
Windows Presentation
Foundation

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2018

References

• Pro C# 5 and the .Net 4.5 Platform, Andrew Troelsen, Apress,
2012

• Programming WPF, 2nd edition, Sells & Griffiths, O’Reilly,
2007

• Windows Presentation Foundation Unleashed, Adam Nathan,
SAMS, 2007

• Essential Windows Presentation Foundation, Chris Anderson,
Addison-Wesley, 2007

• http://msdn2.microsoft.com/en-us/library/aa970268.aspx

• http://msdn2.microsoft.com/en-us/library/ms754130.aspx

http://msdn2.microsoft.com/en-us/library/aa970268.aspx
http://msdn2.microsoft.com/en-us/library/ms754130.aspx

WPF Blogs and Tutorials

Josh Smith Blog

WPFpedia

https://www.wpftutorial.net/

http://joshsmithonwpf.wordpress.com/a-guided-tour-of-wpf/
http://www.actiprosoftware.com/Support/ResourceGuides/WPF/ViewCategory.aspx?ResourceGuideCategoryID=3
https://www.wpftutorial.net/

Introduction

• What is WPF?
– A graphical user interface technology

• Desktop

• Little brother Silverlight is used for web applications

– Uses markup and code
• Together or separately, much like ASP.Net

– Easy to produce different styles
• Web browser like navigation and placement

• Traditional forms

• Animated graphics

ASP.Net

Markup

• XAML
– eXtensible Application Markup Language

– Tags are names of .Net 3.5 classes

– Attributes are class properties and events

<Grid>
<Ellipse Fill=“blue” />
<TextBlock>

Name: <TextBlock Text=“{Binding Name}” />
</TextBlock>

</Grid>

Code Behind

• Often, code provides processing for control events,
bound in XAML, like this:

– XAML in Window.Xaml
<Button

x:Name=“button”
Width=“200”
Height=“25”
Click=“button_Click”>Submit</Button>

– C# code in Window.Xaml.cs
Void button_Click(object sender, RoutedEventsArgs e) {

MessageBox.Show(…) }

C# Wizard

Default Grid Panel

Like WinForms, But …

It’s Easy to Do More Interesting
Things

Panels

• Layouts, like the previous page can use:

– Canvas
• Simplest, placement relative to two edges

– StackPanel
• Horizontal or vertical stacking

– Grid
• Uses rows and columns

– DockPanel
• Dock to top, right, bottom, left, and all else fills remaining space

– WrapPanel
• Horizontal stacking with wrap on overflow

– All of these can be nested, any one in another

Vector Graphics

• In WPF there is only (usually) one window

– Controls are not windows!

– No handles—really, no handles

– A button is a shape with border, fill, text,
animation, and events, like click.

– There is a Button class, but it is not a .Net control
in the traditional sense nor an ActiveX control.

• Just markup, lines, fills, and events.

Parse Tree

• XAML gets rendered into a parse tree, just like
XML—it is XML

– Inherited properties are based on parent-child
relationships in the markup tree

– Events bubble based on those relationships as
well

– You have direct and simple control over that
structure

• The world is yours!

What Makes WPF Unique?

• Vector graphics with parse-tree structure derived from
markup

• Routed events bubble up the parse tree

• Pervasive publish-and-subscribe model

– Data binding

– Dependency properties

• Layered on top of DirectX

– Strong 2D and 3D graphics

– Animation

• Layout and styles model similar to the best of the web

3D Hit Testing

3D Perspective Camera

Famous Teapot

Routed Events

• WPF maps markup elements to UIElements,
which derive from ContentControl

– That means that almost everything can hold
content—only one thing unless it’s a panel.

– How does a mouse click event on any one of a
control’s content elements get routed to the
control?

• By walking the XAML parse tree until it finds a parent
that handles that event.

Adding Event Handlers

• You will find that property sheets show events as
well as properties

– Click on the lightning bolt to see the event sheet.

– You subscribe by clicking on an event entry.

• You can also add event handlers quickly in XAML:

– Go to the XAML, type a space after the tag for the element
you want to handle the event
• That gets you a context menu (via IntelliSense) and you just

double-click on the desired event, which adds an event attribute

Attached Properties

• Buttons, ListBoxes, Images, etc., do not have
Dock properties.

• However, when you place one of these in a
DockPanel, you find that it has had Dock
properties attached.

