PAGE
10

Running Visual C++ (Visual Studio 2010)

Revised 1/11/2011
Jim Fawcett, CSE687 – Object Oriented Design, Spring 2011
1. Creating a new empty solution (Figure 1.):

· Click File\New\Project (ctrl+shift+N) to get a New Project dialog box.

· Select Other Project Types\Visual Studio Solutions in the left pane. Select Blank Solution in the right pane. Add a solution name and browse for a location, then click OK.
· This will bring up Solution Explorer with the new solution.

2. Creating a new project (Figures 2. and 3.)
· Right click on the solution in the Solution Explorer and select Add\New Project. This will bring up the Add New Project dialog box.

· Select C++ in the left pane and select a project type in the right pane, e.g., Win32 Console Application, Windows Forms Application, or Win32 Project.
· Enter a solution location by typing or browsing (if the path you type does not exist it will be created).

· Enter a name for your project (will reside in a subdirectory in your workspace by default – change by editing the location).
· Click OK. This brings up the Application Wizard dialog. Select Application Settings.

· Select Console application and Empty project.
· Click on OK – this creates a directory holding a solution file, intellisense database file, and a user options file
· You can create as many projects as you wish in a given solution. Sometimes you may wish to create two or more projects with the same files but with different properties. Multiple projects let you work on a single module, or the entire program, simply by switching between projects.
· It is a very good idea to make a project for each of your modules. You implement a solution by adding the first module’s project, building, and testing with the module’s test stub. Then add another project, and add existing source code from the first project (see item 4., below) if the new module depends on the first module’s services. Now you will set this module’s properties to compile the second project’s test stub, not the first (see Step 8, and Figure 7.). Continue this way until the solution is complete.
3. Adding a new source code file (Figures 4. and 5.):

· Right click on project and select Add/Add New Item
· Select Windows Form to add a form, or Header File or C++ File to add a header or implementation file.
· Enter name, and click OK
· Now you are ready to enter code

· Note: adding a new file creates a blank file in the project directory
4. Adding an existing file to the project:

· Right click on project and select Add/Add Existing Item
· Browse through directories until you find the file you want.

· Select it and click OK
· Note: adding an existing file to a project does not copy or move any file. It simply adds the path to the selected file into the project settings. Be aware that if you change this added existing file in the IDE editor, it will change the original back in its source folder. This is not the way the C# editor works.

· You can make a copy, using Windows Explorer, and add the copy to the project directory.

· That, of course, means that you now have two versions of the file. Be careful!
5. Compiling and Linking:

· Click Build\Build Solution or right click on project or solution and select build or rebuild
· By default, if you select build it will build all projects in the solution. If you select Project Only/Build, you will build just the selected project.
· Warnings and errors are shown in the bottom Output window. Fix these and rebuild.

· Double click on warnings and errors to go to the problem location in source code
6. Running the result of a build:

· Click Debug\Start without Debugging or depress Ctrl F5
· I add the Start without Debugging symbol to my toolbar with Tools\Customize\Debug using drag and drop. A click on that will start an execution
7. Enter command line parameters before running (Figure 6.):

· Click Project\Properties to get a tabbed dialog box.

· Click on Debug tab and enter Command arguments for the command line

· Click OK

8. Enter preprocessor definitions before running (Figure 7.):

· Click Project\Properties to get a tabbed dialog box.

· Expand the C/C++ tab and select Preprocessor
· Add to existing Preprocessor definitions by typing a comma and your definitions

· Click OK
· This is a good way to define the TEST_MODULENAME string that determines whether your Module’s test stub is compiled or not. Each project, except for the Executive module’s has one of these test definitions so that, when you run the project, the module’s test stub runs.
9. Debugging:

· Step over: F10 or click on Debug\Step Over

· Step into: F11 or click on Debug\Step Into
· Single step by over, through, out of, or run to cursor, by clicking on buttons on the debug toolbar. You can figure out what each of the icons means by letting the cursor rest for a moment on an icon. A tool tip will pop up with a short description of the resulting action.
· You may have to add the run to cursor option from Tools\Customize\Debug and select and drag the run to cursor icon to the debug part of the menu.

· Add or remove break points by left clicking in the left margin of the text editor at the break line. Step through break points with F5.
· Add watches by clicking in the watch window that appears (by default at the bottom left of the IDE) when you begin stepping. If you don’t see watch window, click on Debug\Windows\watch.
· You can click on Tools\Customize to get a tabbed dialog box. Select toolbars and check Debug (you should only need to do this once) and select anything you want on the debug toolbar.

