
Uniform Data Transfer
and Connectable Objects

On the way to (ActiveX) Shangri-La

Uniform Data Transfer

• To provide a standard way of transferring data between
components or applications COM defines the IDataObject
interface.

• The purpose of the IDataObject interface is to allow any
application that knows how to act as a client for this interface to
access data provided from any application that supports it, e.g.,
uniform data transfer.

• IDataObject interface also provides a way to notify clients of
recent changes in its component’s data.

Uniform Data Transfer

Client Data object

IStorage File Memory

IDataObject

IStream

IDataObject

• The IDataObject interface uses two structures to support the
transfer of data. The first is:

– FORMATETC describes the data being transferred:

• data format - could be the standard clipboard formats or custom
formats defined by the data object and known by the client

• target device - details about the intended destination, e.g., printer with
a given resolution

• role for which the data is designed - icon, thumbnail image, full screen
bitmap

• how the data should be transferred - global memory, disk file, storage
objects

IDataObject

• The IDataObject interface uses two structures to support the
transfer of data. The second is:

– STGMEDIUM describes where the data is stored:

• tag which tells a marshaler how the data is stored

• a union which indicates that the data is stored in:

– bitmap

– metafile

– global memory

– file

– stream

– storage

Data Object

Data Consumer

Data Source

Advise Sink

Data ObjectIDataObject

IAdviseSink

register

get/set data

notifications

GetData

SetData

 :

DAdvise

DUnadvise

OnDataChange

OnViewChange

OnRename

OnSave

OnClose

IDataObject Methods

GetData
Renders the data described in a FORMATETC structure and transfers it through the STGMEDIUM
structure.

GetDataHere
Renders the data described in a FORMATETC structure and transfers it through the STGMEDIUM
structure allocated by the caller.

QueryGetData
Determines whether data object is capable of rendering data described in the FORMATETC structure.

GetCanonicalFormatEtc
Provides a potentially different but logically equivalent FORMATETC structure.

SetData
Provides source data object with data described by a FORMATETC structure and STGMEDIUM
structure.

IDataObject Methods (continued)

EnumFormatEtc
Creates and returns a pointer to an object to enumerate the FORMATETC supported by the data
object.

DAdvise
Creates a connection between a data object and an advise sink so the advise sink can receive
notifications of changes in the data object.

DUnadvise
Destroys a notification previously set up with the DAdvise method.

EnumDAdvise
Creates and returns a pointer to an object to enumerate the current advisory connections.

Notifications

• It may be important for the data object to notify a client of
changes in its data content or views.

• The IAdvise interface was designed to support notification of
the client by data objects in a general way (more general than
the IDataObject interface):

– notify and get new data to the client

– notify the client of changes in view or data source

IAdviseSink Methods

OnDataChange
Advises that data has changed. Uses FORMATETC and STGMEDIUM to pass data to client.

OnViewChange
Advises that view of object has changed. Uses a DVASPEC enumeration to define the view,
e.g., content, thumbnail, icon, ...

OnRename
Advises that name of object has changed.

OnSave
Advises that object has been saved to disk.

OnClose
Advises that object has been closed.

Data Transfer Using IAdvise Interface

Client

(consumer)

Data Object

(source)

ISpecifyData

IAdviseSink

IDataObject

Uniform Data Transfer using Notification

• Referring to the diagram on the preceding page:

– The client specifies to the data object which data it is interested in
using a custom interface called ISpecifyData.

– The client passes a pointer to its IAdviseSink interface to the data
object.

– Data object notifies client of a change using

IAdviseSink::OnDataChange

Connectable Objects

• Connectable objects support interfaces to allow two-way
communication with one or more clients.

• Clients talk to the connectable object in the usual way, e.g., by
getting a pointer to one of its interfaces using CoCreateInstance
and QueryInterface.

• Each connectable object provides connection points for specific
interfaces, defined by the connectable object at design time.

• The connectable object’s clients implement the interfaces used
by connectable objects to talk back.

Connectable Objects

Client

(Event consumer)

Connectable

Object

(Event Source)IConnectionPointContainer

IConnectionPoint

Outgoing Interface

Outgoing Interface

IConnectionPoint

event sink

event sink

Connection

Point

(event source)

Connection

Point

(event source)

EnumConnectionPoints

FindConnectionPoint

GetConnectionInterface

GetConnectionPointContainer

Advise

Unadvise

EnumConnections
returns IID

sends sink pointer

breaks connection

Establishing Two-way Connections

• The IConnectionPointContainer interface must be supported by
every connectable object.

