Ultimate Extensible Distributed System

Jim Fawcett CSE681 - Software Modeling & Analysis Fall 2010

Nota Bene

- These notes I used in CSE686 Internet Programming, a course I no longer teach.
- They are out of date, but much of the material is still relevant.

Your Assignment

- Your supervisor just handed you a spec for implementation of:
 - Distributed system with universal connectability using sockets
 - Can process an open-ended variety of documents
 - Expandable by 5 orders of magnitude in ten years
 - Can add new tools easily
 - Supports 50 million users a day without gridlock.
- You say NO WAY!
- Well, maybe.

Introduction to Internet and Web

This presentation addresses two questions:

- Is that possible?
 - Well yes look over there the web!
- How was it accomplished?
 - Processing structure and protocols
 - Programming tools
 - Web servers and browsers that host:
 - Script languages, e.g., Javascript, VBScript, Perl, Ruby, ...
 - Programming languages: Visual Basic, Java, C++, C#, ...
 - And, of course, some very smart people

- Introduction to the Internet and Web
- Internet Design Principles
- Internet and Web History
- Web Technologies
- Pinging Various URLs
- Web Processing Models
- Programming The Web
- Extending The Web
- People in the Web

Goals:

- Build distributed system to share documents.
- Support expansion by 5 orders of magnitude in ten years - 200 hosts to 500 million hosts.
- Manage communication between hundreds of millions of machines every day without collapsing from congestion.
- Provide for arbitrary extensions:
 - From static text documents to graphics, dynamic content, streaming video, programmable interfaces, voice, ...

Original Goals of the Web

- Universal readership
 - When content is available it should be accessible from any type of computer, anywhere.
- Interconnecting all things
 - Hypertext links everywhere.
 - Simple authoring

Internet Design Principles

- Goal is connectivity
- Achieved with Internet Protocol (IP)
 - Stateless so survives failures no need to backup
- Made scalable with end-to-end intelligence
 - Transport Control Protocol (TCP)
 - Sender does not send until receipt is acknowledged
 - Amount sent is based on receiver's current available buffer size - so receiver won't be flooded.
 - Be strict when sending and tolerant when receiving
- Protocol Specific Packet Headers
- Internet Design
- Robustness and the Internet

Web Design Principles

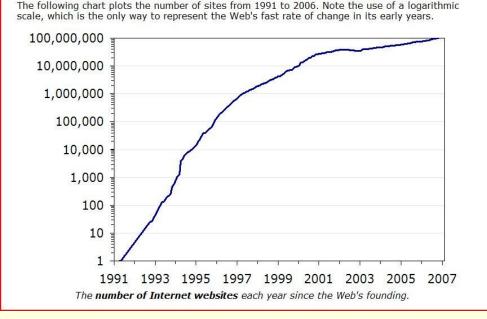
- Universal
- Decentralized
- Modular
- Extensible
- Scalable
- Accessible
- Forward/backwards compatibility
- Architecture of World Wide Web

Basic Concepts

- Client/Server Model
- Universal Addressing
 TCP/IP, DNS
- Search Engines
- Universal Protocols
 - HTTP, URLS, HTML, FTP
- Format Negotiation through HTTP
- Hypertext \rightarrow Hypermedia via HTML \rightarrow XHTML
 - Support for text, images, sound, and scripting

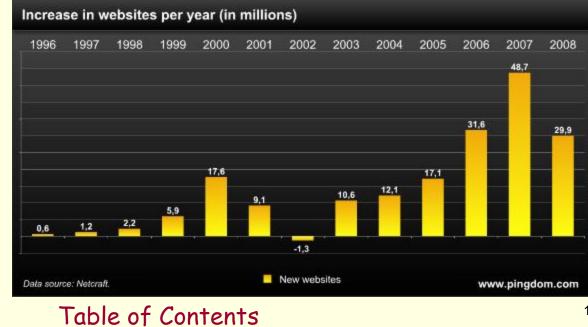
Internet and Web History

Internet History


- 1961 First paper on packet-switching theory, Kleinrock, MIT
- 1969 ARPANet goes on line
 - Four hosts, each connected to at least two others
- 1974 TCP/IP, Berkley Sockets invented
- 1983 TCP/IP becomes only official protocol
- 1983 Name server developed at University of Wisconsin.
- 1984 Work begins on NSFNET
- 1990 ARPANET shutdown and dismantled
- 1990 ANSNET takes over NSFNET
 - Non-profit organization MERIT, MCI, IBM
 - Starts commercialization of the internet
- 1995 NSFNET backbone retired
- 1998 DNS transferred from Dept of Commerce to ICANN
- 2000 Web size estimates surpass 1 billion indexable pages

