	
myURL.autoRedirect	=	false;	
myURL.location	=	"http://mysite.com";	
myURL.fetch();

Availability
Available in version 2.1 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ��1

URL.cancel()
Cancels an asynchronous request sent via fetchAsync()

Synopsis
URL.cancel()

Description
This function cancels an outstanding request sent via fetchAsync(). It has no effect if
there is no async request pending. If called, the request is dropped and your function
which would normally receive the result of the request is not called.

Example
myUrl.cancel();

Availability
Available in version 2.1 or later.

Example
var	myURL	=	new	URL;	
myURL.location	=	"http://mysite.com";	
myURL.fetchAsync(myCallback);	
...	
myURL.cancel();

Availability
Available in version 2.1 or later.

URL.clear()
clears the current settings of a URL object

Synopsis
URL.clear()

Description
After using a URL object, if you wish to reuse it to send another request, you can call the
clear() method to ensure any prior post data (files, etc) are gone from the object. If you
call this function on a URL object that is currently running an async request, the request
is cancelled before the object is cleared.

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Example
myURL	=	new	URL;	
myURL.location	=	"http://widgets.yahoo.com/"	
result	=	myURL.fetch();	
//	reuse	the	object	
myURL.clear();	
myURL.location	=	"http://www.yahoo.com/"	
result	=	myURL.fetch();

Availability
Available in version 2.1 or later.

URL.fetch()
return URL data as string

Synopsis
URL.fetch([location])

Description
Retrieves data from the remote location specified or from the web address specified
in the URL's location attribute. If a location is specified this also sets the value of the
location attribute of the URL. The data is either returned as a string (the default) or
into a file if the outputFile attribute has been set. This is done synchronously so the
Widget will pause until the data is retrieved.

If an error occurs and fetch() is returning a string, then it will return the string
"Could	not	load	URL" (or the string "Could	not	load	URL	with	POST" if the
attribute postData is set). The response attribute will contain the code indicating the
type of error.

Note: if you are retrieving an RSS feed (or any web resource) you should make sure
you do not fetch it too often. Any frequency shorter than 30 minutes should be very
carefully considered. Your Widget may be used by thousands of people and the web site
supplying the data may not appreciate the automated traffic. Also make sure that you
do not implement a scheme that causes all instances of a Widget to try and fetch data
at the same time (e.g. every hour on the hour) as this can also cause problems for sites
(using an onTimer action is fine because different people's Widgets will be started at
different times).

Example
var	url	=	new	URL();	
webAddress	=	"http://www.yahoo.com";	
contents	=	url.fetch(webAddress);

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Notes
In version 2.1 or later, you can also get the result via the result attribute.

URL.fetchAsync()
GET or POST something asynchronously

Synopsis
URL.fetchAsync(function)

Description
This works similarly to fetch() except that it will perform the request asynchronously,
leaving your Widget to go about its business while the request completes. When the
request is finished, it calls the function you pass into the function. Your function receives
the url object that started the request, which you can query to get the result and/or the
response of the request.

Use of this function will greatly improve the responsiveness of your Widget, allowing
the user to drag and otherwise interact with it while the request is running.

Example
var	url	=	new	URL();	
url.location	=	"http://www.yahoo.com";	
url.fetchAsync(url_done);	
	
function	url_done(url)	
{	
			print("fetch	complete");	
			print("response:	"	+	url.response);	
			print("result:	"	+	url.result);	
}

Availability
Available in version 2.1 or later.

URL.getResponseHeaders()
returns headers from an HTTP response

Synopsis
URL.getResponseHeaders(name)

Description
This function allows you to get at the headers that accompany an HTTP response. The

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

most useful purpose of this is to get "Set-Cookie" headers for use at a later time. Version
2.1 and later disables automatic cookie handling for security reasons, so if your Widget
needs to use cookies to work, you will need to use this function to get them out of a
response. You can then pass the cookies back to the server in a later call to fetch() by
setting them with setRequestHeader.

This function returns an array of the headers that match the name you pass in. In
version 3.0 or later, you can pass "*" as the name and you will receive an array of the
complete headers, including the name (passing a name yields the value of the headers
only).

Example
var	url	=	new	URL();	
url.location	=	"http://www.my_site.com";|	
url.fetch();	
var	cookies	=	URL.getResponseHeaders("Set-Cookie");

Availability
Available in version 2.1 or later.

URL.location
the web address of the URL

Synopsis
URL.location

Description
Specifies the web address the URL will fetch data from.

Example
var	url	=	new	URL();	
url.location	=	"http://www.yahoo.com";	
contents	=	url.fetch();

URL.outputFile
a file to store the fetched data in

Synopsis
URL.outputFile

Description
Specifies an optional file into which fetched data will be stored. If you are retrieving

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

textual data (e.g. a HTML file) it is usually easier to just use the return value of URL.
fetch() but if you are retrieving binary data (e.g. an image file) then the retrieved data
must be stored in a file as the process of converting it to a string will render it invalid.

Example
var	url	=	new	URL();	
url.outputFile	=	system.widgetDataFolder	+	"/mytempfile";	
url.location	=	"http://www.example.com/graphic.jpg";	
url.fetch();	
myIng.src	=	url.outputFile;

URL.postData
data to be POSTed to a web server

Synopsis
URL.postData

Description
Setting postData will cause a URL object to POST to its location rather than
performing a GET operation. To post nothing, set postData to an empty string. To
make the URL object GET again, set postData to null.

The format of this data should be url encoded, i.e. each parameter is passed as
name=value and parameters are separated by a '&' symbol. Use encode() when your
data contains spaces, '&', '=' or non-ASCII characters.

Example
var	url	=	new	URL();	
var	text	=	encode("a	lot	of	&&&	bad	text");	
url.postData	=	"x=123&y=456&q="	+	text;	
contents	=		
					url.fetch("http://www.example.com/myscript.php");

URL.response
the HTTP response code for the last fetch

Synopsis
URL.response

Description
The response attribute indicates the HTTP response code received as a result of
the last fetch call. Codes greater than or equal to 400 indicate there was a problem
completing the request.

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Note that a response code is only available if a web server was actually contacted and
a request made. If the server is not available or an invalid URL is supplied for the
location then the response attribute will be 0 (zero). A successful web page retrieval
is usually indicated by a response code of 200. By default, the Widget Engine does
redirection automatically, so you will never see a response code of 302 unless you set the
autoRedirect property to false.

Example
var	url	=	new	URL();	
url.location	=	"http://www.yahoo.com";	
contents	=	url.fetch();	
log("Response	was:	"	+	url.response);

URL.responseData
the result of the last request

Synopsis
URL.responseData

Description
The responseData attribute is used to get the actual text response from the server
regardless of the status code sent back. This differs from the URL.result attribute in
that you will always get the real response text back and never any status string. If the
connection failed, this attribute is empty.

With this attribute, you can get the actual 404 page that is returned if you get a 404 error
from the server.

Synopsis
var	url	=	new	URL();	
url.location	=	"http://www.mysite.com/a_url_that_doesnt_exist";	
url.fetch();	
	
//	will	print	"Could	not	load	URL"	
print(url.result);	
	
//	will	print	the	actual	response	from	the	server	
print(url.responseData);

Availability
Available in version 2.1.1 or later.

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

URL.result
the result of the last request, or an error string

Synopsis
URL.result

Description
The result attribute indicates the result received from the last request made via fetch()
or fetchAsync(). This will contain the actual text of the result (e.g. a web page), or the
error strings "Could not load URL" or "Could not load URL with POST". If you need the
actual response even when the status code from the server is not 200, use responseData
in version 2.1.1 or later.

Example
var	url	=	new	URL();	
url.location	=	"http://www.yahoo.com";	
url.fetch();	
print(url.result);

Availability
Available in version 2.1 or later.

URL.setRequestHeader()
sets a header on an HTTP request

Synopsis
URL.setRequestHeader(name,	value)

Description
This function is used to set headers to accompany an HTTP request. The most common
use of this is to set cookies for a request. Version 2.1 disables automatic cookie
support, so this function is necessary in order to continue to use cookies. With the
getResponseHeaders function, this function can be used to deal with cookies in your
Widget. After receiving cookies in a prior response (see getResponseHeaders), you can
use this function to set the cookie or cookies in a future request. The name parameter is
the name of the header, the value is the actual contents of the header.

Example
var	url	=	new	URL();	
url.location	=	"http://www.my_site.com";	
url.setRequestHeader("Cookie",	myCookie);	
url.fetch();

��� | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Available
Available in version 2.1 or later.

Window Properties and Functions

Window.focus()
brings a window to the front

Synopsis
Window.focus()

Description
If for some reason you need to bring a window foward, you can use the focus() method
on a window. On Windows, this API might not always bring the window completely
forward, particularly if the Widget is not active to begin with. But if you are interacting
with the Widget and require an inspector or other secondary window to come forward,
this API will do just that.

Example
myWindow.focus();

Availability
Available in version 3.0 or later.

Window.locked
disables the ability for a user to drag a window

Synopsis
Window.locked

Description
You can set or inspect a window's locked property to control whether the user can drag
a window or not. This setting is largely controlled by a Widget's Window preferences in
the preferences dialog. This property is not expressed in the XML interface.

