
Introduction to COM Page 1

Some COM Details

Jim Fawcett

CSE775 - Distributed Objects

Spring 2012

Introduction to COM Page 2

In-Proc Components

 Client loads COM dll into
its own process.

 If client and component share
the same threading model
then client gets a pointer to
The component’s instance.

 If client and component do
not share the same threading model then client gets a pointer
to a proxy for marshaled communication with the component.

Windows Process

client .exe

comp.dll comp.dll

Introduction to COM Page 3

Proxy Communication for STA

RPC Channel

message queue

RPC

Server

Component

Class Factory

Client Proxy

Stub

Introduction to COM Page 4

Out-of-Proc Components

 Client always gets a pointer to proxy for marshaled
communication with the component.

 Client and Component reside in different processes.

 Component by default has no visible window.

Windows Process

client .exe

Windows Process

server.exe

component

Introduction to COM Page 5

COM Objects

 COM objects are wrapped in dll or exe servers.

 Each server has a class factory, called by COM, to build an
instance of the object for client use.

 Class factory and component expose interfaces for use by COM
and clients.

Server

IUnknown

ICustom

Component

IUnknown

IClassFactory

Class Factory

Introduction to COM Page 6

COM Programs

 clients request COM to load servers, instantiate their
components and return pointers to the component interfaces.

Client

Server

IUnknown

ICustom

Component

IUnknown

IClassFactory

Class Factory

Server

IUnknown

ICustom

Component

IUnknown

IClassFactory

Class FactoryServer

IUnknown

ICustom

Component

IUnknown

IClassFactory

Class Factory

Introduction to COM Page 7

COM Interfaces

 Interfaces play a critical role in the COM architecture.

– Interfaces declare the services provided by their components.

– They support C++ strong type checking and provide a logical view
of the component’s activities.

– The interfaces a component exposes are the only means of access
they provide to clients.

– COM interfaces are like C++ class public interfaces, but they do not
provide implementations for the functions they declare.

– They are often implemented with C++ abstract base classes.

 This means that reuse of software implementation through
inheritance is not supported by COM.

Introduction to COM Page 8

C++ Interfaces

 C++ defines an interface as a set of public member functions of
some class:

class someClass {

public:

someClass();

~someClass();

int Fx();

void Gx(char *s);

private:

int Count;

char *Array;

};

 Note that implementation details are not accessible to clients,
but also, not hidden either. So clients have compilation depen-
dence on implementation.

Interface:

 int Fx()

 void Gx(char *s)

Implem. Data:

 int count

 char *array

someClass

Introduction to COM Page 9

C++ Inheritance

 C++ classes can be composed through inheritance. A derived
class inherits the public interface and any implementation
provided by the base class.

class baseClass { public: virtual rType operation(); … };

class derivedClass : public baseClass { public: … };

 derivedClass inherits the base member operation() and any
implementation that baseClass has provided.

 derivedClass is free to override virtual operations provided by its
base, but is not required to do so.

Introduction to COM Page 10

Reusing Software
Implementations

 C++ classes inherit both interface and
implementation of their base classes

 This reuse helps productivity, but may
cause breakage if not done carefully.

public interface

implementation

C++ base class

public interface

 - inherits all the

 base interface

 - may add more

 - changes to the

 derived implem.

 can break base

implementation

 is inherited, may

 be overriden

C++ derived class

client

- uses derived class object

- has compilation dependency on both

 base and derived classes

Introduction to COM Page 11

Abstract Base Classes

 A C++ class can provide an interface without providing an
implementation if it is constructed as an abstract class, e.g.:

class anAbstrBase {

public:

virtual bool operation() = 0; // pure virtual function

: // no definition provided

};

class getsBaseInterface : public anAbstrBase {

public:

virtual bool operation(); // definition must be provided

: // in implementation body so

}; // objects can be created

Introduction to COM Page 12

Inheriting only Interfaces

 C++ supports inheritance of interface
using abstract base classes.

 Clients hold a base class (interface)
pointer attached to the derived class.