Web History

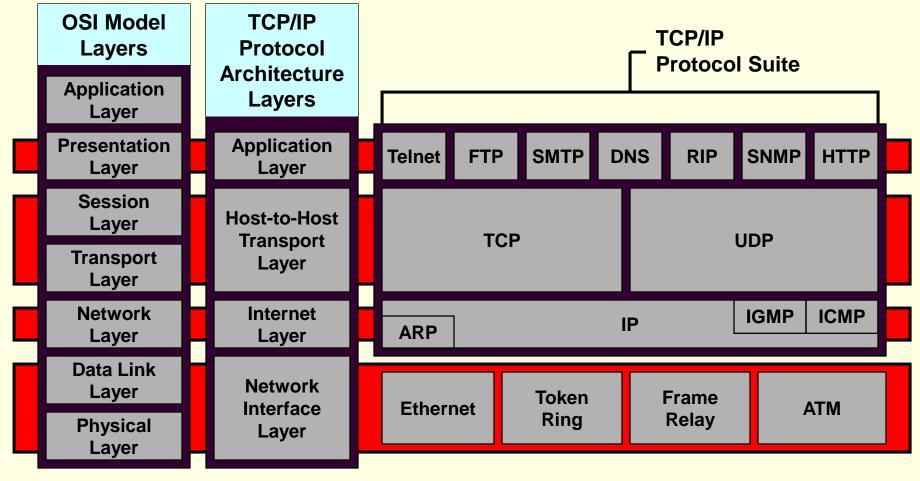
- 1990 World Wide Web project
 - Tim Berners-Lee starts project at CERN
 - Demonstrates browser/editor accessing hypertext files
 - HTTP 0.9 defined, supports only hypertext, linked to port 80
- 1991 first web server outside Europe
 - CERN releases WWW, installed at SLAC
- 1992 HTTP 1.0, supports images, scripts as well
- 1993 Growth phase
- 1994 CERN and MIT agree to set up WWW Consortium
- 1999 HTTP 1.1, supports open ended extensions


Web Growth Phase - 1993

- InterNIC created to provide registration services
- WWW (port 80 HTTP) traffic is 1% of NSFNET traffic
- 200 Known HTTP servers
- Article on WWW in New York Times
- Mosaic first release

Web Growth

http://www.useit.com/alertbox /web-growth.html


http://www.techcrunch .com/2009/05/08/isthe-growth-of-theweb-slowing-down-orjust-taking-a-breather/

Web Technologies

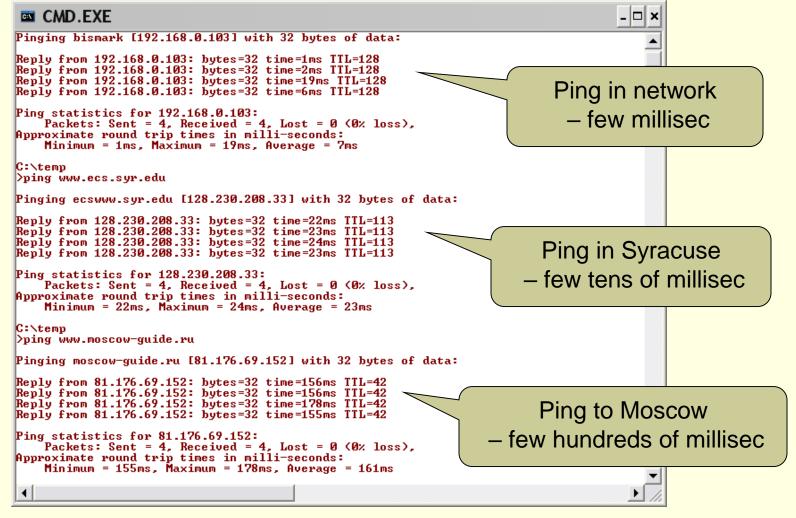
Tools: Servers on the Internet

- HTTP HyperText Transport Protocol
 - JSP and ASP add dynamic content
 - Web Services add RPC program interface
- FTP File Transport Protocol
- Gopher Text and Menus
- NNTP Network News Transfer Protocol
- DNS Distributed Name Service
- telnet log into a remote computer
- New tools if they use TCP/IP just add them

