
Apartments
and

COM Threading Models

Jim Fawcett

CSE775 - Distributed Objects

Spring 2008

2

Client Process

In-Process

Server

COM

Remote Server Process

Client
Application

Code

Local

Object
Proxy

In-Process

Object

Remote
Object

Proxy

COM

stub

Remote Server

Remote
Object

Local Server Process

COM

stub

Local Server

Local
Object

LRPC

RPC

COM Marshaling Architecture

3

Apartments

 Apartments currently come in three flavors:

– Single Threaded Apartments (STAs)

• COM serializes all out of apartment calls on an STA through a windows
message loop. The apartment’s single thread services all method
invocations by taking requests off the message queue.

• This means that a component that is not thread safe can safely operate
in a Win32 multithreaded environment as long as it was created by the
thread in an STA.

– Multithreaded Apartment (MTA)

• COM provides no serialization in an MTA. Any component created in an
MTA is expected to provide its own synchronization and thus be thread
safe.

– Neutral Threaded Apartment (NTA)

• Any thread may leave an STA or MTA to access an NTA. NTAs must be
fully synchronized.

4

Apartment Rules

 A process may have many STAs but only one MTA.

 Every COM object belongs to exactly one apartment.

 A thread executes in exactly one apartment at a time. When a
thread enters an apartment COM marks it with the apartment
ID.

 Objects may be accessed directly only by threads executing in
the apartment of the object.

 Objects in an STA will always be accessed by the same thread -
the one that created the STA. Thus objects can never run
concurrently in an STA

5

Creating Apartments

 An STA is created when client or EXE-based component calls:

CoInitialize(NULL)
or

CoInitializeEx(NULL,COINIT_APARTMENTTHREADED)

 An MTA is created when client or EXE-based server calls:

CoInitializeEx(NULL, COINIT_MULTITHREADED)

for the first time. Subsequent calls by new threads in the same
process result in those threads joining the MTA.

6

Joining Apartments

 An in-proc component with no threading model announced in
registry is loaded into a client’s main (first) STA if one exists.
Otherwise COM creates a host STA for the component.

 An in-proc component with ThreadingModel=Apartment registry
entry is loaded into any client STA that instantiates component.

 An in-proc component with ThreadingModel=Free registry entry
is loaded into a client’s MTA if one exists. Otherwise COM
creates a host MTA for the component.

 An in-proc component with ThreadingModel=Both registry entry
will be loaded into any client apartment that creates it, either
STA or MTA.

7

Access Within and Between Apartments

 All calls within an apartment are direct - no marshaling involved.

– instances in an STA can only be directly accessed by the single
thread of that STA.

– for an in-proc component, that is the client’s STA thread that
created the component

– instances in an MTA can be directly and concurrently accessed by
any thread in the apartment

 All calls into components in another apartment are marshaled.

– between processes on remote machines

– between two process on the same machine

– between two apartments in the same process

8

Comparing Threading Models
for in-proc Components

Registry Entry Client in: Result

no entry main STA direct access; obj in main STA

 any STA proxy access; obj in main STA

 MTA proxy access; obj in main STA

Apartment main STA direct access; obj in main STA

 any STA direct access; obj in calling STA

 MTA proxy access; obj in new STA

Free main STA proxy access; obj in MTA

 any STA proxy access; obj in MTA

 MTA direct access; obj in MTA

Both main STA direct access; obj in main STA

 any STA direct access; obj in calling STA

 MTA direct access; obj in MTA

9

Marshaling Interface Pointers

 Interface pointers must always be marshaled between apartments.

– Interface pointers are apartment relative. They can only be used by
threads in that apartment.

– On calls to QueryInterface COM marshals all interface pointers from
server to client if they reside in different apartments.

 If a server is in-proc, residing in an STA of the client then no
marshaling is required to send the interface pointer to the client on
the thread of the STA.

10

Manual Marshaling of
Interface Pointers

 If you need to provide access to a component in one apartment
to a thread in another apartment then an interface pointer must
be marshaled to the other apartment.

 The component can marshal a pointer to the client by passing it
in a call to an interface.

 If client code needs to transfer the pointer then this is done by
marshaling the pointer into a stream using:

CoMarshalInterThreadInterfaceInStream.
The resulting IStream pointer (not the interface pointer) can
then be passed to another apartment in the same process
through a static member of some class. Finally the receiving
thread unmarshals the pointer using:

CoGetInterfaceAndReleaseStream
in a form usable by that apartment.

11

Single Threaded Apartments (STAs)

 An STA is created when a thread calls CoInitialize(NULL) or
CoInitializeEx(NULL, COINIT_APARTMENTTHREADED)

 Only one thread may reside in an STA, the thread that made the call to
create the STA. That thread must ultimately call CoUninitalize(). The thread
is marked with an identifier of the apartment, e.g., OXID.

 a process can have zero, one, or many STAs.

 An STA owns any COM object instantiated by its thread (unless its threading
model is none). Only that thread can make method calls on the component.

 During CoInitialize(EX) creating an STA in an apartment separate from the
client, COM calls CreateWindow to create a hidden window. All method calls
to an STA component, from outside the apartment, are dispatched with that
window’s message loop. This means that an STA component must include a
windows message loop in the code you write.

12

STA Synchronization

Single Threaded Apartment
client #1

client #1

client #1

component

windows message queue

13

Multithreaded Apartments (MTAs)

 An MTA is created when a thread calls
CoInitializeEx(NULL, COINIT_MULTITHREADED)

 More than one thread may reside in an MTA

– the first thread that calls CoInitializeEx creates the apartment.

– subsequent threads in the same process that call
CoInitialize(NULL,COINIT_APARTMENTTHREADED)
join the MTA.

