
Active Template Library

Active Template Library

CSE775 - Distributed Objects, Spring 2012

Jim Fawcett

copyright © 1998-2012

Library support for building COM components

Active Template Library

Library Support for COM

• One of the difficulties with designing COM components with no support other than C++ is
that COM does not support reuse through inheritance.

• This means that either you implement all the interfaces you need yourself, even the standard
COM interfaces, or:

• You make your server a client of the standard COM component and use aggregation to provide
access to the standard interface through COM aggregation – a very messy process.

• COM has addressed this problem with two types of support:
• The Microsoft Foundation Classes (MFC) provide extensive support for creating COM clients and

servers.

• The Active Template Library (ATL) also provides a lot of support for creating COM servers and is
generally preferred over MFC.

• Both libraries make it relatively easy to uses standard COM components without re-
implementing them yourself.

Active Template Library

Active Template Library (ATL)

• A diagram showing the structure of an ATL generated server is shown on the
next page.

• The ATL CComObjectRootEx and CComObject classes, using templatized arguments
you provide, implements the IUnknown interface and provides COM aggregation
where needed.

• CComCoClass implements the server’s class factory.

• Classes with the name I…Impl implement standard COM components for you.

• Your code only needs to:
• provide template arguments for these classes

• Create a class that implements your server’s functionality, shown as CMyClass, and provide
declarations for its interfaces, shown as IMyInterface

• Note that the ATL wizard will lead you through all this, so the process becomes quick
and easy, if you understand how ATL works.

Active Template Library

ATL Class Hierachy

CComObjectRootBase

CComObjectRootEx<ThreadModel>

CMyClass

IXXXIMPL<> IMyInterface

CComObject<CMyClass>

CComCoClass<CMyClass, &CLSID_myClass>

CreateInstance

and

IUnknown

methods

implemented

here.

This is the object

instantiated.

Implementation of

custom interface

members

ATL supplied

implementations

Custom interface

declarations.

This isn’t explicit

in derivation

hierarch for dual

interfaces.

Manages

reference count

and outer

pointers to

IUnknown.

Its template

parameter is the

threading model

of the project

Defines object’s

class factory and

aggregation

model.

CAtlModuleT<T>

CAtlDllModuleT<CATL_ProjNameModule>

Provides Dll

functions and

additional support

for registration

Support for

initializing,

registering, and

unregistering

COM module

CATL_ProjNameModule

You won’t see this if you ask for
a dual interface. You only see
IDispatchImpl templatized on
IMyInterface.

Active Template Library

ATL Support for QueryInterface

• QueryInterface is implemented with map macros, much like the
macros used in MFC programming:

• BEGIN_COM_MAP(myclass)
COM_INTERFACE_ENTRY(IMyInterface)
COM_INTERFACE_ENTRY(IDispatch) // here for dual interface

END_COM_MAP()

• If you saw the expansion of these macros after preprocessing you
would see a table-based process that supports QueryInterface via
enumeration through table elements, one element for each
interface.

Active Template Library

ATL Support for COM Servers

• COM servers provide the following services:
• Register and unregister all classes in the server and the server and its type

library.

• Provide the Service Control Manager (SCM) access to the class factories
hosted by the server.

• Manage server lifetime.

Active Template Library

CAtlDllModuleT

Active Template Library

CAtlExeModuleT

Active Template Library

ATL Support for Building Clients

• CComQIPtr<class T, const IID* piid = &__uuidof(T)>()
• Provides instance creation, lifetime management, query for interfaces

• CComBSTR(LPCSTR pStr)
• Wraps BSTRs, providing string manipulation functions, and memory

management

• CComVariant(Type, VARTYPE)
• Wraps variants, used in Idispatch and for automation

• CComSafeArray<class T, VARTYPE>(count)
• Wraps arrays of variants

Active Template Library

ATL Support for Windows Interfaces

• ATL provides, natively, support for creating both Frame and Dialog windows
interfaces.

• When augmented with the wrappers in the (undocumented and unsupported)
atlctrls.h, they provide a very useful framework for creating user interfaces.

• You have to know some Win32 windows programming, but they provide a lot of help.

• The classes used are shown in the diagram on the next page.

• If you want to create a highly functional, complex interface, then using WinForms or
the MFC framework are good alternatives.

• However, ATL now provides additional support in the form of an add-on library call the
Windows Template Library (WTL), available from sourceforge.

• We may discuss the WTL in more detail later in the semester.

http://sourceforge.net/projects/wtl/

Active Template Library

ATL Windows

CAxWindowT<TBase = CWindow>
typedef CAxWindow<CWindow> CAxWindow

CMessageMap

CWinTraits<DWORD,DWORD>
CControlWinTraits
CFrameWinTraits

CMDIChildWinTraits

CWinTraitsOR<DWORD,DWORD,TWinTraits>

CWindowImplRoot<TBase = CWindow>

CWindowImplBaseT<TBase = CWindow,TWinTraits = CControlWinTraits>
typedef CWindowImplBaseT<CWindow> CWindowImplBase

CWindow

TBase

CWindowImpl<T,TBase = CWindow,TWinTraits = CControlWinTraits>

CDialogImplBaseT<TBase = CWindow,TWinTraits = CControlWinTraits>
typedef CDialogImplBaseT<CWindow> CDialogImplBase

CAxDialogImpl<T,TBase = CWindow> SimpleDialogl<WORD,BOOL>

CContainedWindowT<TBase =
CWindow,TWinTraits=CControlWinTraits>

typedef CContainedWindowT<CWindow> CContainedWindow

CYourFrameWindow CYourDialog

HWND

Active Template Library

Active Template Library

• Microsoft has developed the Active Template Library (ATL) to support reuse of
existing designs for many of the standard COM interfaces.

• IUnknown, IClassFactory, IDispatch, IMarshal

• ActiveX Controls interfaces
• event notification

• properties and property pages

• ATL provides source composition, not binary composition. Once built, however,
ATL components, like any other, can be composed as binary objects.

(we can add a binary control to a window, for example)

Active Template Library

Some of the ATL Files

AtlBase.h Low level type and class definitions

AtlCom.h COM object management

AtlConv.h Convert strings to/from unicode

AtlCtl.h, AtlCtl.cpp ActiveX control support

AtlComCli.h Smart pointers and BSTR wrapper

AtlSafe.h SafeArray wrapper

AtlSync.h Defines classes for locks

Atlimpl.cpp Implementation of pieces too big to inline

AtlWin.h, AtlWin.cpp Support for frame and dialog windows

Statreg.h, Statreg.cpp Support for registry code

Active Template Library

End of ATL Presentation