Network Protocols

Networks - Transport Layer

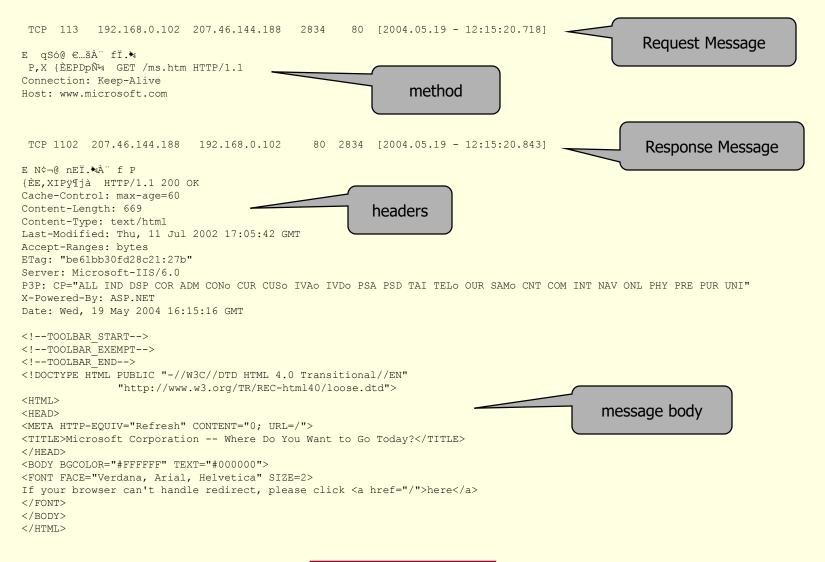
- Provides efficient, reliable and cost-effective service
- Uses Sockets programming model
- Ports identify application
 - Well-known ports identify standard services (e.g. HTTP uses port 80, SMTP uses port 25)
- Transmission Control Protocol (TCP)
 Provides reliable, connection-oriented byte stream
- UDP


Connectionless, efficient, unreliable

<u>Table of Contents</u>

Communication Between Networks

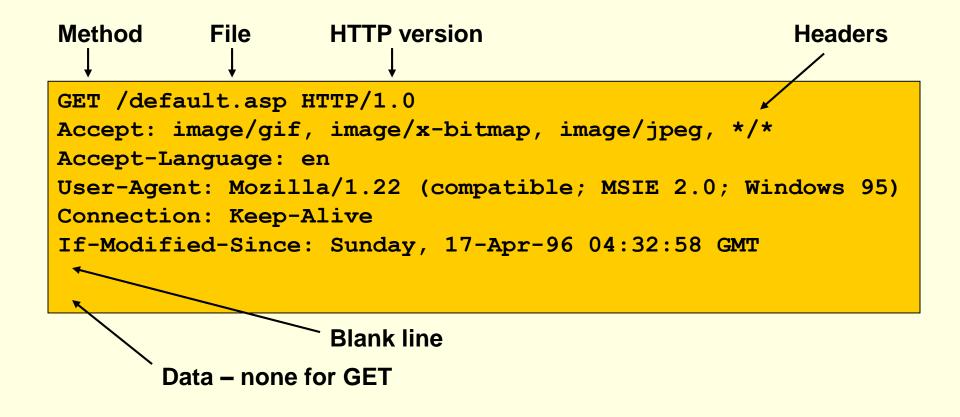
- Internet Protocol (IP)
 - Routable, connectionless datagram delivery
 - Specifies source and destination
 - Does not guarantee reliable delivery
 - Large message may be broken into many datagrams, not guaranteed to arrive in the order sent
- Transport Control Protocol (TCP)
 - Reliable stream transport service
 - Datagrams are delivered to the receiving application in the order sent
 - Error control is provided to improve reliability