10. Using Help:

· Click Help\Index to enter class, function, or namespace names for help information. This will appear in a window, outside the IDE. You can get a table of help contents by selecting that tab at the bottom left of the help window.
· You can search the local and online resources by typing in a search query in the search bar at the top of the right pane in the help window. Be sure to select the filtering you want before you search.
· If you put your cursor on some token and press F1 you get help for that word if it exists. This is a great way to learn about someone else’s code.
· Help files are hypertext and you can usually find what you want with some link following.
11. Windows

· In the default windows layout, you can toggle between solution explore (view of your solution, its projects, and their files) or class view (view of all the classes in the solution, along with their methods and attributes).
· If you don’t see Solution Explorer or Class View, select View\Solution Explorer of View\Class View.
· You can select from a variety of toolbars (Tools\Customize\toolbars), but normally you don’t have to do that, as the IDE presents to you toolbars that are appropriate for your selected activities.
· You can easily move windows around, and save a particular layout from Tools\Import and Export Settings. You can return to the default IDE window layout by selecting Window\Reset Window Layout.
A note about Solution Layout:

When you create a blank solution, add projects, and add source code items to the projects, each source code file will reside in its own project’s folder, which in turn, resides in the solution folder. That means that #include statements have to provide a relative path to header files that need to be included. This works fine for a given project, but when you reuse some of these modules in another project, you will probably place all the files in the same folder, breaking the relative paths. One way to avoid this problem is to move all the files from their project folders to the solution folder. You will have to:

1. Right click on each file and exclude from project.
2. Move the files to the solution folder with Windows Explorer.
3. Then add them back into each project.
4. Now you can change the include paths to be the default current directory.
The result is, all the source code files reside in the solution folder and each project folder contains the project file and the user options file only. You can always create new items in the solution directory by modifying the item path given in the new item dialog. By the way, I don’t do this for executive modules. They are seldom reusable, and typically have resource files and other gunk that you don’t want in your reusable code area.
Figure 1. – Add Blank Solution
[image: image1.png]|.NET Framework 4

~ | sort by: | Default

Search Installed Templates

g Blank Solution

Visual Basic

Visual CG#

Visual C++

Visual F#

Other Project Types

I Setup and Deployment

Extensibility
Visual Studio Solutions

Database

Test Projects

Name: demoSolution
Location: c\temp
Solution: Create new solution

Solution name: demoSolution

Visual Studio Solutions

Type: Visual Studio Solutions

Create an empty solution containing no
projects

-

Create directory for solution
[] Add to source control

Figure 2. – Add a Win32 Project
[image: image2.png]Installed Templates

Visual Basic
Visual CG#
4 Visual C++
ATL
R
General
MFC
Test
Win32
Visual F#
Other Project Types
Database
Test Projects

Name:

Location:

|.NET Framework 4

~ | sort by: | Default

Search Installed Templates

X
)

. 3 Win32 Console Application

demo_Project

c\temp\demoSolution

MFC Application

Win32 Project

Empty Project

ATL Project

MFC DLL

Windows Forms Application

CLR Console Application

CLR Empty Project

Class Library

Custom Wizard

Makefile Project

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Type: Visual C++
A project for creating a Win32

application, console application, DLL, or

static library

Figure 3. – Select Application Settings
[image: image3.png]Win32 Application

Application Settings

Overview ‘Application type:
Application Settings (2 windows application
Cansole application
o
© static library

‘Additional options:

Empty project

‘Add common header files for:

< Previous

Finish] [Cancel

Figure 4. – Add C++ Header File
[image: image4.png]Installed Templates

4 Visual C++
ur
Code
Data
Resource
Web
Utility
Property Sheets

Name:

Location:

Test Fileh

Windows Form

C++ File (cpp)

HTML Page (htm)

Static Discovery File (disco)

Header File (h)

Midl File (idI)

Resource File (rc)

Server Response File (srf)

Module-Definition File (def)

Registration Script (rgs)

MEFC Ribbon Definition XML File

Property Sheet (props)

c\temp\demoSolution\demo_Project\

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

Search Installed Templates

Type: Visual C++

Creates a C++ header file

Figure 5. Add C++ Implementation File
[image: image5.png]Search Installed Templates

4 Visual C++

ur Windows Form Visual C++ Type: Visual C++

Creates a file containing C++ source code

Code
Data C++ File (cpp) Visual C++

Resource
Web HTML Page (htm) Visual C++

Utility
Property Sheets i Static Discovery File (disco) Visual C++

Header File (h) Visual C++

Midl File (idI) Visual C++

Resource File (rc) Visual C++

Server Response File (srf) Visual C++

Module-Definition File (def) Visual C++

Registration Script (rgs) Visual C++

MFC Ribbon Definition XML File Visual C++

Property Sheet (.props) Visual C++

Test_ File.cop

c\temp\demoSolution\demo_Project

Figure 6. – Command Line Parameters
 [image: image6.png]Configuration: [Active(Debug)

~| Platform: [Active(Win32)

> Common Properties
4 Configuration Propertie
General
Debugging
VC++ Directories
> CfCe+
> Linker
> Manifest Tool
> XML Document Gene
> Browse Information
> Build Events
> Custom Build Step

Debugger to launch:

Local Windows Debugger

Command

Working Directory
Attach

Debugger Type
Environment
Merge Environment
SQL Debugging

§(TargetPath)
c\temp*.cpp
$(ProjectDir)
No

Auto

Yes
No

Command Arguments

The command line arguments to pass to the application.