Example
myWindow.locked	=	true;

Object�Properties�and�Functions WIDGET ENGINE 3.0 REFERENCE | ���

Window.moveTo()
move a window around the screen

Synopsis
Window.moveTo(newX, newY, duration)

Description
The window's origin (hOffset, vOffset) is moved to the new coordinates specified
by newX and newY. duration specifies the time (in tenths of a second) you want the
animation to last for.. The move of the object is animated (which is what makes this
different from just changing hOffset and vOffset).

Example
myWindow.moveTo(150,	150,	2);

Window.recalcShadow()
recalculate the Widget's Aqua shadow

Synopsis
Window.recalcShadow()

Description
If a Widget that has an Aqua shadow changes its shape (for example, by hiding or
showing images) it should call the recalcShadow()	method of its main window
before returning control to the user so that the shadow is correctly displayed.

Note: this has no effect on Windows.

Example
if	(myWindow.shadow)	
	 myWindow.recalcShadow();

Windows Note
Window shadows are not currently supported on Windows. If you decide to render
your artwork with your own shadows, be sure to set the shadow property of your
window to 0. If not, when and if Windows does support shadows you'll end up with a
double-shadow.

��0 | WIDGET ENGINE 3.0 REFERENCE Object�Properties�and�Functions

Window.root
the root view of the window

Synopsis
Root	Window.root	(read-only)

Description
This property contains the root view of the window. This value will never be null and
contains all the views at the top level of the window. To add a view to a window, you
can either call root.addSubView() or set an object's window property. In both cases the
view will be a child view of the root.

Example
var	root	=	myWindow.root;

Availability
Available in version 3.0 or later. The Widget's minimum version must be set to at least
version 3.0 for this property to exist.

Animation WIDGET ENGINE 3.0 REFERENCE | ��1

Animation Objects
Objects and functions to aid in doing animations

Version 2.1 and later of the Widget Engine contains animation support that allows you
to do animations asynchronously as well as synchronously. It also allows you to do
custom animations written in JavaScript. You can fade, move, or rotate objects all at the
same time.

A new object called animator controls the animation. You tell tell the animator to start
an animation and run it asynchronously, allowing your Widget to do other things in the
meantime. You can also take an animation (or multiple animations) and run them all
synchronously, meaning the call will block until all the animations are complete.

These facilities take all of the hard work out of doing pretty interesting animations.
They also provide 'ease' functions for you to use to get the standard animation
technique of easing, where an object's speed can ramp up or down at the start or end of
the animation to give a better feeling of realism to the movement.

Each animation type has a 'done' function that can be called to let you know when
the animation is complete. This function is only called when running an animation
asynchronously. You can use this done function to chain animations together, starting a
new animation when an older one is ending.

animator
the master animation object
The animator object is the core of the animation system in version 2.1 or later. It is what
you use to start animations. You can also call methods on it to help you deal with 'ease'
transitions.

animator.ease()
blend a number between two numbers for an 'ease' effect

Synopsis
animator.ease(start,	end,	percent,	easeType)

Description
This function is used to help you create an 'ease' effect in your animations. All of the
built-in move animations that have been in Widget Engine 2.0 and later have had this
effect. Essentially you can make an object speed up as it moves away or slow down as it
stops to give it a more realistic feeling of movement.

To use this function, you pass the starting and ending number, along with the
percentage complete as a fraction (i.e. if you are half complete, pass 0.5). The ease type is

��� | WIDGET ENGINE 3.0 REFERENCE Animation

specified with one of the constants attached to the animator object: kEaseNone, kEaseIn,
kEaseOut, kEaseInOut. See the explanation of those constants for what they mean.

Example
var	n	=	animator.ease(0.	100,	.7,	animator.kEaseOut);	
	
//	at	this	point,	n	is	some	place	between	0	and	100	
//	depending	on	the	ease	out	curve.	It	is	not	linear.

Availability
Available in version 2.1 or later.

animator.kEaseIn
animator.kEaseOut
animator.kEaseInOut
animator.kEaseNone
constants to dictate the type of easing to use

Description
These constants are used when creating different animation objects as well as using the
animator.ease() function. If you are familiar with easing, the engine currently uses a
sinusoidal ease function.

Ease In means that the object will start to move slowly and then speed up as it moves.

Ease Out means the object will start quickly and slow down as it comes to rest.

Ease In/Out means the object will start slowly, reach full speed, then start to slow down
as it approaches the end of its journey.

Ease None means no easing is in effect. The speed is constant from beginning to end.

Availability
Available in version 2.1 or later.

animator.milliseconds
the current animation timebase

Description
For custom animations, it is useful to get the current animation timebase to mark the
start time (or just know when 'now' is). This property of the animator object allows you
to determine the current time.

Animation WIDGET ENGINE 3.0 REFERENCE | ���

Example
myAnimation.startTime	=	animator.milliseconds;

Availability
Available in version 2.1 or later.

animator.runUntilDone()
runs an animation or animations to completion

Synopsis
animator.runUntilDone(object	|	array)

Description
This function is used to run an animation or animations until they are all complete. This
function will not return until all of the animations specified are considering to be done.
For this reason, this function should be used only when you are running short, finite
animations. An infinite animation such as a 'pulsing button' effect would mean this call
would never exit, so care must be taken to ensure this does not occur.

Example
//	crossfade	
var	a	=	new	FadeAnimation(myImage1,	0,	350,	
	 	 	 	 	 animator.kEaseOut);	
var	b	=	new	FadeAnimation(myImage2,	255,	350,	
	 	 	 	 	 animator.kEaseOut);	
animator.runUntilDone(new	Array(a,	b));	
//	at	this	point	both	animations	are	complete.

Availability
Available in version 2.1 or later.

animator.start()
starts an asynchronous animation or animations

Synopsis
animator.start(object	|	array)

Description
This function is used to run an animation or animations asynchronously. This function
returns immediately — it does not wait for the animations to complete. The animations
will not actually even start until your JavaScript code is exited and control returns back

��� | WIDGET ENGINE 3.0 REFERENCE Animation

to the Widget's main event loop. This means you can start multiple animations and they
will actually start at the exact same time. You can call start for each one, or pass them all
as an array into start, it doesn't matter.

Example
//	crossfade	asynchronously	
var	a	=	new	FadeAnimation(myImage1,	0,	350,	
	 	 	 	 	 animator.kEaseOut);	
var	b	=	new	FadeAnimation(myImage2,	255,	350,	
	 	 	 	 	 animator.kEaseOut);	
animator.start(new	Array(a,	b));	
//	at	this	point	nothing	has	started	yet.	When	we	leave	our	
Javascript	code,	the	animations	will	start	up	at	the	exact	same	
time.

Availability
Available in version 2.1 or later.

animation.kill()
base class method to terminate a running animation

Synopsis
animation.kill()

Description
This function is essentially a 'base class' function for all the following animation objects.
That is, it can be called on any of the animation objects below. It is used for stopping
asynchronous animations that might be running. For example, if you have an animation
that rotates an object indefinitely while in a certain mode, you will need to stop that
animation when you exit the mode. To do that just use this function.

Example
var	a	=	new	CustomAnimation(1,	SpinMeRightRoundBaby);	
animator.start(a);	
	
//	some	time	later,	maybe	after	the	user	clicks	a	button	
if	(a	!=	undefined)	
	 a.kill();

Availability
Available in version 2.1 or later.

Animation WIDGET ENGINE 3.0 REFERENCE | ���

CustomAnimation()
a custom animation routine written in JavaScript

Synopsis
new	CustomAnimation(interval,	updateFunc	[,doneFunc]);

Description
This is the most flexible animation object available to you, but you do need to do all the
work. In general, you can do fairly interesting things by merely using combinations of
the fade, move, and rotate animation objects provided below.

The first parameter is the interval your animation should start running at, in
milliseconds. You can change this interval in your update function. This allows you to
have an animation that changes speed, etc. A good example of this is something along
the lines of an animated GIF, in that each frame can have its own duration. When your
update function is called the 'this' object is the animation itself, so you can alter the
interval as such:

function	MyUpdate()	
{	
	 this.interval	=	5000;	//	switch	to	5	seconds	
	 return	true;	
}

The next parameter is your update function. This is where you do the work of the
animation. You might move an object, change it's opacity, or do truly interesting
things like adjust an image's HSL settings. A custom animation runs until your update
Function returns false. So a perpetual animation would always return true, as did the
code snippet above. You could always kill an animation that was perpetual by calling
the kill() method on the animation:

myAnimation.kill();

The last, optional parameter is the done function. This is called when your animation
is done. If you have a finite animation, it will be called right after your update function
returns false. Alternatively, if you wish you might just do the work in your update
function right before you return false.

Along with the interval, your custom animation has another property accessible to it,
startTime. This is set automatically when your animation is added to the queue (in the
case of using start) or when runUntilDone is called. You can query this value inside
your update function to determine how much time has elapsed. The example below
shows this in use.