Pinging Various URLs

Tracing HTTP Message with Tracert

trac	ert i	4646	moscov	J-cui	ide . r				
				. 30			-		
racing route to moscow-guide.ru [81.176.69.152] — —									
ver	a max	cimu	m of 3	30 h	ops:				
4	1	ms	1	ms	4	ms	192.168.0.1		
1	- 5	ms MS	- 5	MS	- 7		10.101.208.1		
5	- 8	ms MS	10				fas3-2.syrcnybsh-rtr01.nyroc.rr.com [24.92.227.138]		
3	2	ms MS	- 10	MS			srp2-0.syrcnyspp-rtr04.nyroc.rr.com [24.92.227.136]		
2	- 8	ms MS	- 2	MS		ms MS	srp10-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.227.217]		
2	2	MS		MS	8	ms MS	srp8-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.224.137]		
234567	- 11	ms MS	- 11	MS	11	ms MS	son0-1-1.albynywav-rtr03.nyroc.rr.com [24.92.224.170]		
6	13	ms MS	12	MS	11	ms MS	pop1-alb-P7-0.atdn.net [66.185.133.229]		
8 9	14	ms MS	12	MS	11	ms ms	bb1-alb-P0-1.atdn.net [66.185.148.100]		
10	18	ms MS	15	MS	19	ms MS	bb2-nye-P3-0.atdn.net [66.185.152.71]		
11	16	ms MS	29	MS	16	ms MS	pop1-nye-P1-0.atdn.net [66.185.152.71]		
12	16	ms MS	15	MS	15	ms ms	0.so-2-0-0.BR1.NYC4.ALTER.NET [204.255.173.33]		
13	17	MS	15	MS	15	MS	0.so-6-0-0.XL1.NYC4.ALTER.NET [152.63.21.78]		
14	16		18	MS	15	ms ms	0.so-4-0-0.TL1.NYC9.ALTER.NET [152.63.0.173]		
15	*	115	18	MS	16	ms ms	0.so-7-0-0.IL1.NYC9.ALTER.NET [152.63.9.245]		
16	15	ms	40	MS	15	ms ms	0.so-1-0-0.IR1.NYC12.ALTER.NET [152.63.23.62]		
17	- 95	MS	94	MS	95	MS	so-0-0-0.TR2.LND9.ALTER.NET [146.188.15.26]		
18	- 96	MS	- 97	MS	- 94	MS	so-6-0-0.XR1.LND9.ALTER.NET [146.188.15.42]		
19	- 94	MS	- 94	MS	- 94	MS	POS3-0.cr1.lnd10.gbb.uk.uu.net [158.43.150.97]		
20	- 99	MS	98	MS	- 99	MS	pos3-0.cr1.lnd8.gbb.uk.uu.net [158.43.253.142]		
21	104		- 98	MS	- <u> </u>	MS	ge0-0.gw1.lnd8.gbb.uk.uu.net [158.43.188.25]		
22	149	MS	149	MS	150		rtcomm-gw.customer.ALTER.NET [146.188.66.50]		
23	156		156	MS	156		msk-dsr7-ge1-0-0.rt-comm.ru [217.106.7.200]		
24	156		159	MS	155		81.176.69.152		
	200				200				
race	com	olet	e.						