 Client has no compilation dependence
on derived class provided that client
does not instantiate the object.

public interface

 - inherits all the base

 interface

 - may add more

implementation

 provided with no support

 from base class

C++

derived class

pulic interface

 definition of protocol

 no implementation

C++

abstract base class
client

only knows base class

protocol

Introduction to COM Page 13

Abstract Classes are Interfaces

 Non-abstract base class

– no pure virtual functions in
either base or derived

– base class has:

• data members

• constructors

• destructor

– base class implements all its
member functions

– derived class inherits most base
class members.

– derived class may override an
inherited virtual member
function implementation but
does not have to do so

 Abstract base class

– base must have at lease one
pure virtual function

– base class usually has no
members or constructor

– should provide virtual destructor

– it simply defines a protocol
consisting of all pure virtual
member functions

– derived class must implement
every pure virtual function

– clients can use protocol on any
derived object through a base
class pointer, e.g., an interface
pointer

Introduction to COM Page 14

COM Interface Policy

 COM defines a fundamental interface named IUnknown with three
methods:

– QueryInterface, used by clients to inquire if a component supports other
specific interfaces.

– AddRef, used by COM to increment a reference count maintained by all
COM objects

– Release, used by clients to decrement the reference count when finished
with interface. When the reference count decrements to zero the object’s
server is unloaded from memory.

 All COM interfaces must declare the IUnknown methods, usually done
by inheriting from IUnknown.

 All COM objects are required to implement the IUnknown interface
along with their own operations.

Introduction to COM Page 15

COM Interface Policy

 COM requires that:

– all calls to QueryInterface for a given interface must return the
same pointer value

– the set of interfaces accessible from QueryInterface must be fixed

– if a client queries for an interface through a pointer to that
interface the call must succeed

– if a client using a pointer for one interface successfully queries for a
second interface the client must be able to successfully query
through the second interface pointer for the first interface

– if a client successfully queries for a second interface and, using that
interface pointer successfully queries for a third interface, then a
query using the first interface pointer for the third interface must
also succeed.

Introduction to COM Page 16

COM Interface Policy

A

B

C

IUnknown

A

B

C

IUnknown

A

B

C

IUnknown

Symmetric Reflexive Transitive

Introduction to COM Page 17

COM Configuration Management

 COM objects and their interfaces are identified by Globally Unique
Identifiers (GUIDs). These are 128 bit numbers generated by an
algorithm based on machine identity and date.

 COM requires that interfaces are immutable. That is, once an interface
is published it will never change. A component may change its
implementation, removing latent errors or improving performance, but
interface syntax and semantics must be fixed.

 Components may add new functionality, expressed by additional
interfaces, but the component must continue to support its orig-inal
interface set.

Introduction to COM Page 18

COM Class Factories

 A COM class object is a component that creates new instances of other
objects.

 Class objects implement the IClassFactory interface and are called class
factories. IClassFactory interface has two methods:

– CreateInstance accepts an interface identity number and returns a pointer,
if successful, to a new component object.

– LockServer turns on, or off, locking of the factory’s server in memory.

 COM instantiates factories using a global or static member function
provided by the factory code:

DllGetClassObject(REFCLSID clsid, REFIID riid, void **ppv)

Introduction to COM Page 19

Standard COM Interfaces

 IClassFactory is used by COM to create instances of the
component

 IUnknown is used by Clients to get interface pointers

 There are many other standard COM interfaces.