��� | WIDGET ENGINE 3.0 REFERENCE Animation

Example
var	x	=	new	CustomAnimation(1,	UpdateMe);	
//	some	custom	properties	for	my	animation	
x.duration	=	350;	
x.startOpacity	=	myObject.opacity;	
x.endOpacity	=	0;	
	
function	UpdateMe()	
{	
	 var	now	=	animator.milliseconds;	
	 var	t	=	limit(now	-	this.startTime,	0,		
	 	 	 	 this.duration);	
	 var	percent	=	t	/	this.duration;	
	
	 //	set	the	new	opacity	of	our	object	based	on	
	 //	easing.	
	 myObject.opacity	=	animator.ease(this.startOpacity,	
	 	 	 	 this.endOpacity,	percent,	
	 	 	 	 animator.kEaseOut);	
	
	 //	If	the	duration	is	up,	let's	get	out	of	here	
	 if	(animator.milliseconds	>=		
	 	 (this.startTime	+	this.duration)	
	 {	
	 	 //	make	sure	we	reached	the	end	
	 	 myObject.opacity	=	this.endOpacity;	
	 	 return	false;	//	we're	done	
	 }	
	 return	true;	//	keep	going	
}

Availability
Available in version 2.1 or later.

FadeAnimation()
an animation object to adjust the opacity of an object

Synopsis
new	FadeAnimation(object,	toOpacity,	duration,		
	 	 	 	 easeType	[,	doneFunc]);

Description
This animation object can be used to adjust the opacity of an image, frame, text, textarea,
or window object. This can be used to fade an object in or out. You pass the opacity
you ultimately want to reach in the toOpacity parameter. The duration is specified in
milliseconds. You can specify the type of easing in the easeType parameter.

Animation WIDGET ENGINE 3.0 REFERENCE | ���

Once you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed will be called.

Example
var	a	=	new	FadeAnimation(myObject,	0,	350,	
	 	 	 animator.kEaseOut,	FadeDone);	
animator.start(a);	
	
function	FadeDone()	
{	
	 //	the	fade	above	has	finished	
	 print("fade	complete");	
}

Availability
Available in verison 2.1 or later.

MoveAnimation()
an animation object to adjust the position of an object

Synopsis
new	MoveAnimation(object,	toX,	toY,	duration,		
	 	 	 	 easeType	[,	doneFunc]);

Description
This animation object can be used to adjust the position of an image, frame, text,
textarea, or window object. This can be used to move an object on screen. It works
by adjusting the hOffset and vOffset attributes of the object you pas in. You pass the
hOffset and vOffset you ultimately want the object to be. The duration is specified in
milliseconds. You can specify the type of easing in the easeType parameter.

Once you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed will be called.

��� | WIDGET ENGINE 3.0 REFERENCE Animation

Example
var	a	=	new	MoveAnimation(myObject,	100,	100,	350,	
	 	 	 animator.kEaseOut,	MoveDone);	
animator.start(a);	
	
function	MoveDone()	
{	
	 //	the	move	above	has	finished	
	 print("move	complete");	
}

Availability
Available in verison 2.1 or later.

RotateAnimation()
an animation object to adjust the rotation of an object

Synopsis
new	RotateAnimation(image,	toAngle,	duration,		
	 	 	 	 easeType	[,	doneFunc]);

Description
This animation object can be used to adjust the rotation of an image object. It does not
affect text, textarea, or window objects. It works by adjusting the rotation attribute of
the image you pass in. You pass the angle you ultimately want the object to be when the
animation is finished. The duration is specified in milliseconds. You can specify the type
of easing in the easeType parameter.

Once you've created this animation object, you can pass it to animator.start() or
animator.runUntilDone().

If you pass a function for the doneFunc parameter, and you started your animation with
animator.start(), when the animation is complete, the function you passed will be called.

Example
var	a	=	new	RotateAnimation(myObject,	180,	350,	
	 	 	 animator.kEaseOut,	RotateDone);	
animator.start(a);	
	
function	RotateDone()	
{	
	 //	the	rotate	above	has	finished	
	 print("rotate	complete");	
}

Animation WIDGET ENGINE 3.0 REFERENCE | ���

Availability
Available in verison 2.1 or later

��0 | WIDGET ENGINE 3.0 REFERENCE XML�DOM

XML Services

About XML Services
The Widget Engine provides several mechanisms for dealing with XML. With these
services, you can create, parse, and manipulate XML trees. You can also use the built-in
implementation of XMLHttpRequest, a pseudo-standard for fetching XML off of web
servers.

The parsing and creation of XML documents is done via the global XML object. From
there, you can use standard W3C Level 1 DOM APIs to manipulate the XML tree. To
make it even easier to extract data from a tree, we provide an XPath 1.0 implementation
via the node.evaluate() addition.

DOM API
This section lists the various objects and methods/properties currently supported by
the Widget Engine's Level 1 W3C DOM implementation. We currently provide a large
subset of the full API. The current parser does not yet deal with DTDs, so it will not do
things such as fill in attributes with default values automatically and the like.

The following is a brief overview of the properties and functions we support. For more
information, we suggest you visit the w3c.org website.

DOMException
The standard exception class for the DOM.

When an exceptional situation arises, a DOMException is thrown as a Javascript
exception. You can inspect the object's code attribute to see what happened. Level 1
exception codes are:

	 INDEX_SIZE_ERR	 1	
	 DOMSTRING_SIZE_ERR	 2	

XML�DOM WIDGET ENGINE 3.0 REFERENCE | ��1

	 HIERARCHY_REQUEST_ERR	 3	
	 WRONG_DOCUMENT_ERR	 4	
	 INVALID_CHARACTER_ERR	 5	
	 NO_DATA_ALLOWED_ERR	 6	
	 NO_MODIFICATION_ALLOWED_ERR	 7	
	 NOT_FOUND_ERR	 8	
	 NOT_SUPPORTED_ERR	 9	
	 IN_USE_ATTRIBUTE_ERR	 10

DOMDocument
represents an entire XML document

Properties
doctype The document type definition for the document.

documentElement The root element of the document.

Functions
DOMElement	createElement(string	tagName);

Creates a new element node for the document with the given tag name. You
must attach it to the document as appropriate using appendChild.

DOMText	createTextNode(string	data);

Creates a new text node for the document with the given content.

DOMComment	createComment(string	data);

Creates a new comment node with the given content.

DOMCDATASection	createCDATASection(string	data);

Creates a new CDATA section with the given data.

DOMProcessingInstruction	
createProcessingInstruction(string	target,	string	data);

Creates a new processing instruction with the given target and data.

DOMAttribute	createAttribute(string	name);

Creates a new attribute node with the given name.

DOMNodeList	getElementsByName(string	name);

Returns a list of all elements in the document with the specified name.

��� | WIDGET ENGINE 3.0 REFERENCE XML�DOM

DOMNode
the base class for items in an XML tree

DOMNode is the base class for pretty much everything you'll deal with in the
DOM API. You'll never encounter a DOMNode in everyday life, but its interface is
something that is common to all node types (text, element, CDATA, etc.) and as such is
documented once here rather than over and over for each subclass

Properties
nodeName

The name of this node.

nodeType

The node type, expressed as an integer.

parentNode

The parent of this node (can be null).

childNodes

A DOMNodeList of children.

firstChild

The first child node of this node.

lastChild

The last child node of this node.

previousSibling

The previous sibling node of the current node.

nextSibling

The next sibling node of the current node.

attributes

A DOMNamedNodeMap of this nodes attributes (only valid for Element
nodes, null otherwise).

ownerDocument

The DOMDocument that this node belongs to.

Functions
DOMNode	insertBefore(DOMNode	newChild,	DOMNode	refChild);

Inserts newChild before refChild in this node's children.

XML�DOM WIDGET ENGINE 3.0 REFERENCE | ���

DOMNode	replaceChild(DOMNode	newChild,	DOMNode	oldChild);

Replaces oldChild with newChild.

DOMNode	removeChild(DOMNode	oldChild);

Removes oldChild from this node's children and returns it.

DOMNode	appendChild(DOMNode	newChild);

Adds the given child node (if this node type allows children).

boolean	hasChildNodes();

Returns true if this node has child nodes.

DOMNode	cloneNode(boolean	deep);

Clones this node. If deep is true, clones all descendents as well.

<various>	evaluate(string	xpath-expression);

This is an extension defined by the Widget Engine which lets you interface
with the engine's XPath support. Using the current node as the context for the
XPath expression, you can execute almost any XPath 1.0 expression you can
dream up (except for some namespace-specific functions). The result could
be a string, number, or a set of nodes. The Widget Engine returns node sets as
DOMNodeLists. See the section on XPath for more information.

string	toXML();

Widget Engine DOMNode extension. Converts the subtree starting at this
node into XML for output for either writing to a file, or possibly for debugging
purposes.

DOMNodeList
a simple list of nodes

In keeping with W3C ways, any list of nodes as expressed through the DOM API is
represented as a DOMNodeList, not as a Javascript array.

Properties
length

The number of items in the list.

Functions
DOMNode	item(n)

Returns the nth item in the list. DOMNodeLists are zero-based.