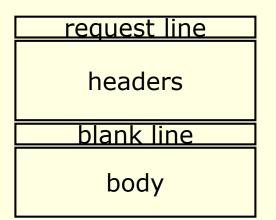
HTTP Messages as seen by packet sniffer

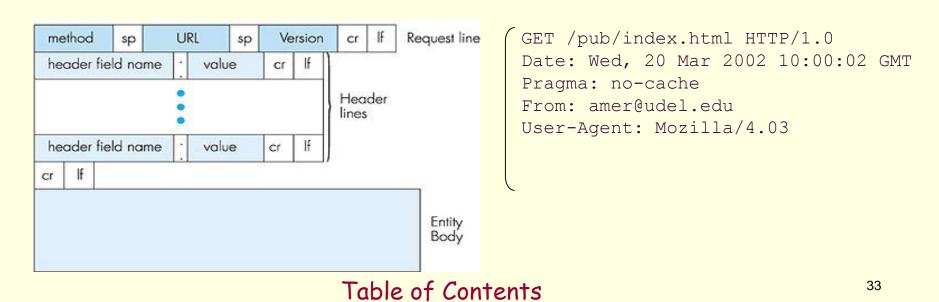

Typical HTTP Transaction

- Client browser finds a machine address from an internet Domain Name Server (DNS).
- Client and Server open TCP/IP socket connection.
- Server waits for a request.
- Browser sends a verb and an object:
 - GET XYZ.HTM or POST form
 - If there is an error server can send back an HTMLbased explanation.
- Server applies headers to a returned HTML file and delivers to browser.
- Client and Server close connection.
 - It is possible for the client to request the connection stay open with HTTP 1.1.

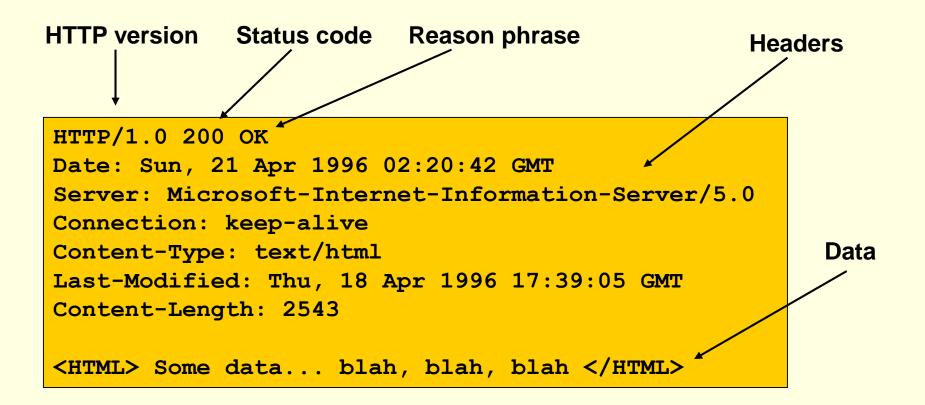
HTTP Methods

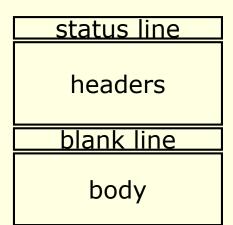
- GET request-URI HTTP/1.1
 - Retrieve entity specified in request-URI as body of response message
- POST request-URI HTTP/1.1
 - Sends data in message body to the entity specified in request-URI
- PUT request-URI HTTP/1.1
 - Sends entity in message body to become newly created entity specified by request-URI
- HEAD request-URI HTTP/1.1
 - Same as GET except the server does not send specified entity in response message
- DELETE request-URI HTTP/1.1
 - Request to delete entity specified in request-URI.
- TRACE request-URI HTTP/1.1
 - Request for each host node to report back

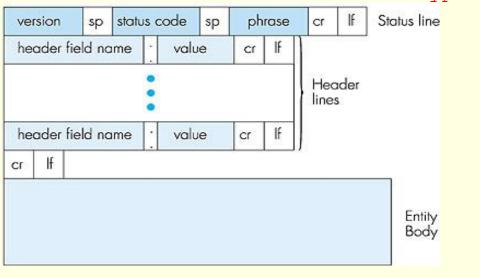

HTTP Request


Multipurpose Internet Mail Extensions (MIME) skip to HTTP Response

- Defines types of data/documents
 - text/plain
 - text/html
 - image/gif
 - image/jpeg
 - audio/x-pn-realaudio
 - audio/x-ms-wma
 - video/x-ms-asf
 - application/octet-stream


Request Message


request methods: DELETE, GET, HEAD, POST, PUT, TRACE


HTTP Response skip to Programming the Web

Response Message

HTTP/1.1 200 OK Date: Tue, 08 Oct 2002 00:31:35 GMT Server: Apache/1.3.27 tomcat/1.0 Last-Modified: 70ct2002 23:40:01 GMT ETag: "20f-6c4b-3da21b51" Accept-Ranges: bytes Content-Length: 27723 Keep-Alive: timeout=5, max=300 Connection: Keep-Alive Content-Type: text/html