CreateInstance(IUnknown *pUnknownOuter, REFIID riid, void **ppv)

LockServer(BOOL bLock)

IClassFactory

QueryInterface(REFIID riid, void **ppv)

Addref()

Release()

IUknown

Introduction to COM Page 20

Standard COM interfaces

File OBJIDL.H: - interfaces used by
COM and Windows 2000
for interprocess communication, etc.

interface IMarshal
interface IMalloc
interface IMallocSpy
interface IStdMarshalInfo
interface IExternalConnection
interface IMultiQI
interface IEnumUnknown
interface IBindCtx
interface IEnumMoniker
interface IRunnableObject
interface IRunningObjectTable
interface IPersist
interface IPersistStream
interface IMoniker
interface IROTData
interface IEnumString
interface ISequentialStream
interface IStream
interface IEnumSTATSTG
interface IStorage
interface IPersistFile

interface IPersistStorage
interface ILockBytes
interface IEnumFORMATETC
interface IEnumSTATDATA
interface IRootStorage
interface IAdviseSink
interface IAdviseSink2
interface IDataObject
interface IDataAdviseHolder
interface IMessageFilter
interface IRpcChannelBuffer
interface IRpcChannelBuffer2
interface IRpcChannelBuffer3
interface IRpcProxyBuffer
interface IRpcStubBuffer
interface IPSFactoryBuffer
interface IChannelHook
interface IPropertyStorage
interface IPropertySetStorage
interface IEnumSTATPROPSTG
interface IEnumSTATPROPSETSTG
interface IClientSecurity

interface IServerSecurity
interface IClassActivator
interface IRpcOptions
interface IComBinding
interface IFillLockBytes
interface IProgressNotify
interface ILayoutStorage
interface ISurrogate
interface IGlobalInterfaceTable
interface IDirectWriterLock
interface ISynchronize
interface ISynchronizeMutex
interface IAsyncSetup
interface ICancelMethodCalls
interface IAsyncManager
interface IWaitMultiple
interface ISynchronizeEvent
interface IUrlMon
interface IClassAccess
interface IClassRefresh
interface IEnumPackage
interface IEnumClass
interface IClassAdmin

Introduction to COM Page 21

File OLEIDL.H: - interfaces used for
containers like Word and Viso

interface IOleAdviseHolder
interface IOleCache
interface IOleCache2
interface IOleCacheControl
interface IParseDisplayName
interface IOleContainer
interface IOleClientSite
interface IOleObject
interface IOleWindow
interface IOleLink
interface IOleItemContainer

interface IOleInPlaceUIWindow
interface IOleInPlaceActiveObject
interface IOleInPlaceFrame
interface IOleInPlaceObject
interface IOleInPlaceSite
interface IContinue
interface IViewObject
interface IViewObject2
interface IDropSource
interface IDropTarget
interface IEnumOLEVERB

Standard COM Interfaces

Introduction to COM Page 22

Standard COM Interfaces

File OCIDL.H: - interfaces used for
controls like ListBoxEx and
WebBrowser

interface IEnumConnections
interface IConnectionPoint
interface IEnumConnectionPoints
interface IConnectionPointContainer
interface IClassFactory2
interface IProvideClassInfo
interface IProvideClassInfo2
interface IProvideMultipleClassInfo
interface IOleControl
interface IOleControlSite
interface IPropertyPage
interface IPropertyPage2
interface IPropertyPageSite
interface IPropertyNotifySink
interface ISpecifyPropertyPages
interface IPersistMemory
interface IPersistStreamInit
interface IPersistPropertyBag
interface ISimpleFrameSite
interface IFont

interface IPicture
interface IFontEventsDisp
interface IFontDisp
interface IPictureDisp
interface IOleInPlaceObjectWindowless
interface IOleInPlaceSiteEx
interface IOleInPlaceSiteWindowless
interface IViewObjectEx
interface IOleUndoUnit
interface IOleParentUndoUnit
interface IEnumOleUndoUnits
interface IOleUndoManager
interface IPointerInactive
interface IObjectWithSite
interface IErrorLog
interface IPropertyBag
interface IPerPropertyBrowsing
interface IPropertyBag2
interface IPersistPropertyBag2
interface IAdviseSinkEx
interface IQuickActivate

Introduction to COM Page 23

A Concrete Example

 In the diagram on the next page, we show a COM component that
implements two interfaces, IX and IY.

 The client gets a pointer to IUnknown from COM’s CoCreateInstance
function. That pointer can only be used to access the three IUnknown
functions, QueryInterface, AddRef, and Release.

