Threads and Message Processing

1. Windows messages are processing using a GetMessage loop:

MSG msg;
While (GetMessage(&msg, NULL, 0, 0) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

2. This code loops, reading each message in the message queue, and calls the window procedure for each message. The loop exits when GetMessage returns FALSE, e.g., when a WM_QUIT message is processed.

3. Each thread that processes messages has its own message queue. The operating system routes messages for a particular window to the message queue of the thread that created it.

Even though you post a message from another thread, by:

 BOOL PostMessage(hWnd, msgType, wParam, lParam);

The message will be posted to the queue of the thread that created the window with handle hWnd;

4. There is a function for synchronously sending a message to a window:

 LRESULT SendMessage(hWnd, msgType, wParam, lParam);

If the message is being sent to a window on the same thread, SendMessage simply calls the window procedure of the window. If the message goes to a window created by another thread, the operating system puts the calling thread to sleep, activates the window thread to process the message, then wakes the calling thread, passing it the return result.