Figure 7. – Add Preprocessor Definitions
[image: image7.png]Configuration: [Active(Debug) ~| Platform: [Active(Win32) ~] [configuration Manager..

> Common Properties rep or Definitions WIN32; DEBUG; CONSOLE:TEST| TEST FILE) =
4 Configuration Propertie{ | Undefine Preprocessor Definitions
General Undefine All Preprocessor Definitions No
Debugging Ignore Standard Include Paths. No
VC++ Directories Preprocess to a File No
4C/Ce+ Preprocess Suppress Line Numbers No

General Keep Comments No
Optimization

Preprocessor
Code Generation
Language
Precompiled Hea
Output Files
Browse Informatic|
Advanced
Command Line

> Linker

> Manifest Tool

> XML Document Gene

> Browse Information

> Build Events

> Custom Build Step

Preprocessor Definitions
Defines a preprocessing symbols for your source file.

Figure 8. – Add Linker Input to Expand Wild Cards on Command Line
 [image: image8.png]Configuration: [Active(Debug) ~| Platform: [Active(Win32) ~] [configuration Manager..

> Common Properties ibjoleaut32.ibuuid.ibodbe32.libodbeep32 libisetargv.obf ¥
4 Configuration Propertie| | Ignore All Default Libraries

General Ignore Specific Default Libraries

Debugging Module Definition File

VC++ Directories Add Module to Assembly

> C/C++ Embed Managed Resource File
4 Linker

General

Force Symbol References
Delay Loaded Dils

doput Assembly Link Resource
Manifest File

Debugging
System
Optimization
Embedded IDL
Advanced
Command Line

> Manifest Tool

> XML Document Gene

> Browse Information

> Build Events

> Custom Build Step

Additional Dependencies
Specifies additional items to add to the link command line [i.e. kemnel32.lib]

Figure 9. – Runtime Library and Exceptions

[image: image9.png]demo_Project P

Configuration: [Active(Debug) ~| Pratform: [Activewin32) ~] [canfiguration Manager..
> Common Properties Enable String Pooling
4 Configuration Propertie| | Enable Minimal Rebuild Yes (/Gm)
General Enable C++ Exceptions Yes (/EHsc)
Debugging Smaller Type Check No
VC++ Directories Basic Runtime Checks Both (/RTCL, equiv. to /RTCsu) (/RTC1)
4 C/C++ Runtime Library Multi-threaded Debug DLL (/MDd)
General Struct Member Alignment Default
Optimization Buffer Security Check Yes (/GS)
Preprocessor Enable Function-Level Linking
[Code Generation]| | 11 Enhanced Instruction et Not Set
:e’g';ﬁed Head Floating Point Model Precise (/fpiprecise)
Enable Floating Point Exceptions
Output Files Create Hotpatchable Image
Browse Informatic
Advanced
Command Line
> Linker
> Manifest Tool

> XML Document Gene
> Browse Information
> Build Events

> Custom Build Step

Enable String Pooling

Enables the compiler to create a single read-only copy of identical strings in the program image and in memory dur...

Figure 10. – Tabs and Spaces
Select a tab size to suit your preferences for indenting sizes. It is a good idea to select Insert spaces. The reason for that is, almost every printer on earth will, by default, print tabs as 8 spaces, which will make your printed listings look peculiar unless you use spaces instead of tabs.

Note that, if you print from the idea, the IDE commands the printer to use correct spacing, but if you print with any other program, or from the command line, you will get the printer defaults.

[image: image10.png]Options

> Source Control <] Indenting
4 Text Editor © None
General p— The indentation settings for individual text
File Extension 2B formats conflict with each other.
4 All Languages © smart
General
Tabs Tab
 Basic Tab size: 2
e
P e Indent size: 2
> css
id © Insert spaces
> HIML)
> JScript () Keep tabs
> pL/SQL
> Plain Text . . .
Note: This page sets options for all languages. To change options for only
> SQLCE one language, select the desired language from the tree on the left.
> Transact-SQL
> T-SQL90

> XAML

Command Line argument

Test Stub Definition

Class view

Solution view

Causes wild cards on command line to be expanded

If you use exceptions and this is not enabled you will get lots of warnings.

Need to pick the appropriate version of run-time library to load. Default is shown, above, and that is usually what you want.