��� | WIDGET ENGINE 3.0 REFERENCE XML�DOM

DOMNamedNodeMap
a map of nodes which is accessible by name or index

When attribute nodes are returned via the attributes property of the DOMElement node,
they are returned in a named node map. This map is primarily accessible by name, but
you can also traverse it via index like a DOMNodeList. The order of the attributes is not
guaranteed and should never be relied upon.

Properties
length

The number of items in the list.

Functions
DOMNode	getNamedItem(string	name);

Returns the item with the given name, or null if the item is not found.

DOMNode	setNamedItem(string	node);

Adds the given node to the map. If a node with the given name exists, it is
replaced and the old node is returned. If a node with the give name does not
exist, null is returned.

DOMNode	removeNamedItem(string	name);

Removes the item with the given name, if it exists.

DOMNode	item(int	n);

Returns the nth item in the list. DOMNodeLists are zero-based.

DOMCharacterData
base class for text and comment nodes

This class, like DOMNode, is something that you'll never encounter in real life, but its
interface is available for both DOMText and DOMComment nodes. As with DOMNode,
the interface is shown here once and not duplicated in both of those classes.

Properties
data

The actual character data.

length

The length of the character data.

XML�DOM WIDGET ENGINE 3.0 REFERENCE | ���

Functions
string	substringData(int	offset,	int	count);

Returns a substring of the data as a string. It returns count characters of the
data starting at offset.

void	appendData(string	data);

Appends the given text to the node's data.

void	insertData(int	offset,	string	data);

Inserts the given string at the specified offset.

void	deleteData(int	offset,	int	count);

Erases count characters of data starting at offset.

void	replaceData(int	offset,	int	count,	string	data);

Replaces the sequence of count characters starting at offset with string.

DOMAttribute
an attribute node for an element

Properties
name

The name of the attribute.

value

The value of the attribute. Character and entity references are resolved before
returning this value.

DOMElement
an element node

Properties
tagName

The tag name of the element.

Functions
string	getAttribute(string	name);

Returns the value of the attribute specified, or an empty string if that attribute
does not exist.

��� | WIDGET ENGINE 3.0 REFERENCE XML�DOM

setAttribute(string	name,	string	value);

Adds the given attribute and its value to the element, replacing any attribute
of the same name that might already exist.

removeAttribute(string	name);

Removes the attribute with the specified name, if present.

DOMAttribute	getAttributeNode(string	name);

Returns the attribute node corresponding to the name passed in, or null if the
attribute does not exist.

DOMAttribute	setAttributeNode(DOMAttributes	attr);

Adds the given attribute to the element, replacing any attribute that might
exist with the same name. If the node replaces an existing node, the old node is
returned as the result, else null is returned.

DOMAttribute	removeAttributeNode(DOMAttribute	attr);

Removes the node specified from the element's attributes and returns it.

DOMNodeList	getElementsByTagName(string	name);

Returns a list of all elements with the specified tag name that are a descendant
of this node.

void	normalize();

If there are contiguous DOMText nodes in the subtree starting with the current
element, this function combines them into a single element.

DOMText
a text element

Functions
DOMText	splitText(int	offset);

Splits the given node into two and adds the new node as its new sibling
following it in the tree. This node will contain the text up until offset. The
following node will contain the remainder of the text. The new text node is
returned.

DOMComment
a comment node

This node merely has the properties and functions of the DOMCharacterData interface.

XML�DOM WIDGET ENGINE 3.0 REFERENCE | ���

DOMCDATASection
a CDATA section

This node merely has the properties and functions of the DOMCharacterData interface.

DOMDocumentType
the document type node

Currently, this node only defines the name property. Entities and notations are not
supported by the current version of the Widget Engine.

Properties
name

The name of the document's root object. For a Widget, this would be 'widget'.
For HTML it would be 'html'.

DOMNotation
a notation node

Currently unsupported.

DOMEntity
a node representing an entity

Currently unsupported.

DOMEntityReference
a node representing an entity reference

Currently unsupported.

DOMProcessingInstruction
a node representing a processing instruction

Properties
target

The target of the processing instruction.

��� | WIDGET ENGINE 3.0 REFERENCE XML�DOM

data

The content of the processing instruction. This is from the first non-whitespace
character after the target to the character immediately preceding the "?>".

XMLDOM�Object WIDGET ENGINE 3.0 REFERENCE | ���

XMLDOM Object
The XMLDOM global object allows you to parse and create XML documents. Note
that as per the Level 1 DOM API you cannot create DOMNode entities via new. You
must use the XMLDOM object to create a document and the document itself to create
elements to attach to the document (i.e. the DOMDocument is the factory for all
elements, text items, comments, etc.).

XMLDOM.createDocument()
creates a new, empty DOMDocument

Synopsis
doc	=	XMLDOM.createDocument();

Description
This function allows you to create a new DOMDocument element. From there you can
use the DOMDocument API to create elements to add to the document, as specified in
the W3C Level 1 DOM specification.

Example
doc	=	XMLDOM.createDocument();	
root	=	doc.createElement("root");	
doc.appendChild(root);

print(doc.toXML());

Availability
Available in version 3.0 or later.

XMLDOM.parse()
parses XML and yields a DOMDocument

Synopsis
doc	=	XMLDOM.parse(xml);

Description
The parse function parses the given XML string (gotten either from a web server or
using a call such as filesystem.readFile()) and returns a DOMDocument node. The
document node is a W3C Level 1 DOMDocument and conforms to the API as specified
by the W3C (modulo some omissions such as entity objects).

If the xml fails to parse, an exception is thrown containing the error string. You should
always call XML.parse inside a try/catch block to deal with failures.

��0 | WIDGET ENGINE 3.0 REFERENCE XMLDOM�Object

Example
try	
{	
	 doc	=	XMLDOM.parse(xmlStream);	
	 root	=	doc.documentElement;	
	 ...	
}	
catch(e)	
{	
	 print(e);	
}

Availability
Available in version 3.0 or later.

XMLHttpRequest WIDGET ENGINE 3.0 REFERENCE | ��1

XMLHttpRequest
Description
The XMLHttpRequest object is very much like the URL object that has existed in the
Widget Engine since very early on. XMLHttpRequest is, however, a de-facto standard
for doing XML over http in web browsers, so its addition here is to provide people with
an easier migration path when moving AJAX code over to the Widget Engine, as well as
simply trying to adhere to standards so developers find it more approachable.

Method
abort() Cancel an outstanding async request.

getAllResponseHeaders() Returns all response headers.

getResponseHeader() Returns a specific response header.

open() Sets up our request parameters.

send() Sends the request with optional data.

setRequestHeader() Set a header for a request.

Attributes
onreadystatechange

 Specifes a function to be called when sending an async request as
the state of the request changes.

readyState The current state of the request, used inside of the
onreadystatechange function.

responseText The full text of the response (e.g. a web page or XML text).

responseXML If the response is text/xml, this property will contain the
DOMDocument which represents the XML that was received.

status The HTTP status code (e.g. 200).

statusText The HTTP status text (e.g. "OK").

Example
var	req	=	new	XMLHttpRequest();	
req.open("GET",	"http://www.yahoo.com",	false);	
req.send();	
print(req.responseText);

��� | WIDGET ENGINE 3.0 REFERENCE XMLHttpRequest

XMLHttpRequest.abort()
aborts an async request

Synopsis
XMLHttpRequest.abort()

Description
If true was passed for the async parameter of open(), this call can be used to terminate
the request if it is still outstanding.

Example

request.abort();

Availability
Available in version 3.0 or later.

XMLHttpRequest.getAllResponseHeaders()
returns all the headers from a response

Synopsis
array	XMLHttpRequest.getAllResponseHeaders()

Description
After a request is complete, this call can be used to retrieve all the headers returned with
the response as an array of strings.

Example

var	headers	=	request.getAllResponseHeaders();

Availability
Available in version 3.0 or later.

XMLHttpRequest.getResponseHeader()
returns one or more headers from a response by name

Synopsis
string|array	XMLHttpRequest.getReponseHeader(string)

XMLHttpRequest WIDGET ENGINE 3.0 REFERENCE | ���

Description
After a request is complete, this call can be used to retrieve one or more headers with
the given name. If there is only one header, it will return a single string result. If there
are multiple, it will return an array of matches.

Example

var	cookies	=	request.getResponseHeader("Set-Cookie");

Availability
Available in version 3.0 or later.

XMLHttpRequest.onreadystatechange
function to call as an async request is processed

Synopsis
XMLHttpRequest.onreadystatechange

Description
If a request is send asynchronously (see open()), you must specify a function to be
called as the status of the request changes. No parameters are passed to this function.
When your function is called, 'this' refers to the request. Generally, you'll only care when
the readyState of your request is the value 4 (complete).

Example

var	request	=	new	XMLHttpRequest();	
request.onreadystatechange	=	myStatusProc;	
request.open("GET",	"http://www.yahoo.com",	true);	
request.send();	
	
//	someplace	else	
function	myStatusProc()	
{	
	 if	(this.readyState	==	4)	//	complete	
	 {	
	 			print(this.status);	
	 }	
}

Availability
Available in version 3.0 or later.