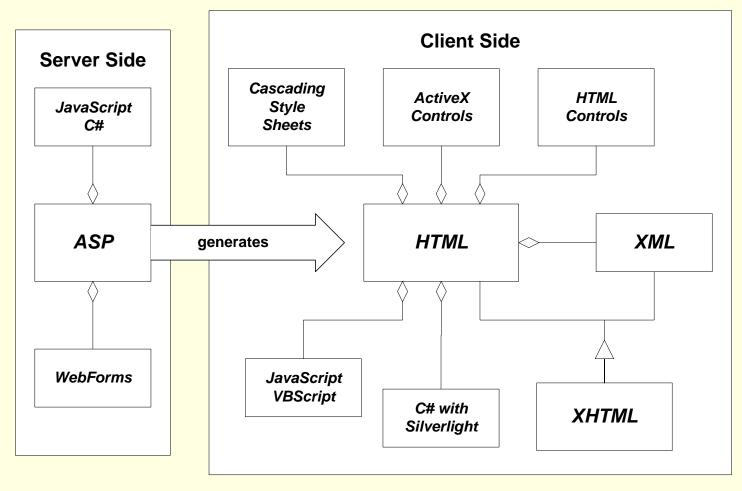
Status Codes

200	OK	Classes:		
201	Created	000001		
202	Accepted	1xx: Informational		
204	No Content			
301	Moved Permanently	2xx: Success		
302	Moved Temporarily			
304	Not Modified			
400	Bad Request	3xx: Redirection		
401	Unauthorized	4xx: Client Error		
403	Forbidden			
404	Not Found	5xx: Server Error		
500	Internal Server Error			
501	Not Implemented			
502	Bad Gateway			
503	Service Unavailable			

- not used, reserved for future
 - action was successfully received, understood, and accepted
 - further action needed to complete request
 - request contains bad syntax or cannot be fulfilled
 - server failed to fulfill an apparently valid request

Programming The Web

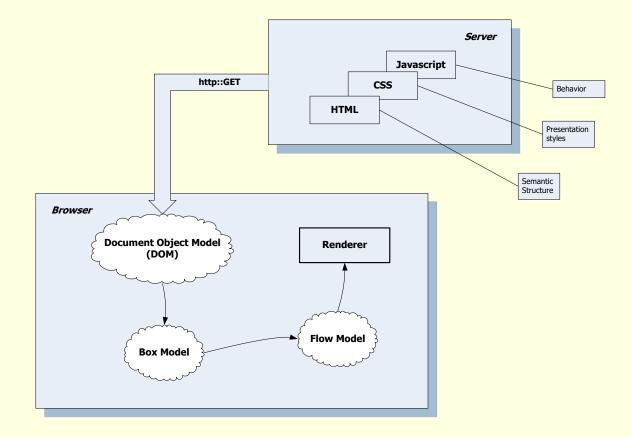
Web Programming Model

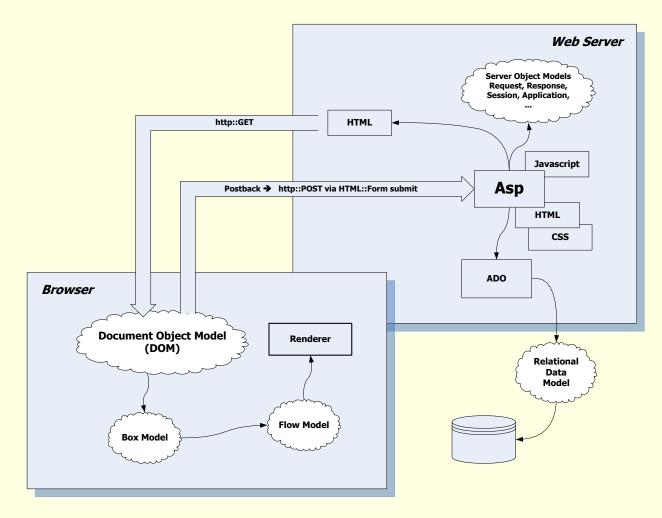

Packaged functionality

- Web server supports default and user supplied controls
- Dynamic content display
 - ASP, JSP generates HTML using server data
 - Browser interprets client side scripts
- Machine-to-Machine
 - Web services provide RPC interface