• Its purpose is to allow clients to discover what outgoing (client)
interfaces the connectable object supports and get pointers to
them.

• Once the client has a pointer to a connection point object for its
interface that the connectable object will use it must then send
a pointer to that interface to the connection point object. It
does that using the IConnectionPoint interface.

IConnectionPointContainer

• Provided so clients can learn which outgoing (client) interfaces
the object supports.

• Each of these supported client interfaces is represented with the
connectable object by a separate connection point object.

• Connection point objects handle only one type of outgoing
interface (they know how to call that interface’s methods) and
also must provide an interface called IConnectionPoint.

• The connectable object’s clients must provide a sink object that
implements the outgoing interface.

IConnectionPointContainer
Interface

EnumConnectionPoints
Returns an object to enumerate all the connection points supported in the connectable object.

FindConnectionPoint
Returns a pointer to the IConnectionPoint interface for a specified connection point.

IEnumConnectionPoints Interface

IEnumConnectionPoints::Next

Enumerates the next cConnections elements (IConnectionPoint pointers) in the enumerator's list,

returning them in rgpcn along with the actual number of enumerated elements in pcFetched. The

enumerator calls IConnectionPoint::AddRef for each returned pointer in rgpcn, and the caller is

responsible for calling IConnectionPoint::Release through each pointer when those pointers are no

longer needed. E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in

the rgpcn array are valid on exit and require no release.

IEnumConnectionPoints::Skip

Instructs the enumerator to skip the next cConnections elements in the enumeration so that the next call

to IEnumConnectionPoints::Next will not return those elements.

IEnumConnectionPoints::Reset

Instructs the enumerator to position itself at the beginning of the list of elements. There is no guarantee

that the same set of elements will be enumerated on each pass through the list, nor will the elements

necessarily be enumerated in the same order. The exact behavior depends on the collection being

enumerated. It is too expensive for some collections, such as files in a directory, to maintain a specific

state.

IEnumConnectionPoints::Clone

Creates another connection point enumerator with the same state as the current enumerator to iterate

over the same list. This method makes it possible to record a point in the enumeration sequence in order

to return to that point at a later time. The caller must release this new enumerator separately from the

first enumerator.

IConnectionPoint

• With the IConnectionPoint interface a client starts, or
terminates, an advisory loop with the connectable object and
the client’s own sink.

• The client can also use this interface to get an enumerator
object with the IEnumConnections interface to enumerate the
connections that it knows about.

IConnectionPoint Interface

GetConnectionInterface
Returns the IID of the outgoing interface managed by this connection point.

GetConnectionPointContainer
Returns the parent (connectable) object's IConnectionPointContainer interface pointer.

Advise
Creates a connection between a connection point and a client's sink, where the sink implements
the outgoing interface supported by this connection point.

Unadvise
Terminates a notification previously set up with Advise.

EnumConnections
Returns an object to enumerate the current advisory connections for this connection point.

IEnumConnections

IEnumConnections::Next

Enumerates the next cConnections elements (i.e., CONNECTDATA structures) in the enumerator's

list, returning them in rgpcd along with the actual number of enumerated elements in pcFetched.

The caller is responsible for calling CONNECTDATA.pUnk->Release

for each element in the array once this method returns successfully. If cConnections is greater than

one, the caller must also pass a non-NULL pointer to pcFetched to get the number of pointers it has

to release. E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in

the rgpcd array are valid on exit and require no release.

IEnumConnections::Skip

Instructs the enumerator to skip the next cConnections elements in the enumeration so that the next

call to IEnumConnections::Next will not return those elements.

IEnumConnections::Reset

Instructs the enumerator to position itself at the beginning of the list of elements. There is no

guarantee that the same set of elements will be enumerated on each pass through the list. It

depends on the collection being enumerated. It is too expensive for some collections, such as

files in a directory, to maintain a specific state.

IEnumConnections::Clone

Creates another connection point enumerator with the same state as the current enumerator to

iterate over the same list. This method makes it possible to record a point in the enumeration

sequence in order to return to that point at a later time. The caller must release this new enum-

erator separately from the first enumerator.

