
COM Types

Jim Fawcett

CSE775 - Distributed Objects

Spring 2007

IDL Base Types

 Boolean A data item that can have the value TRUE or FALSE.
Byte An 8-bit data item guaranteed to be transmitted without any change.
Char An 8-bit unsigned character data item.
Double A 64-bit floating-point number.
Float A 32-bit floating-point number.
handle_t A primitive handle that can be used for RPC binding or data serializing.
Hyper A 64-bit integer that can be declared as either signed or unsigned

Can also be referred to as _int64.
int A 32-bit integer that can be declared as either signed or unsigned.
__int3264 A keyword that specifies an integral type that has either 32-bit or 64-bit

properties.
Long A modifier for int that indicates a 32-bit integer. Can be declared as

either signed or unsigned.
Short A 16-bit integer that can be declared as either signed or unsigned.
Small A modifier for int that indicates an 8-bit integer. Can be declared as

either signed or unsigned.
wchar_t Wide-character type that is supported as a Microsoft® extension to

IDL. Therefore, this type is not available if you compile using the /osf
switch.

http://msdn2.microsoft.com/en-us/library/aa366740.aspx
http://msdn2.microsoft.com/en-us/library/aa366743.aspx
http://msdn2.microsoft.com/en-us/library/aa366749.aspx
http://msdn2.microsoft.com/en-us/library/aa366806.aspx
http://msdn2.microsoft.com/en-us/library/aa366833.aspx
http://msdn2.microsoft.com/en-us/library/aa366849.aspx
http://msdn2.microsoft.com/en-us/library/aa367039.aspx
http://msdn2.microsoft.com/en-us/library/aa367162.aspx
http://msdn2.microsoft.com/en-us/library/aa367295.aspx
http://msdn2.microsoft.com/en-us/library/aa367053.aspx
http://msdn2.microsoft.com/en-us/library/aa367390.aspx
http://msdn2.microsoft.com/en-us/library/aa367072.aspx
http://msdn2.microsoft.com/en-us/library/aa367161.aspx
http://msdn2.microsoft.com/en-us/library/aa367165.aspx
http://msdn2.microsoft.com/en-us/library/aa367308.aspx
http://msdn2.microsoft.com/en-us/library/aa367357.aspx

Automation Types

BSTRs - Basic Strings

Variants - Basic Data

SafeArrays - Basic Arrays

BSTRs

 The BSTR type is a derived type used in Visual Basic and Microsoft
Java (and presumably C#). BSTRs are recognized by the standard
marshalers and used frequently by COM developers.

 BSTRs are length-prefixed, null terminated strings of OLECHARs.

4 0 0 0 'H' 0 'i' 0 0 0

BSTR

Length in Bytes Character Data NULL

BSTR Memory Allocation

 COM expects BSTRs to use a COM memory allocator, and provides
several API functions for handling BSTRs, declared in oleauto.h:

// allocate and initialize
– BSTR SysAllocString(const OLECHAR *pOC);

– BSTR SysAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// reallocate and initialize
– INT SysReAllocString(BSTR *pBSTR, const OLECHAR *pOC);

– INT SysReAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT
count);

// free a BSTR
– void SysFreeString(BSTR bstr);

// peek at length count as OLECHAR count or byte count
– UINT SysStringLen(BSTR bstr);

– UINT SysStringByteLen(BSTR bstr)

BSTR Memory Management

 When passing BSTRs as [in] parameters, the caller invokes
SysAllocString prior to calling the method and SysFreeString after
the method has completed.

 When passing strings from a method as an [out] parameter, it is
the responsibility of the method to call SysAllocString before
passing back the string. The caller releases the memory by calling
SysFreeString.

 When passing BSTRs as [in, out] parameters, you treat them like
[in] parameters.

 Reference: If you are going to use BSTRs in your project code,
make sure you look carefully at “Strings the OLE Way”, Bruce
McKinney, in MSDN online or in help.

 CComBSTR class provides a lot of help handling BSTRs. Check it
out in MSDN.

BSTRS

 WCHAR = OLECHAR = wchar_t

 BSTR = wchar_t * = LPWSTR

 C language string = char *s = LPSTR

 BSTR is a pointer to the beginning of a sequence of wchar_t’s

 HOWEVER, a BSTR always has four-byte length in front of the
memory pointed to.

 You must always manage a BSTR’s memory with the functions:

– SysAllocString, SysFreeString, SysReallocString, ...

BSTR Rules

 Ref: “Strings the OLE Way”, Bruce McKinney

– Allocate, destroy, and measure BSTRs only through the SysXXX
functions

– do what ever you like with the chars of strings you own, as long as
you don’t write past the string buffer, measured by len

– you may change the pointers to strings you own only through
SysReAllocString or SysReAllocStringLen

– you do not own any BSTR passed to you by value

– you own any BSTR passed to you by reference as an in/out
parameter

– you must create any BSTR passed to you by reference as an out
string, e.g., you are supplying a BSTR out parameter

– you must create a BSTR in order to return it

– a null pointer is an empty string, not just a pointer

Variant

 The variant type was developed for pre .Net Visual Basic, where
it represented a data type that can hold, and convert between:

– Strings, integers, floating point numbers, and objects of unspecified
type.

 Programmatically, the variant is a discriminated union

 Variants are passed as arguments to Dispatch Interfaces. That
is one of the few places you will see them used in this course.

 Another place is representing .Net objects on the COM side of a
Runtime Callable Wrapper (RCW). The RCW is esentially a .Net
object that is a COM client on the inside, and wraps some server
the client has instantiated.

Variant Structure

 Variant is a discriminated union:

struct tagVARIANT {

VARTYPE vt;

WORD wReserved1; WORD wReserved2; WORD wReserved3;

union {

long lVal; // VT_I4

unsigned char bVal; // VT_UI1

short iVal; // VT_I2

float fltVal; // VT_R4

double dblVal; // VT_R8

VARIANT_BOOL boolVal; // VT_BOOL

SCODE scode; // VT_ERROR

CY cyVal; // VT_CY (currency)

DATE date; // VT_DATE

BSTR bstrVal; // VT_BSTR

IUnknown *punkVal; // VT_UNKNOWN

IDispatch *pdispVal; // VT_DISPATCH

SAFEARRAY *parray; // VT_ARRAY|*

// other types that are windows specific

VARIANT *pvarVal; // VT_BYREF|VT_VARIANT

void *byref; // Generic ByRef

};

};

Safe Arrays

 Safe Arrays also originated with Visual Basic. All pre .Net Visual
Basic code represented arrays of data with Safe Arrays.

 A Safe Array is a structure:

struct SAFEARRAY {

WORD cDims; // number of dimensions

WORD fFeatures; // bit field describing attributes

DWORD cbElements; // size of array elements

DWORD cLocks; // lock reference count

void * pvData; // pointer to data on heap

SAFEARRAYBOUND rgsabound[1];

};

 Rgsabound[1] is an array of boundary structures, that starts

out life with one element, but may be expanded by safe array
function calls.

References for VB Types

 Bruce McKinney’s articles:

– Strings.htm

– Variants.htm

– SafeArrays.htm

../presentations/BruceMcKinneyPapers/COMstrings.htm
../presentations/BruceMcKinneyPapers/variants.htm
../presentations/BruceMcKinneyPapers/safeArrays.htm

ATL Support

CComQIPtr

CComBSTR

CComSafeArray

CComVariant