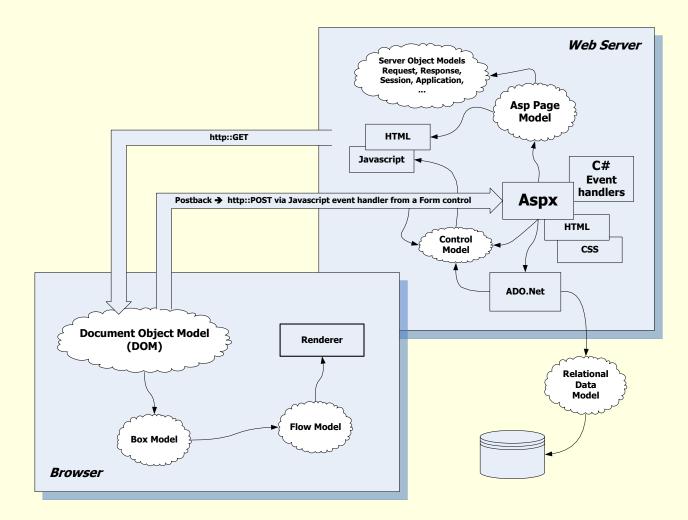
Programming the Web

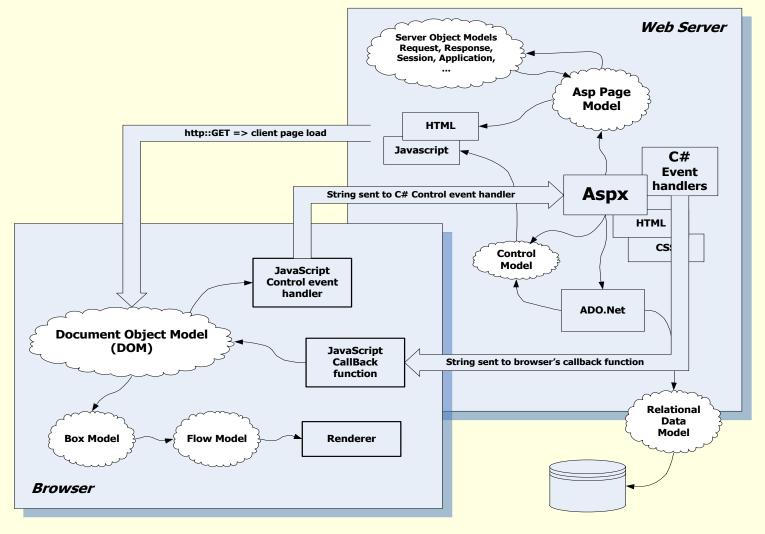
- Client-Side Programming
 - JavaScript
 - Can modify html document using scripts sent from server and interpreted by client.
 - Silverlight uses C# in embedded CLR in Browser plug-in
 - .Net controls, Java applets need permissions
- Server-Side Programming
 - ASP script, C# code-behind
 - Server components
 - Session, Application, ADO, FileSystem, ...
 - Web controls used on ASPX pages
 - Web services


Web Programming - Language Model


Programming the Web Server-Side Code

- What is server-side code?
 - Software that runs on the server, not the client
 - Receives input from
 - URL parameters
 - HTML form data
 - Cookies
 - HTTP headers
 - Can access server-side databases, e-mail servers, files, Web Services, etc.
 - Dynamically builds a custom HTML response for a client