��� | WIDGET ENGINE 3.0 REFERENCE XMLHttpRequest

XMLHttpRequest.open()
sets up a request for sending

Synopsis
XMLHttpRequest.open(method,url,async);

Description
This sets up a request for sending. You pass the method, the url, and a flag indicating
whether you wish to send this request asynchronously. Please note that at present we do
not support the traditional username and password parameters. It may be supported in
a later release.

Valid values for the method parameter are "GET", "POST", "HEAD", "OPTIONS", "PUT",
and "DELETE".

Example

var	request	=	new	XMLHttpRequest();	
request.onreadystatechange	=	myStatusProc;	
request.open("GET",	"http://www.yahoo.com",	true);	
request.send();

Availability
Available in version 3.0 or later.

XMLHttpRequest.readyState
the current state of the request

Synopsis
XMLHttpRequest.readyState	(read-only)

Description
This is used to determine what the current state of the request is. This is typically only
used when sending an asynchronous request in your onreadystatechange function.

The values for readyState are:

	 0	 uninitialized	
	 1	 loading	
	 2	 loaded	
	 3	 interactive	
	 4	 complete

The Widget Engine will only set the readyState to 0, 1, or 4 in version 3.0.

XMLHttpRequest WIDGET ENGINE 3.0 REFERENCE | ���

Example

var	request	=	new	XMLHttpRequest();	
request.onreadystatechange	=	myStatusProc;	
request.open("GET",	"http://www.yahoo.com",	true);	
request.send();	
	
//	someplace	else	
function	myStatusProc()	
{	
	 if	(this.readyState	==	4)	//	complete	
	 {	
	 			print(this.status);	
	 }	
}

Availability
Available in version 3.0 or later.

XMLHttpRequest.responseText
the text returned by the request

Synopsis
XMLHttpRequest.responseText	(read-only)

Description
This property contains the text returned by the web server for the request you sent.
Typically this would be a web page or XML.

Example

var	request	=	new	XMLHttpRequest();	
request.open("GET",	"http://www.yahoo.com",	false);	
request.send();	
if	(request.status	==	200)	
			print(request.responseText);

Availability
Available in version 3.0 or later.

��� | WIDGET ENGINE 3.0 REFERENCE XMLHttpRequest

XMLHttpRequest.responseXML
the XML DOM returned by the request

Synopsis
XMLHttpRequest.responseXML	(read-only)

Description
If the response to the request returned data with a content type of "text/xml", this
property will contain the DOMDocument node representing the XML document (i.e. it
will be automatically parsed and ready for use). If the document cannot be parsed, or
the content type is not "text/xml", this property will be set to null.

Example

var	request	=	new	XMLHttpRequest();	
request.open("GET",	"http://www.yahoo.com",	false);	
request.send();	
if	(request.status	==	200)	
			print(request.responseXML.toXML());

Availability
Available in version 3.0 or later.

XMLHttpRequest.send()
sends the request to the server

Synopsis
XMLHttpRequest.send([body])

Description
This function actually does the sending of the data to the server. You can optionally pass
data to be passed as the body of the HTTP request into this function.

Example

var	request	=	new	XMLHttpRequest();	
request.open("POST",	"http://www.yahoo.com",	false);	
request.send(someXML);

Availability
Available in version 3.0 or later.

XMLHttpRequest WIDGET ENGINE 3.0 REFERENCE | ���

XMLHttpRequest.setRequestHeader()
sets a request header

Synopsis
XMLHttpRequest.setRequestHeader(name,value)

Description
This function adds a header to a request, potentially replacing any existing header with
the same name.

Example

var	request	=	new	XMLHttpRequest();	
request.open("POST",	"http://www.yahoo.com",	false);	
request.setRequestHeader("Content-type",	"text/xml");	
request.send(xml);

Availability
Available in version 3.0 or later.

XMLHttpRequest.status
returns the status of the response

Synopsis
XMLHttpRequest.status	(read-only)

Description
This property represents the HTTP status code returned by the server, e.g. 200, 404, etc.

Example

var	request	=	new	XMLHttpRequest();	
request.open("POST",	"http://www.yahoo.com",	false);	
request.setRequestHeader("Content-type",	"text/xml");	
request.send(xml);	
if	(request.status	==	200)	//	success!	
	 DoSomethingWonderful();

Availability
Available in version 3.0 or later.

��� | WIDGET ENGINE 3.0 REFERENCE XMLHttpRequest

XMLHttpRequest.statusText
returns the status text of the response

Synopsis
XMLHttpRequest.statusText	(read-only)

Description
This property represents the HTTP status text returned by the server, e.g. "OK", "Not
Found", etc. These exactly correspond to the codes returned via status. Normally, you'd
use status and not statusText.

Example

var	request	=	new	XMLHttpRequest();	
request.open("POST",	"http://www.yahoo.com",	false);	
request.setRequestHeader("Content-type",	"text/xml");	
request.send(xml);	
if	(request.statusText	==	"OK")	//	success!	
	 DoSomethingWonderful();

Availability
Available in version 3.0 or later.

XPath WIDGET ENGINE 3.0 REFERENCE | ���

XPath Support
brief overview of XPath

Starting in version 3.0, the Widget Engine now supports the XPath 1.0 language for
extracting nodes and node information from an XML tree. Chances are you'll almost
never use the raw DOM API to extract node information and will instead use XPath. It's
far easier and more straightforward. This section explains how it is integrated into the
Widget Engine and how you access it. It also demonstrates some examples of how it can
be used.

This is only a brief explanation. For full documentation, please consult the w3c.org
website on XPath 1.0.

First, let's define an example XML tree:

<?xml	version="1.0"	encoding="utf-8"?>	
<my-data>	
			<element1	name="fred"	size="200">	
						This	is	some	text	
			</element1>	
			<image-list>	
							<image	size="32"	
											src="http://www.yahoo.com/image.png"/>	
							<image	size="48"		
											src="http://www.yahoo.com/image2.png"/>	
			</image-list>	
</my-data>

Now let's try to do some specific things. Normally, XPath will return a list of nodes. The
Widget Engine returns those nodes as a DOMNodeList. XPath also starts at a 'context
node', i.e. where the XPath search should be relative to. You can also specify a search to
start at the top by starting the path with a '/'. Let's say you have the document node in a
variable called doc:

element	=	doc.evaluate("my-data/element1");

The above example fetches all nodes that match the path "my-data/element1" (in this
case, one node) and returns it as a node list.

images	=	doc.evaluate("my-data/image-list/image");

The above statement returns all the nodes that match the given path. This time, we'll get
a node list back with two elements (the two child nodes of image-list).

This is XPath at its simplest — just selecting nodes out of a document. Now we'll get
a little fancier. Let's say we want to select the image that has a size of 48. We can use a
predicate for this. A predicate is a condition applied to the search. It essentially filters
the results to those that match the condition.

image	=	doc.evaluate("my-data/image-list/image[@size='48']");

��0 | WIDGET ENGINE 3.0 REFERENCE XPath

This says "find me all items that match this path, but only the ones whose 'size' attribute
has the value '48'". The @ symbol is a shorthand way of specifying that you are looking
for an attribute. The longhand for the predicate would be [attribute::name='48'].

Now, if you wanted to get the src attribute for that image, you'd do this:

src	=	image.item(0).getAttribute(src);

But there's an easier way as we'll see in a second. First, let's extract some text. Lets say
we want the text inside element1. Here's one way to do this:

element	=	doc.evaluate("my-data/element1");	
text	=	element.item(0).firstChild.data;

Essentially, we need to know that element is really a node list, so we extract item 0 and
then ask it for its first child (since the text is really a subnode of element1 as far as the
XML tree goes). Then we get it's data. Well, that's cute, but it's somewhat complicated.
Fortunately, XPath has functions you can call to make life easier. We'll use the string()
function:

text	=	doc.evaluate("string(my-data/element1)");

That's it. The string() function takes the result of the expression passed to it and
turns it into a string. For element nodes, it takes all the text subelements under it and
concatenates them and returns it. In our case we only had one element and one text
node, so we got the exact result we wanted. For attribute nodes, string() returns the
value of the attribute. Now we can revisit our attempt above to get the src attribute of
the image with size 48:

src	=	doc.evaluate("string(my-data/image-list/image[@size='48']/
attribute::src)");

This time, we used the same basic path as before, but this time we added another path
segment to extract the src attribute from the result and then the string function returned
the value of that attribute.

There are various things you can search for in the XML using xpath, and many many
ways to search. You can find elements with certain parents, you can fetch elements who
have a particular subelement, etc. Consult the full XPath 1.0 specification on the w3c.org
website for more information.

Platform�Differences WIDGET ENGINE 3.0 REFERENCE | ��1

Windows and Mac OS X Differences

This section's purpose in life is to point out those things that are different between the
Mac and PC versions of the Widget Engine in one place.

Unix Commands
First, since the PC is not based on UNIX, as is Mac OS X, there is no guarantee that
a Widget that used runCommand successfully on the Mac will meet with the same
success on Windows. But in an effort to make as many Widgets as possible work cross-
platform, there are a number of commands which are packaged with Yahoo! Widget
Engine for Windows:

basename bc bunzip2 bzip2 bzip2recover
cal cat cksum cmp Comm.
compress cp curl cut Date
dc dd df diff3 Diff
dirname du echo egrep Env
expand expr fgrep find Fmt
fold fsplit gawk grep Gunzip
gzip head id join Less
lesskey ln logname ls m4
md5sum mkdir mv od Open
paste patch pr printenv Pwd
rm rmdir sdiff sed Shar
sleep sort split sum Sync
tail tar tee touch Tr
uname unexpand uniq unzip Uudecode
uuencode wc which whoami Xargs
yes zcat zip

In addition "sh" is also available to run shell scripts.

