CSE775 – Distributed Objects

 Spring 2008

Midterm #2 Examination
Name:_______Instructor’s Solution________________ SUID:____________________

This is a closed book examination. Please place all your books on the floor beside you. You may keep one page of notes on your desktop in addition to this exam package. All examinations will be collected promptly at the end of class. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to discuss your question. I will answer all questions about the meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to answer first those questions you believe to be easiest.

1. What is a component? Why are components important and useful software constructs? Describe their essential parts and discuss why each part is necessary.

Answer:

A component is an encapsulated set of functionality that is accessed through an interface and uses an object factory to create instances of the class(es) that implement the interface.

The interface serves as a contract between component and its clients for services. The Object factory is called by clients of the component to create instances of the class that implements its interface and binds it to the client through an interface pointer. Since the client holds only a pointer to the interface type and calls only through that and the object factory, its source text has no dependencies on the concrete types used for the component implementation.

This means that the component can be changed without rebuilding the client. We simply modify the component as needed, build it, and place the newly build dynamic link library where the client will load it.

COM components provide the additional feature of language and threading model independence. A client, built in any language that can make COM calls, can interoperate with the component, regardless of its source language, provided that it exposes a COM dual interface (at least an IDispatch interface) as well as the IClassFactory interface.

COM components also provide for type queries using QueryInterface and provide type libraries that can be used to support late binding between client and component.

2. Write code that will instantiate and use the communication component you designed for Project #2
. You do not need to show the code to generate specific data to be sent, but please do show all the code necessary to check for successful operation and finally release the component. In which part of the system will this code reside?

Answer:

///

// DataSenderClient.cpp - Answer to MT2 - Q2 //

// //

// Jim Fawcett, CSE775 - Distributed Objects, Spring 2008 //

///

#include <atlbase.h>

#include <iostream>

#include "../DataSendeer/DataSendeer_i.h"

int main(int argc, char* argv[])

{

 CoInitialize(NULL);
 {
 CComQIPtr<IDataSender> pDataSender;
 pDataSender.CoCreateInstance(CLSID_DataSender);
 if(pDataSender)

 {
 long Count = 5;
 BYTE Block1[5] = { '0', '1', '2', '3', '4' };
 BYTE Block2[5] = { '3', '2', '1', '0', '-1' };
 if(SUCCEEDED(pDataSender->StartData(L"Blocker")))

 if(SUCCEEDED(pDataSender->SendBlock(Count, Block1)))

 if(SUCCEEDED(pDataSender->SendBlock(Count, Block2)))

 if(SUCCEEDED(pDataSender->EndData()))

 std::cout << "\n client sent two blocks";

 }
 std::wcout << "\n\n";
 }
 CoUninitialize();
 return 0;
}

Note that Release() is called when smart pointer, pDataSender, goes out of scope. That must happen before CoUninitialize() is called to tear down apartment.

This code resides in the host, since it handles all file handling and communication tasks for the client.
3. For your design of Project #2, describe all the actions taken by the COM run-time when the client instantiates the Host. Please consider all parts of the system.

Answer:

The Host is an out-of-proc COM component, so:

COM, in response to a client’s call to CoCreateInstance, searches the registry for the component’s CLSID and calls CreateProcess. It then waits for the server to create an instance of its class factory and register it in a process-wide table. COM retrieves the pointer to the class factory from the table, calls its CreateInstance function, and returns a pointer to the requested interface.

The Host loads the FileHandler and DataSender in-process components, so:

COM, in response to the Host’s calls to CoCreateInstance, searches the registry for component’s CLSID, loads library, and calls GetProcAddress for DllGetClassObject. It uses that to get a pointer to the component’s class factory, calls its CreateInstance method, and returns a pointer to the Host for the requested interface.

4. Describe the responsibilities for managing memory allocations for an [in, out] parameter in a COM interface. Write code for both client and COM component to pass a BSTR holding a string with more than zero characters, append additional characters in the component, return the modified BSTR to the client, and display the results.

Answer:
For [in, out] parameters, the client is responsible for allocating and deallocating memory for the passed parameter, using the appropriate COM allocator.