 The client uses QueryInterface to get a pointer to one of the interfaces,
say IX. That pointer can only be used to access the functions exposed
by IX, in this case just the function Fx().

Introduction to COM Page 24

client

pIYpIX

virtual void Fx() = 0;

struct IX

virtual void Fy() = 0;

struct IY

 virtual Hresult QueryInterface(...) = 0;
 virtual ULONG AddRef() = 0;

 virtual ULONG Release() = 0;

struct IUnknown

pIUnknown

pointers pIunknown, pIX, and pIY

can be declared using only
declarations for Iunknown, IX, and IY

Operation:
 CA()

 ~CA();
 virtual HRESULT QueryInterface(...);
 virtual ULONG AddRef();

 virtual ULONG Release();
 virtual void FX();

 virtual void Fy();

Attribute:
 long m_cRef;

Class CA

Introduction to COM Page 25

Vtable Layout

 On the next page, you see a diagram that illustrates how the C++
interfaces connect to the code that implements them.

 The IUnknown pointer points to a table of function pointers called the
vtable (for virtual function pointer table). It can only access the
QueryInterface, AddRef, and Release functions.

 QueryInterface returns, using the casts shown in the diagram, a
pointer to the requested interface, either IX or IY, or NULL if the
request can’t be satisfied.

Introduction to COM Page 26

Vtable

IY vtbl pointer

QueryInterface

AddRef

Release

Fx

QueryInterface

AddRef

Release

Fy

long m_cRef;

IX vtbl pointer

CA::this

static_cast<IX*>(CA::this)

static_cast<IY*>(CA::this)

CA object in data space

CA class virtual function pointer table - only one per class

QueryInterface

AddRef

Release

Fx

Fy

reinterpret_cast<IUnknown*>(CA::this)

static_cast<IY*>(CA::this)
 static_cast provides conversions
 from the source type (CA::this)
 to the target type <IY*>
 It creates a new object of the target type.

reinterpret_cast<IUnknown*>(CA::this)
 reinterpret_cast interprets the same
 bit pattern as belonging to a different type
 No new object is created.

function definitions

Introduction to COM Page 27

Reusing Implementations

 There are a lot of existing interfaces that we want to use without
having to re-implement them. How do we do that?

 C++ has four mechanisms for reuse:

– inheritance of implementation (ruled out by COM due to concerns about
software reliability)

– composition, e.g, using objects of existing classes as data members of the
class being implemented

– Aggregation, e.g., create and use object of existing classes in a member
function.

– templates, shown by the Standard C++ Library to be very powerful

Introduction to COM Page 28

COM’s Reuse Mechanisms:
Containment

 COM defines component containment which has semantics of
C++ aggregation but can be composed at run time.

 With containment the reusing COM object loads an existing
component and implements part of its own interface by
delegating calls to the contained component.

outer component

IX

IY

inner component

IZ

Introduction to COM Page 29

Implementing Containment

 Containing component class:

– provides an interface matching the contained classes interface and
delegates calls to the inner interface (optional).

– provides an init() function which calls CoCreateInstance(…) on the
contained component.

– Declares a pointer member to hold the pointer to inner interface
returned by CoCreateInstance(…).

– Outer component’s class factory calls init() in CreateInstance(…)
function.

 Client:

– no special provisions.

 Inner Component:

– no special provisions

Introduction to COM Page 30

COM’s Reuse Mechanisms:
Aggregation

 What COM chose to define as aggregation is unfortunately quite
different than C++ aggregation.

 With COM aggregation the aggregating class forwards interface
of the reused existing class to the client by delivering a pointer
to the aggregated interface.

– This complicates implementation of the inner IUnknown since the
usual COM policy for interfaces must still be carried out.`

– The result is that, in order to be aggregate-able a component must
implement two IUnknown interfaces

Introduction to COM Page 31

COM Aggregation

outer component

QueryInterface

AddRef

Release

Fx

Outer IUnknown

Implementation

inner component

QueryInterface

AddRef

Release

Fy

Delegating IUnknown

implementation

Nondelegating IUnknown

implementation

Introduction to COM Page 32

Implementing (COM)
Aggregation

 Signaling aggregation:
– CoCreateInstance(…) and IClassFactory::CreateInstance(…) both

have a parameter: Iunknown* pUnknownOuter. If this pointer is
null the created object will not be aggregated.