Command Key
There's no Command key on Windows. When you would think to use it, use Control. So
to drag a Widget, use Control-drag for example. This also affects HotKeys, as described

��� | WIDGET ENGINE 3.0 REFERENCE Platform�Differences

below.

Key Names
When the Delete key is pressed on a Windows keyboard, you will receive
"ForwardDelete". If you press Backspace, you will receive "Delete". This is because the
naming comes from the original Mac key naming, and we cannot change it. Return and
Enter are a bit similar. On most (if not all) Windows keyboard, There is no Return key,
it's always Enter. There are two distinct keys on Mac keyboards. We currently return
"Return" for the enter key on Windows. Again, it's not something we can change, so
please be aware of it. In most cases though, it might be best to always look for "Return"
and "Enter".

HotKeys
If you install a hot key that was cmd-control-<key> it will just be control-<key> on
Windows (since there's no Command key).

When registering a hot key on Windows, the key is exclusive, which is different from
Mac OS. So multiple Widgets cannot register for the same hot key. The second one to try
is denied their happy fun key. Unfortunately, we don't have any way for the Widget to
know this at present.

F1 typically shouldn't be used, as it is the Help key. F12 is reserved on 2000/XP and
latest NT variants for the debugger.

There is no notification on release of the key. Only press, so anyone's onKeyUp handler
will never get fired on windows.

Certain hot key sequences are illegal, such as alt-tab and ctrl-alt-delete.

Paths
The native path system of Mac OS X is UNIX-style, or forward slashed paths. Windows
has a drive letter and backslashes. The Widget Engine considers its native path style to
be forward-slashed paths. This is because of its Mac heritage as well as the JavaScript
heritage as well, which is also forward-slashed.

If you use runCommand to call UNIX or Windows functions, you will need to take
care to convert paths appropriately. The UNIX commands can actually accept forward-
or backward-slashed paths. Windows commands, however, must get backward-
slashed paths. To accommodate converting between the two, you should use the
convertPathToPlatform function. There is currently no function however to convert
from Windows style to UNIX/JavaScript style. This needs to be remedied at some point.

convertPathToHFS returns an empty string on Windows.

Perl and PHP
There is no Perl or PHP support in the Widget Engine for Windows. The size of
what would need to be included is prohibitive as a standard part of our install, so
we recommend those Widgets that demand Perl point users to an appropriate Perl

Platform�Differences WIDGET ENGINE 3.0 REFERENCE | ���

environment for the PC.

Window Shadows
Window shadows are not currently supported on Windows. If you decide to render
your artwork with your own shadows, be sure to set the shadow property of your
window to 0. If not, when and if Windows does support shadows you'll end up with a
double-shadow.

��� | WIDGET ENGINE 3.0 REFERENCE

Index

Symbols
> .. 5
< ... 5
< and > symbols ... 5

A
about-box .. 15

image .. 15
text .. 15
versionText ... 16

action ... 17
file ... 17
interval .. 17
trigger ... 18

AirPort ... 197
alert() ... 156
Animation ... 261

CustomAnimation() .. 265
FadeAnimation() ... 266
kill() ... 264
MoveAnimation() .. 267
RotateAnimation() .. 268

animator .. 261
ease() ... 261
milliseconds .. 262
runUntilDone() ... 263
start() ... 263

appearance .. 201
appleScript() .. 157

B
Battery ... 202
beep() ... 157
bytesToUIString() .. 158

C
chooseColor() .. 158
chooseFile() .. 159
chooseFolder() .. 159
closeWidget() ... 161
COM ... 179

connectObject .. 180
createObject ... 181
disconnectObject .. 182

context menu items 45, 98, 117, 146
convertPathToHFS().. 160
convertPathToPlatform() 160
CustomAnimation()

startTime .. 265

D
DOM .. 270
DOMAttribute .. 275
DOMCDATASection ... 277
DOMCharacterData .. 274
DOMComment .. 276
DOMDocument ... 271
DOMDocumentType ... 277
DOMElement ... 275
DOMEntity ... 277
DOMEntityReference ... 277
DOMException .. 270
DOMNamedNodeMap .. 274
DOMNode .. 272
DOMNodeList .. 273
DOMNotation .. 277
DOMProcessingInstruction 277
DOMText ... 276

E
entities ... 4
escape() .. 161
exceptions .. 9

F
File paths ... 6
filesystem ... 183

copy() .. 183
emptyRecycleBin() .. 184
emptyTrash() .. 184
getDirectoryContents() 185
getDisplayName() ... 185
getFileInfo()... 186
getRecycleBinInfo()... 186
getTrashInfo() ... 186
isDirectory() .. 187
itemExists() ... 187
move() ... 188
moveToRecycleBin() ... 188
moveToTrash() .. 188

 WIDGET ENGINE 3.0 REFERENCE | ���

open() .. 189
openRecycleBin() .. 189
openTrash() ... 189
readFile() ... 190
reveal() .. 190
volumes ... 191
writeFile() .. 191

focusWidget() ... 162
form() ... 162
Frame .. 228

addSubview() .. 228, 237
end() .. 229
home() ... 228
lineDown() .. 229
lineLeft() .. 230
lineRight() ... 230
lineUp() ... 231
pageDown() .. 231
pageLeft() .. 231
pageRight() ... 232
pageUp() ... 232, 233, 238
removeFromSuperview() 233
subviews .. 233
superview .. 234

frame ... 21
contextMenuItems ... 21
hAlign ... 22
height .. 23
hLineSize .. 23
hOffset .. 24
hScrollBar ... 24
onContextMenu ... 25
onDragDrop ... 26
onDragEnter .. 26
onDragExit ... 27
onMouseDown ... 28
onMouseEnter .. 28
onMouseExit .. 29
onMouseMove .. 29
onMouseUp .. 30, 31
onMultiClick .. 31
opacity .. 32
scrollX .. 32
scrollY ... 33
vAlign ... 33
visible .. 34
vLineSize .. 34
vOffset .. 35
vScrollBar ... 35
width ... 36
window ... 36
zOrder .. 37

G
Getting started... 4

H
hotkey .. 38, 292

key .. 38
modifier .. 39
name ... 40
onKeyDown ... 40
onKeyUp .. 41

HotKeys
Platform differences .. 292

I
Image

fade() ... 235
moveTo() ... 235
reload() .. 235
removeFromSuperview() 236, 243
slide() ... 236
superview .. 237

image ... 42
alignment .. 43
clipRect ... 44
colorize ... 44
contextMenuItems ... 45
fillMode .. 46
hAlign ... 47
height .. 47
hOffset .. 47
hRegistrationPoint .. 48
hslAdjustment ... 48
hslTinting ... 49
loadingSrc ... 50
missingSrc ... 50
name ... 51
onContextMenu ... 51
onDragDrop ... 52
onDragEnter .. 53
onDragExit ... 53
onImageLoaded ... 54
onMouseDown ... 54
onMouseEnter .. 55
onMouseExit .. 56
onMouseMove .. 56
onMouseUp .. 57
onMultiClick .. 57
opacity .. 58
remoteAsync ... 58
rotation ... 59
src ... 59
srcHeight .. 60
srcWidth ... 60, 62
tileOrigin .. 61
useFileIcon ... 62
vAlign ... 62
visible .. 63
vOffset .. 64
vRegistrationPoint .. 64

��� | WIDGET ENGINE 3.0 REFERENCE

width ... 65
window ... 65
zOrder .. 66

include() ... 163
isApplicationRunning() .. 164
iTunes .. 218

backTrack() ... 218
fastForward() ... 219
nextTrack().. 219
pause() ... 219
play() ... 220
playerPosition ... 221
playerStatus .. 221
playPause() .. 220
random ... 221
repeatMode .. 222
resume() .. 222
rewind() ... 222
running ... 223
shuffle ... 221
stop() ... 223
streamURL ... 224
trackAlbum ... 224
trackArtist ... 224
trackLength .. 225
trackRating ... 225
trackTitle .. 225
trackType .. 226
version .. 226
volume .. 226

J
JavaScript

in .kon files .. 5

K
konfabulatorVersion() .. 165
Konsposé

notifications .. 19
window level ... 148

L
log() .. 165

M
memory (system) ... 213
menuItem .. 67

checked ... 67
enabled ... 67
onSelect .. 68
title .. 68

O
onGainFocus ... 19

onIdle .. 19
onKonsposeActivated .. 19
onLoad .. 19
onLoseFocus .. 19
onPreferencesChanged ... 19
onTimer .. 19
onUnload .. 20
onWakeFromSleep .. 20
onWillChangePreferences 20
openURL() .. 165