<Image Source="./help.png"
DockPanel.Dock="Top" Height="213"
ImageFailed="Image_ImageFailed" />

DependencyObject Class

• Attached properties work because all
WPF controls derive from the
DependencyObject class.

–DependencyObject class supports adding an
arbitrary number of dependency properties.

Dependency Properties

• A dependency property is a property that is registered with
the WPF dependency property system. Two uses:
– Backing an object property with a dependency property, provides

support for data binding, styling, and animation. Examples include
Background and FontSize properties.

– Creating attached properties. Attached properties are properties that
can be set on ANY DependencyObject types. An example is the Dock
property.

• You can find an example of the definition and use of a custom
dependency property here.

• Dependency properties are a publish-and-subscribe system.

http://blogs.msdn.com/mgrayson/archive/2006/05/22/dependency-properties.aspx

Dependency Property Links

Josh Smith's Blog

Switch on the Code Blog

Learn WPF site

http://joshsmithonwpf.wordpress.com/2007/06/22/overview-of-dependency-properties-in-wpf/
http://www.switchonthecode.com/tutorials/wpf-tutorial-introduction-to-dependency-properties
http://learnwpf.com/search.aspx?q=dependency properties

Property Syntax

• Two syntax forms:
– XAML attribute:

<button ToolTip=“Button Tip />

– Property element syntax:
<Button>

<Button.Background>
<SolidColorBrush Color=“#FF4444FF” />

</Button.Background>
Some Button Text

</Button>

Markup Extensions

• Sometimes you need to assign a property
from some source at run-time. For that you
use markup extensions:

<Button Foreground=“{x:static
SystemColors.ActiveCaptionBrush}” >

Some text
</Button>

Inline Styles

• Collections of property values:

– <Button.Style>
<Style>

<Setter Property=“Button.FontSize”
Value=“32pt” />

<Setter Property=“Button.FontWeight”
Value=“Bold” />

</Style>
</Button.Style>

Named Styles

• Collections of property values:

– <Window.Resources>
<Style x:Key=“myStyle” TargetType=“{x:Type

Control}”>
<Setter Property=“FontSize” Value=“32pt” />
<Setter Property=“FontWeight” Value=“Bold”

/>
</Style>

</Window>

Binding

• Binding infrastructure allows you to set up a
one-way or two-way updating of property
values that happens when the source
changes.

• This requires two things:

– A dependency object

• Has its own dispatcher thread

– Support for INotifyPropertyChanged interface

Binding

• Objects that implement
INotifyPropertyChanged interface raise events
when the property has changed.

• Data binding is the process of registering two
properties with the data-binding engine and
letting the engine keep them synchronized.

• You will find an example in the
Wpf_AttachedProperties demo code.

Binding Links

MSDN Article by John Papa

CodeProject article by Josh Smith (part of a
tutorial series)

Bea (Costa) Stollnitz

http://msdn.microsoft.com/en-us/magazine/cc163299.aspx
http://www.codeproject.com/KB/WPF/GuidedTourWPF_3.aspx
http://bea.stollnitz.com/blog/?page_id=47

Control Templates

• With control templates you can change the
look and feel of existing controls and
support making your own controls:

– <Button.Template>
<ControlTemplate>

<Grid><Rectangle /></Grid>
</ControlTemplate>

</Button.Template>

Navigation

• You can use instances of the Page and
Frame classes to set up a navigation
structure resembling web applications.

–Pages go in NavigationWindow instances
and Frames go in Windows and Pages.

– This is a good alternative to tabbed displays.

Special Classes

• ContentControl

– All UIElements derive from this.

– Content can be text, a tree of elements, or a .Net object
which can be displayed using a data template

• Dependency object

– Derives from DispatcherObject

– Supports data binding, styling, animation, property
inheritance, and property change notifications

• WindowsFormsHost

– Supports hosting controls based on HWNDs

Special UI Elements

• ViewBox
• Resizes content to fit available space

• UserControl
• Way to build custom controls as collections of elements on a

panel

• Animatable
• Provides hooks for DirectX to change elements properties over

time, e.g., position, size, color, …

• FlowDocument
• FlowDocumentScrollViewer
• FlowDocumentPageViewer

• MediaElement
• Play media on load or on request, e.g., wma, wmv, mp3, …

The End