– If An outer component wants to aggregate an inner component it
passes its own IUnknown interface pointer to the inner.

 Implementing IUnknown:
– If an aggregatable component is not being aggregated it uses its

non-delegating IUnknown implementation in the usual way.

– If it is being aggregated it uses its delegating IUnknown to forward
requests for IUnknown or outer interface to the outer component.
Clients never get a pointer to the inner non-delegating IUnknown.
When they ask for IUnknown they get a pointer to the outer
IUknown.

Introduction to COM Page 33

Implementing Aggregation

 The delegating IUnknown forwards QueryInterface, AddRef,
and Release calls to the outer IUnknown.

 When a client requests an inner interface from an outer
interface pointer the outer delegates the query to the inner non-
delegating QueryInterface.

 When CoCreateInstance is called by the outer component it
passes its IUnknown pointer to the inner and gets back a
pointer to the inner IUnknown. This happens in an init()
function called by the outer’s class factory in its CreateInstance
function.

Introduction to COM Page 34

COM Architectural Features

 - Program to Interfaces

 - create objects with class factories
 - Break compilation dependencies

 - implement using dynamic link libraries
 - reuse binary code

 - update without rebuilding

 - use registry to locate components

 - identify components using GUIDS

 - clients need no knowledge of

 where components reside

 - avoid name clashes with other

 components

 - delegate activation to the OS
 - allows components with different

 threading models to interoperate

 - use Remote Procedure Call (RPC)

 communication and marshalling

 between processes and machines

 - support for distributed architectures,

 e.g., from OLE linking and embedding

 to enterprise computing

 - use Interface Definition Language (IDL)

 to describe component's interfaces

 - hides some of the ugly code

 required to handle RPCs

Introduction to COM Page 35

Appendix
In-Process Components

COM component management

Logical and physical program structure

A little code

Introduction to COM Page 36

In-Process Components

 An inproc component is implemented as a dll which the client loads into
its own address space, e.g., becomes part of the client process.

 The inproc component provides a class factory so COM can create an
instance on behalf of the client. Thus the client has no compilation
dependency on the component.

 The component also declares its interfaces, IX and IY, and implements
them with the class CA.

 The component also provides four functions in the dll to support its
activities:
– Dllmain() simply saves a handle to the process

– DLLRegisterServer() calls function in Registry module to register comp.

– DllUnRegisterServer() calls function in Registry module to unregister comp.

– DllCanUnloadNow() tells come that client is done with dll

– DllGetClassObject() called by COM to get a pointer to the class factory
instance.

Introduction to COM Page 37

Inproc Component Architecture

 The structure of the inproc component is shown by the
architectural diagram on the next page. The diagram shows:

– Interfaces, IX and IY, declared by the component

– class factory and class that implements the interfaces

– DllGetClassFactory function

– Registry module (no details) that is responsible for writing the path
to the component into the registry.

– declarations of the interfaces in IFACE.H (no implementation
details) used by both client and component.

– Definitions of constant GUIDs in IFACE.CPP used by both client and
component.

– COM library, exposed by the declarations in objbase.h

Introduction to COM Page 38

Arch diagram here

Operation:

 CA()

 ~CA();

 virtual HRESULT QueryInter.

 virtual ULONG AddRef();

 virtual ULONG Release();

 virtual HRESULT Fx(BSTR bstr);

 virtual HRESULT Fy(BSTR *pBstr);

Attribute:

 long m_cRef;

Class CA

objbase.h

local object

in

CreateInstance

CMPNT.CPP

INPROC COMPONENT
DllGetClassObject Creates a Factory to Get Object for Client

Client Gets Pointer to Abstract Interface

to Invoke Derived Class Function

virtual HRESULT Fx(BSTR bstr) = 0;

virtual HRESULT Fy(BSTR *pBstr) = 0;

struct IString

 virtual Hresult QueryInterface(...) = 0;

 virtual ULONG AddRef() = 0;

 virtual ULONG Release() = 0;

struct IUnknown

DllGetClassObject(...)

pFactory

CoCreateInstance(...)