P
play() .. 166
popupMenu() ... 166
preference .. 69

defaultValue .. 70
description .. 70
directory ... 71
extension ... 71
file ... 71
group .. 72
hidden ... 72
kind ... 73
maxLength ... 73
minLength .. 73
name ... 74, 138
notSaved ... 74
option ... 74
optionValue .. 75
secure .. 75
style ... 76
tickLabel ... 77
ticks ... 76
title .. 77
type ... 77
value ... 78

preferenceGroup ... 79
icon ... 79
name ... 79
order ... 80
title .. 80

preferences .. 9
notifications .. 19
XML description .. 69

print() ... 167
prompt() ... 167

R
random() .. 168
reloadWidget() ... 169
resolvePath() .. 169
resumeUpdates() .. 170
Root ... 237

addSubview() .. 237
subviews .. 238
superview .. 238

 WIDGET ENGINE 3.0 REFERENCE | ���

runCommand() .. 170
runCommandInBg() .. 171

S
sample Widget ... 3
saveAs() .. 171
savePreferences() .. 172
screen .. 193

availHeight ... 193
availLeft .. 194
availTop .. 194
availWidth .. 194
colorDepth ... 195
height .. 195
pixelDepth .. 195
resolution .. 196
width ... 196

ScrollBar
removeFromSuperview() 239
setRange() ... 239
setThumbInfo() ... 240
setTrackInfo() .. 240
superview .. 241

scrollbar ... 82
autoHide ... 82
hAlign ... 83
height .. 83
hOffset .. 84
max ... 84
min ... 85
onValueChanged .. 85
opacity .. 86
orientation .. 87
pageSize .. 87
thumbColor .. 88
vAlign ... 88
value ... 89
visible .. 89
vOffset .. 90
width ... 90
window ... 91
zOrder .. 91

Security Windows.. 13
shadow

color .. 93
hOffset .. 93
opacity .. 94
vOffset .. 94

shadow element ... 93
showWidgetPreferences() 172
sleep() ... 172
speak() .. 173
suppressUpdates() .. 173
system

airport. See system.wireless
applicationsFolder .. 216

battery .. 202
currentCapacity.. 202
isCharging.. 202
isPresent... 203
maximumCapacity... 203
name... 203
powerSourceState.. 203
timeToEmpty.. 204
timeToFullCharge.. 204
transportType... 204

batteryCount .. 205
clipboard... 205
cpu .. 206

activity.. 206
idle.. 206
nice... 207
numProcessors... 207
sys.. 208
user... 208

event ... 208
hOffset.. 209
key.. 209
keyString.. 210
modifiers.. 210
screenX.. 211
screenY... 211
scrollDelta.. 211
timestamp... 211
vOffset.. 209
x... 212
y... 212

languages .. 212
memory .. 213

availPhysical.. 213
availVirtual... 213
load... 214
totalPhysical... 214
totalVirtual... 214

mute .. 215
platform .. 215
temporaryFolder ... 216
trashFolder .. 216
userDesktopFolder .. 216
userDocumentsFolder ... 216
userMoviesFolder.. 216
userPicturesFolder .. 216
volume .. 217
widgetDataFolder ... 217
wireless ... 197

available... 198
info... 199
network.. 199
noise... 199
powered.. 200
signal.. 200

��� | WIDGET ENGINE 3.0 REFERENCE

T
Text ... 242

fade() ... 242
moveTo() ... 242
slide() ... 243
superview .. 243

text ... 95
alignment .. 96
bgColor .. 96
bgOpacity ... 97
color .. 97
contextMenuItems ... 98
data ... 98
font ... 99
hAlign ... 99
height .. 99
hOffset .. 100
name ... 100
onContextMenu ... 101
onDragDrop ... 101
onDragEnter .. 102
onDragExit ... 103
onMouseDown ... 103
onMouseEnter .. 104
onMouseExit .. 104
onMouseMove .. 105
onMouseUp .. 106
onMultiClick .. 106
opacity .. 107
scrolling .. 107
shadow .. 108
size .. 108
style ... 109
tooltip ... 61, 110
truncation ... 109
visible .. 110
vOffset .. 111
width ... 111
window ... 112
zOrder .. 112

TextArea .. 244
focus() .. 244
loseFocus() ... 244
rejectKeyPress() .. 245
removeFromSuperview() 246
replaceSelection() .. 246
select() ... 247
superview .. 247

textarea .. 114
alignment .. 115
bgColor .. 115
bgOpacity ... 116
color .. 116
columns .. 117
contextMenuItems ... 117
data ... 118
editable ... 118

font ... 119
hAlign ... 119
height .. 119
hOffset .. 120
lines ... 120
name ... 120
onContextMenu ... 121
onDragDrop ... 122
onDragEnter .. 122
onDragExit ... 123
onGainFocus ... 123
onKeyDown ... 124
onKeyPress ... 125
onKeyUp .. 126
onLoseFocus ... 126
onMouseDown ... 127
onMouseEnter .. 127
onMouseExit .. 128
onMouseUp .. 128
onMultiClick .. 129
opacity .. 130
scrollbar .. 130
secure .. 130
size .. 131
spellcheck .. 131
style ... 131
thumbColor .. 132
tooltip ... 133
vAlign ... 134
visible .. 133
vOffset .. 134
width ... 135
window ... 135
zOrder .. 136

timer .. 137
interval .. 137
onTimerFired ... 138
reset() .. 248
ticking ... 138

U
unescape() .. 175
updateNow() .. 175
URL .. 249

addPostFile() ... 250
autoRedirect ... 250
cancel() .. 251
clear() .. 251
fetch() .. 252
fetchAsync() .. 253
getResponseHeaders() .. 253
location ... 254
outputFile ... 254
postData ... 255
response .. 255
responseData .. 256

 WIDGET ENGINE 3.0 REFERENCE | ���

result ... 257
setRequestHeader() ... 257

V
volume (system.volume) .. 217

W
Widget

packaging ... 6
runtime ... 7

widget .. 140
author ... 140
company ... 140
copyright ... 141
debug .. 141
image .. 142
minimumVersion .. 142
option ... 143
requiredPlatform .. 143
version .. 144

Window
focus() .. 258
locked ... 258
moveTo() ... 258, 259
recalcShadow() ... 259
root ... 260

window .. 145
alignment .. 146
contextMenuItems ... 146
height .. 147
hOffset .. 147
level ... 148
name ... 148
onContextMenu ... 149
onFirstDisplay .. 150
onGainFocus ... 150, 151
onMultiClick .. 151
opacity .. 152
shadow .. 152
title .. 153
visible .. 153
vOffset .. 154
width ... 154

wireless .. 197

X
XML

and JavaScript .. 5
CDATA... 5
entities .. 4
strict mode .. 5
syntax ... 4

XMLDOM
createDocument() ... 279
object .. 279

parse() ... 279
XMLHttpRequest ... 281

abort() ... 282
getAllResponseHeaders() 282
getResponseHeader .. 282
onreadystatechange .. 283
open() .. 284
readyState ... 284
responseText ... 285
responseXML ... 286
send()... 286
setRequestHeader() ... 287
status ... 287
statusText .. 288

XML parser .. 4
XPath .. 289

Y
yahooCheckLogin() ... 176
yahooLogin() ... 176
yahooLogout() ... 177

	Release History
	The Basics
	XML Syntax
	Entities
	JavaScript
	Strict Mode
	File Paths
	Widget Packaging
	Widget Runtime
	Actions
	Object Names
	Debugging
	Exceptions
	Widget Preferences
	MinimumVersion
	XML Services
	Yahoo! Login Support
	Subviews/Frames
	Security Windows

	XML Reference
	<about-box>
	image/about-image
	about-text
	version-text

	<action>
	file
	interval
	trigger

	<frame>
	contextMenuItems
	hAlign
	height
	hLineSize
	hOffset
	hScrollBar
	onContextMenu
	onDragDrop
	onDragEnter
	onDragExit
	onMouseDown
	onMouseEnter
	onMouseExit
	onMouseMove
	onMouseUp
	onMouseWheel
	onMultiClick
	opacity
	scrollX
	scrollY
	vAlign
	visible
	vLineSize
	vOffset
	vScrollBar
	width
	window
	zOrder

	<hotkey>
	key
	modifier
	name
	onKeyDown
	onKeyUp

	<image>
	alignment
	clipRect
	colorize
	contextMenuItems
	fillMode
	height
	hAlign
	hOffset
	hRegistrationPoint
	hslAdjustment
	hslTinting
	loadingSrc
	missingSrc
	name
	onContextMenu
	onDragDrop
	onDragEnter
	onDragExit
	onImageLoaded
	onMouseDown
	onMouseEnter
	onMouseExit
	onMouseMove
	onMouseUp
	onMultiClick
	opacity
	remoteAsync
	rotation
	src
	srcHeight
	srcWidth
	tileOrigin
	tooltip
	tracking
	useFileIcon
	vAlign
	visible
	vOffset
	vRegistrationPoint
	width
	window
	zOrder

	<menuItem>
	checked
	enabled
	onSelect
	title

	<preference>
	defaultValue
	description
	directory
	extension
	file
	group
	hidden
	kind
	maxLength
	minLength
	name
	notSaved
	option
	optionValue
	secure
	style
	ticks
	tickLabel
	title
	type
	value