– Each thread is marked with an identifier of the apartment, e.g., OXID.

 a process can have only one MTA.

 An MTA owns any COM object instantiated by any of its threads,
provided that the component is threading compatible. Any thread from
the MTA can make direct calls to the object.

14

Component Activation

Local Machine

CLIENT.EXE

SERVER.DLL

Remote

Object

PROXY.DLL

In-Process

Object

Remote Machine

SERVER.EXE

Out-of-Process

Object

ORPC

ORPC

Service Control Manager (RPCSS.EXE)

COM Library (OLE32.DLL)

SERVER.EXE

Out-of-Process

Object

Service Control Manager (RPCSS.EXE)

COM Library (OLE32.DLL)

Out-of-Process

Object

PROXY.DLL

COM Library (OLE32.DLL)

15

Component Activation

 Objects are activated by the Service Control Manager as:

– in-process by loading component server’s dll in the address space
of the client, making client component interactions very efficient

– local out-of-process by starting the server’s exe in its own process
on the same machine

– remote out-of-process by notifying the remote machine’s SCM to
activate the server’s exe on that machine

– servers designed as in-proc dlls can also be started as local or
remote components using the services of dllhost.exe, a surrogate
process into which the server dll is loaded.

– for all out-of-process components, COM loads a proxy dll into the
client’s address space and stub into component’s address space to
handle interprocess and remote communication between them.

16

Service Control Manager

 the SCM supports three activation processes:

– binding to class objects (class factory) using CoGetClassObject

– binding to class instances using CoCreateInstanceEx

– binding to persistent instances from files using CoGetInstanceFromFile

 Binding to class objects and instances brings up newly created
objects with no state history except as determined by the class and
class factory constructors.

 It is possible to create singleton components so that all client
activations attach to the single class instance.

 If you need to preserve class state between activations, then using
persistent bindings is required.

17

Multi-Threaded Apartment
Component Member Invocations

 When CoInitialized, COM starts RPC service making component
an RPC server.

– as objects are accessed by an off-host client, network protocols are
registered with the server and an RPC thread cache is started

– the first thread from the cache listens for incoming connection
requests and dispatches threads to service each request

– the dispatched thread finds the stub manager and interface stub

– the thread then enters the component’s apartment and calls
IRpcStubBuffer::Invoke method on the interface stub and enters
component’s method

– in an MTA subsequent threads may access the object concurrently
so synchronization of global and local static data is essential

18

MTA Remoting Architecture

RPC Channel

RPC thread

cache

Server

Component

Class Factory

Client Proxy

Stub

client thread

COM thread in

client process

RPC thread

RPC thread

main server thread

is blocked waiting

for a termination

event set by the

final release

19

Single Threaded Apartment
Component Member Invocations

 When CoInitialized, COM starts RPC service making component
an RPC server.

– as objects are accessed by an off-host client, network protocols are
registered with the server and an RPC thread cache is started.

– when an incoming connection request arrives an RPC thread is
dispatched.

– no threads can enter an STA other than the first thread which
called CoInitialize, so the RPC thread posts a message to the STA
thread’s message queue (a hidden window create by COM for the
STA thread).

– STA thread services queue with GetMessage, DispatchMessage.

– Since all invocations are on the STA thread, all calls are serialized
through the windows message queue.

20

STA Remoting Architecture

RPC Channel

message queue

RPC

Server

Component

Class Factory

Client Proxy

Stub

client thread

COM thread in

client process

COM thread in

component process

component thread

in IDispatch message

component thread

the component

thread continues

processing

windows

messages until it

receives a quit

message posted

by final release

21

Marshaling Architecture

Client's Process

Proxy

dll

client

Component's Process

component

stub
interprocess

communication

22

Proxy
Manager

client

Iface2 Interface
proxy

IRpcProxyBuffer

Iface2 IRpcChannelBuffer
ORPC

Channel

Iface1 Interface
proxy

IRpcProxyBuffer

Iface1 IRpcChannelBuffer
ORPC

Channel

Iface3 Interface
proxy

IRpcProxyBuffer

Iface3 IRpcChannelBuffer
ORPC

Channel

23

Stub
Manager

component

ORPC
Channel

Iface3 Interface
Stub

IRpcStubBuffer Iface3

ORPC
Channel

Iface2 Interface
Stub

IRpcStubBuffer Iface2

ORPC
Channel

Iface1 Interface

Stub

IRpcStubBuffer Iface1

24

Type Library Marshaling

- Uses Automation marshaler provided by COM
- Component does not support IMarshal interface
- Component may, but does not have to support IDispatch interface
- Developer provides IDL file with oleautomation or dual tags
- MIDL generates proxy/stub code and a type library file
- Developer does not register ProxyStub dll, but instead makes
 call to LoadTypeLibraryEx or RegTypeLib in server's Register function

Standard Marshaling

- Uses custom marshaling but provided by COM
- Component does not support IMarshal interface
- Proxy and Stub code is generated by MIDL from
 IDL file provided by the developer
- Proxy and Stub dlls are registered by developer
 and loaded by COM
- Proxy builds a vtble with the same layout as the
 component vtble, but with pointers to proxy functions
- When COM marshals an interface pointer the client
 gets a pointer to the Proxy vtble

Custom Marshaling

- Component must support IMarshal interface
- Developer implements IMarshal interface
- IMarshal interface marshals interface pointers only
- Developer must provide for data marshaling using
- sockets, named pipes, memory mapped files, etc.

Interface data types are
restricted to the
automation compatible
types

interface data types are
restricted to the base types
defined in wtypes.idl and
arrays and structures using
the base types

COM's Marshaling Layers