COM Library

pIString

client needs to know about

COM and GUIDS

but does not need to know about

CMPNT

Operation:

 CFactory()

 ~CFactory();

 virtual HRESULT QueryInterface(...);

 virtual ULONG AddRef();

 virtual ULONG Release();

 virtual HRESULT CreateInstance(...);

 virtual HRESULT LockServer(...);

Attribute:

 long m_cRef;

Class CFactory

 virtual HRESULT CreateInstance(...) = 0;

 virtual HRESULT LockServer(...) = 0;

struct IClassFactory

cmpnt_i.c

REGISTRY.CPP

CLIENT.CPP

local object

cmpnt.idl

REGISTRY.H
cmpnt.h

main()

Introduction to COM Page 39

Inproc Structure Chart

 The diagram on the next page is a structure chart. It shows
calling relationships between functions in the client, server, and
COM.

 In this diagram, callers are always above callees.

 The diagram shows clearly how the client calls COM to get a
pointer to an interface.

 COM calls DllGetClassObject to create the class factory, then
uses the pointer it gets to create an instance of the CA class
that implements the interfaces.

 COM then passes the pointer to the interface back to the client
for its use.

 The client finally calls release to tell COM its done with the
component.

Introduction to COM Page 40

Structure chart

client::main

CoInitialize

COM Library

CoCreateInstance

COM Library

CoGetClassObject

COM Library

CreateInstance

cmpnt::CFactory

DllGetClassObject

cmpnt

CFactory

cmpnt::CFactory

QueryInterface

cmpnt::CFactory

Release

cmpnt::CFactory

CA

cmpnt::CA

QueryInterface

cmpnt::CA

Release

cmpnt::CA

AddRef

cmpnt::CA

AddRef

cmpnt::CFactory

A

A
Fx

cmpnt::CA

Fy

cmpnt::CA

INPROC COMPONENT

B

B

Note: calling sequence goes left to right in this diagram

CoUninitialize

COM Library

CoFreeUnusedLibraries

COM Library

DllCanUnloadNow

cmpnt

LockServer

cmpnt::CFactory

Introduction to COM Page 41

Activation Diagram

 The diagram on the next page is an elaborated event trace
diagram.

 It shows the separate, cooperating actions of the client, COM,
and the Component to:

– Create the component instance

– Use it

– Shut it down

Introduction to COM Page 42

Activation diagram hereclient calls

CoCreateInstance()

COM searches

registry, finds

InProcServer32 for

CLSID and calls

LoadLibrary()

CLSID,
interface

pIX

COM calls

GetProcAddress() for

DllGetClassObject()

COM calls

DllGetClassObject()

gets pointer to class

factory in server DLL

server DLL loaded,

DllMain() called

DllGetClassObject() {

-

-

}

pCLFact

COM calls

class factory

createInstance()

asking for pIX

COM returns pointer to

requested object

interface

Client uses pointer to

access object's

interface methods

client calls release()

on object's interface

Class Factory creates

instance of object and

returns pointer to COM

pIX

server responds to

invocation

this is a synchronous

call

object decrements

reference count

if refence count = 0

COM calls

FreeLibrary()

server DLL is

unloaded

client COM inproc server

client calls

CoInitialize()

client calls

CoUninitialize()

send and receive data

pIX

Introduction to COM Page 43

Code Samples

 You will find a sample of an inproc COM component, written in
C++ without using the MFC or ATL libraries in the
CSE775/code/inproc_Ex1 directory.

 This code is illustrated by the Class Diagram, Structure Chart, and
Activation diagram on the previous slides.

 Looking carefully at this code, with these three diagrams close at
hand will help you understand the details of how an in-process
COM component works.