	<preferenceGroup>
	name
	icon
	order
	title

	<scrollbar>
	autoHide
	hAlign
	height
	hOffset
	max
	min
	onValueChanged
	opacity
	orientation
	pageSize
	thumbColor
	vAlign
	value
	visible
	vOffset
	width
	window
	zOrder

	<shadow>
	color/colour
	hOffset
	opacity
	vOffset

	<text>
	alignment
	bgColor
	bgOpacity
	color
	contextMenuItems
	data
	font
	hAlign
	height
	hOffset
	name
	onContextMenu
	onDragDrop
	onDragEnter
	onDragExit
	onMouseDown
	onMouseEnter
	onMouseExit
	onMouseMove
	onMouseUp
	onMultiClick
	opacity
	scrolling
	shadow
	size
	style
	truncation
	tooltip
	visible
	vOffset
	width
	window
	zOrder

	<textarea>
	alignment
	bgColor
	bgOpacity
	color
	columns
	contextMenuItems
	data
	editable
	font
	hAlign
	height
	hOffset
	lines
	name
	onContextMenu
	onDragDrop
	onDragEnter
	onDragExit
	onGainFocus
	onKeyDown
	onKeyPress
	onKeyUp
	onLoseFocus
	onMouseDown
	onMouseEnter
	onMouseExit
	onMouseUp
	onMultiClick
	opacity
	secure
	scrollbar
	size
	spellcheck
	style
	thumbColor
	tooltip
	visible
	vAlign
	vOffset
	width
	window
	zOrder

	<timer>
	interval
	name
	ticking
	onTimerFired

	<widget>
	author
	company
	copyright
	debug
	defaultTracking
	image
	minimumVersion
	option
	requiredPlatform
	version

	<window>
	alignment
	contextMenuItems
	height
	hOffset
	level
	name
	onContextMenu
	onFirstDisplay
	onGainFocus
	onLoseFocus
	onMultiClick
	opacity
	shadow
	title
	visible
	vOffset
	width

	JavaScript Reference
	Global Functions
	alert()
	appleScript()
	beep()
	bytesToUIString()
	chooseColor()
	chooseFile()
	chooseFolder()
	convertPathToHFS()
	convertPathToPlatform()
	closeWidget()
	escape()
	focusWidget()
	form()
	include()
	isApplicationRunning()
	konfabulatorVersion()
	log()
	openURL()
	play()
	popupMenu()
	print()
	prompt()
	random()
	reloadWidget()
	resolvePath()
	resumeUpdates()
	runCommand()
	runCommandInBg()
	saveAs
	savePreferences()
	showWidgetPreferences()
	sleep()
	speak()
	suppressUpdates()
	tellWidget()
	unescape()
	updateNow()
	yahooCheckLogin()
	yahooLogin()
	yahooLogout()
	COM.connectObject
	COM.createObject
	COM.disconnectObject

	filesystem
	filesystem.copy()
	filesystem.emptyRecycleBin()filesystem.emptyTrash()
	filesystem.getDirectoryContents()
	filesystem.getDisplayName()
	filesystem.getFileInfo()
	filesystem.getRecycleBinInfo()filesystem.getTrashInfo()
	filesystem.isDirectory()
	filesystem.itemExists()
	fileystem.move()
	filesystem.moveToRecycleBin()filesystem.moveToTrash()
	filesystem.open()
	filesystem.openRecycleBin()filesystem.openTrash()
	filesystem.readFile()
	filesystem.reveal()
	filesystem.volumes
	filesystem.writeFile()

	screen
	screen.availHeight
	screen.availLeft
	screen.availTop
	screen.availWidth
	screen.colorDepth
	screen.height
	screen.pixelDepth
	screen.resolution
	screen.width

	system
	system.airportsystem.wireless
	system.airport.availablesystem.wireless.available
	system.airport.infosystem.wireless.info
	system.airport.networksystem.wireless.network
	system.airport.noisesystem.wireless.noise
	system.airport.poweredsystem.wireless.powered
	system.airport.signalsystem.wireless.signal
	system.appearance
	system.battery
	system.battery[n].currentCapacity
	system.battery[n].isCharging
	system.battery[n].isPresent
	system.battery[n].maximumCapacity
	system.battery[n].name
	system.battery[n].powerSourceState
	system.battery[n].timeToEmpty
	system.battery[n].timeToFullCharge
	system.battery[n].transportType
	system.batteryCount
	system.clipboard
	system.cpu
	system.cpu.activity
	system.cpu.idle
	system.cpu.nice
	system.cpu.numProcessors
	system.cpu.sys
	system.cpu.user
	system.event
	system.event.hOffset, system.event.vOffset
	system.event.key
	system.event.keyString
	system.event.modifiers
	system.event.screenX, system.event.screenY
	system.event.scrollDelta
	system.event.timestamp
	system.event.x, system.event.y
	system.languages
	system.memory
	system.memory.availPhysical
	system.memory.availVirtual
	system.memory.load
	system.memory.totalPhysical
	system.memory.totalVirtual
	system.mute
	system.platform
	system.userDocumentsFoldersystem.userDesktopFoldersystem.userPicturesFoldersystem.userMoviesFoldersystem.userMusicFoldersystem.userWidgetsFoldersystem.applicationsFoldersystem.temporaryFoldersystem.trashFolder
	system.volume
	system.widgetDataFolder

	Application Attributes and Functions
	iTunes
	iTunes.backTrack()
	iTunes.fastForward()
	iTunes.nextTrack()
	iTunes.pause()
	iTunes.play()
	iTunes.playPause()
	iTunes.playerPosition
	iTunes.playerStatus
	iTunes.randomiTunes.shuffle
	iTunes.repeatMode
	iTunes.resume()
	iTunes.rewind()
	iTunes.running
	iTunes.stop()
	iTunes.streamURL
	iTunes.trackAlbum
	iTunes.trackArtist
	iTunes.trackLength
	iTunes.trackRating
	iTunes.trackTitle
	iTunes.trackType
	iTunes.version
	iTunes.volume

	Widget Engine Object Properties and functions
	Frame.addSubview()
	Frame.home()
	Frame.hScrollBar
	Frame.end()
	Frame.lineDown()
	Frame.lineLeft()
	Frame.lineRight()
	Frame.lineUp()
	Frame.pageDown()
	Frame.pageLeft()
	Frame.pageRight()
	Frame.pageUp()
	Frame.removeFromSuperview()
	Frame.subviews
	Frame.superview
	Frame.vScrollBar
	Image.fade()
	Image.moveTo()
	Image.reload()
	Image.removeFromSuperview()
	Image.slide()
	Image.superview
	Root.addSubview()
	Root.subviews
	Root.superview
	ScrollBar.removeFromSuperview()
	ScrollBar.setRange()
	ScrollBar.setThumbInfo()
	ScrollBar.setTrackInfo()
	ScrollBar.superview
	Text.fade()
	Text.moveTo()
	Text.removeFromSuperview()
	Text.slide()
	Text.superview
	TextArea.focus()
	TextArea.loseFocus()
	TextArea.rejectKeyPress()
	TextArea.removeFromSuperview()
	TextArea.replaceSelection()
	TextArea.select()
	TextArea.superview
	Timer.reset()
	URL Object
	URL.addPostFile()
	URL.autoRedirect
	URL.cancel()
	URL.clear()
	URL.fetch()
	URL.fetchAsync()
	URL.getResponseHeaders()
	URL.location
	URL.outputFile
	URL.postData
	URL.response
	URL.responseData
	URL.result
	URL.setRequestHeader()
	Window.focus()
	Window.locked
	Window.moveTo()
	Window.recalcShadow()
	Window.root

	Animation Objects
	animator
	animator.ease()
	animator.kEaseInanimator.kEaseOutanimator.kEaseInOutanimator.kEaseNone
	animator.milliseconds
	animator.runUntilDone()
	animator.start()
	animation.kill()
	CustomAnimation()
	FadeAnimation()
	MoveAnimation()
	RotateAnimation()

	XML Services
	About XML Services
	DOMException
	DOMDocument
	DOMNode
	DOMNodeList
	DOMNamedNodeMap
	DOMCharacterData
	DOMAttribute
	DOMElement
	DOMText
	DOMComment
	DOMCDATASection
	DOMDocumentType
	DOMNotation
	DOMEntity
	DOMEntityReference
	DOMProcessingInstruction

	XMLDOM Object
	XMLDOM.createDocument()
	XMLDOM.parse()

	XMLHttpRequest
	XMLHttpRequest.abort()
	XMLHttpRequest.getAllResponseHeaders()
	XMLHttpRequest.getResponseHeader()
	XMLHttpRequest.onreadystatechange
	XMLHttpRequest.open()
	XMLHttpRequest.readyState
	XMLHttpRequest.responseText
	XMLHttpRequest.responseXML
	XMLHttpRequest.send()
	XMLHttpRequest.setRequestHeader()
	XMLHttpRequest.status
	XMLHttpRequest.statusText

	XPath Support

	Windows and Mac OS X Differences
	Unix Commands
	Command Key
	Key Names
	HotKeys
	Paths
	Perl and PHP
	Window Shadows

	Index