///

// StringAppenderClient.cpp - Demonstrate Solution to MT2-Q4 //

// //

// Jim Fawcett, CSE775 - Distributed Objects, Spring 08 //

///

#include <atlbase.h>

#include <iostream>

#include "../StringAppender/StringAppender_i.h"

int main(int argc, char* argv[])

{

 CoInitialize(NULL);
 CComQIPtr<IAppendString> pStringAppender;
 pStringAppender.CoCreateInstance(CLSID_AppendString);
 if(pStringAppender)

 {
 BSTR send = SysAllocString(L"client string");

 HRESULT hr = pStringAppender->AppendString(&send);
 if(SUCCEEDED(hr))

 {
 std::wcout << "\n " << send;
 SysFreeString(send);
 }
 }
 std::wcout << "\n\n";

 return 0;
}

///

// AppendString.cpp - Demonstrate Solution to MT2-Q4 //

// //

// Jim Fawcett, CSE775 - Distributed Objects, Spring 08 //

///

#include "stdafx.h"

#include "AppendString.h"

STDMETHODIMP CAppendString::AppendString(BSTR* Str)

{

 CComBSTR appender(*Str);
 appender += L" plus this appended string";

 SysFreeString(*Str);
 *Str = appender.Detach();
 return S_OK;
}
5. What are the properties of a kernel object, and why are some of those useful for synchronizing access to resources shared by multiple threads or processes?

Answer:

Kernel objects are reference counted OS resources and so can be shared across processes, have handles, can be named, have security settings, and have state, maintained in the OS kernel, that is either signaled or unsignaled.

Signaled state determines whether a thread will block on calls to:

WaitForSingleObject(ko_handle, TimeOut);

Mutexes are kernel objects and are often used to synchronize access to shared resources. Before accessing a shared resource, we wait on the mutex handle. Once that becomes signaled, we can access the resource, then release the mutex.

Named mutexes can be used to synchronize across processes. When the first process calls CreateMutexEx a kernel object is created and named. When a subsequent process calls CreateMutexEx and supplies the same name, it gets back a handle to the same mutex.
6. What is a memory mapped file and how does it relate to the Windows virtual memory management system.

Answer:

Memory mapped files are memory page(s), as defined by the Windows virtual memory system, that have an associated file mapping kernel object created when you call CreateFileMapping. To access the mapped file, e.g., the memory page, you call MapViewofFile(Ex).

When accessed, this page is loaded into memory and the accessor gets a pointer, relative to it’s virtual address space, to the beginning of the memory allocated.

Two processes can access the same shared memory by each calling CreateFileMapping with the same name. The first caller creates the kernel object and its associated page(s), receiving a handle to the kernel object. Subsequent callers, if they use the same name, get handles that refer to the same kernel object and associated page(s). When they call MapViewofFile(Ex) they also get pointers, relative to their own virtual address space, that point to the beginning of the shared page.

7. Why is IDL used in COM to specify an interface contract instead of a header file defining an abstract class?

Answer:

IDL is used to provide a language-independent way of describing a component’s interfaces and type libraries. This allows a client built in one language to access and use the facilities of a component built with another programming language. It also provides attributes, e.g., [in, out, retval, and size_is(…)] that support marshaling of data between COM apartments.

The types used to describe interfaces with IDL are not language specific types. Instead, COM uses the Network Data Representation (NDR) types, which all have specified sizes, necessary for data marshaling.

For COM components, the MIDL compiler processes IDL to create a header file that contains interface declarations, tied to specific GUIDS, and is used by the C++ compiler to layout an interface’s virtual function pointer table (vtbl). This file also defines C structures that act like vtbls that can be processed by C compilers. MIDL also produces a type library that languages like Visual Basic (pre .Net) use to bind at run-time to the component, using its IDispatch interface.
8. Write IDL for an interface that passes a block of bytes, of size determined at run-time.

Answer:

[

object,

uuid(A628B989-8950-499B-A62E-2B02F2229F24),

dual,

nonextensible,

helpstring("IDataSender Interface"),

pointer_default(unique)

]

interface IDataSender : IDispatch{
 [id(1), helpstring("method StartData")]

 HRESULT StartData(BSTR name);
 [id(2), helpstring("method SendBlock")]

 HRESULT SendBlock([in] LONG count, [in, size_is(count)] BYTE* block);

 [id(3), helpstring("method EndData")]

 HRESULT EndData(void);

};

� You will find a copy of the Project #2 statement attached to the end of this packet.