Traditional HTML Serving Model


ASP Dynamic Serving Model

ASP.NET Serving Model

Asp.Net Ajax Serving Model

Programming the Web Server-Side Code

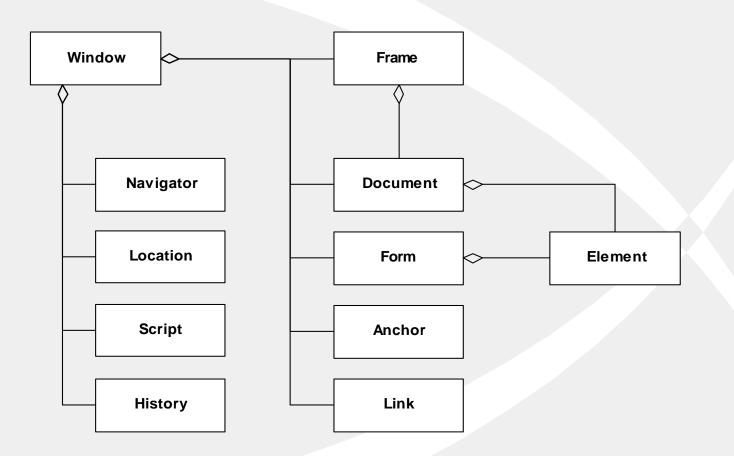
- Why server-side code?
 - Accessibility
 - You can reach the Internet from any browser, any device, any time, anywhere
 - Manageability
 - Does not require distribution of application code
 - Easy to change code
 - Security
 - Source code is not exposed
 - Once user is authenticated, can only allow certain actions
 - Scalability
 - Web-based 3-tier architecture can scale out

Three Tier Architecture

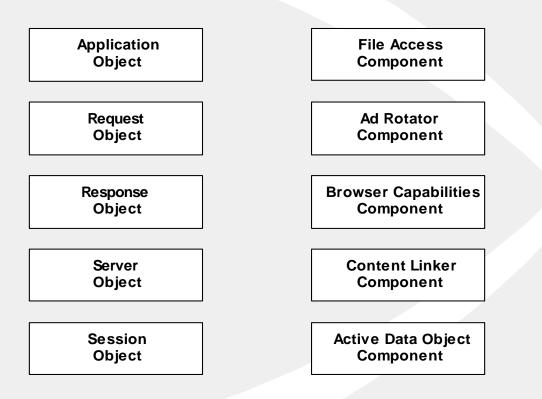
Client Tier

- Presentation layer
- Client UI, client-side scripts, client specific application logic
- Server Tier
 - Application logic, server-side scripts, form handling, data requests
- Data Tier
 - Data storage and access

Displaying ActiveX Controls on a Web Page


Here is an example of an object tag and attributes for inserting a control on a Web page.

<OBJECT CLASSID="clsid:FC25B780-75BE-11CF-8B01-444553540000" CODEBASE="/ie/download/activex/iechart.ocx" ID=chart1 WIDTH=400 HEIGHT=200 ALIGN=center HSPACE=0 VSPACE=0


>

<PARAM NAME="BackColor" value="#ffffff"> <PARAM NAME="ForeColor" value="#0000ff"> <PARAM NAME="url" VALUE="/ie/controls/chart/mychart.txt"> </OBJECT> Run dirControl Object - Microsoft Internet Explorer _ 8 × File Edit View Favorites Tools Help 🖛 Back 🗸 🔿 🖌 🙆 🚮 🛛 🔕 Search 👔 Favorites 🛛 🖓 History 🛛 🛃 🚍 🚍 🔗 Go 🛛 Links 🎽 Address C:\SU\cse791D0\C0DE\dirControl\dirControl.html Using dirControl Object in VBScript This HTML page contains a VBScript segment that uses the dirControl object. VBScript can communicate only with an IDispatch interface. 🗾 dirControl.html - Notepad - 🗆 × File Edit Format Help Directory Contents: <HTML> <HEAD><TITLE>Run dirControl Object</TITLE> <style type="text/css"> <!-- Cascading Style Sheet again --> . . a:link {color: blue} <!-- set link colors ATLclient.cpp --> a:visited {color: darkblue} client a:active {color: darkorange} CurrDir.cpp body { color: darkred; background: yellow; } <!-- page colors --> CurrDir.h body { margin-left: 10%; margin-right: 10%; } <!-- page margins --> <!-- pos of heading --> marqin-left: -6%; CurrDir.rgs h1 { marqin-left: -3%: } h2 <!-- pos smaller one --> Debug </style> dirControl.aps </HEAD> dirControl.cpp <BODY> dirControl.def <center> <H1>Using dirControl Object in VBScript</H1> dirControl.dsp This HTML page contains a VBScript segment that uses the dirControl object. dirControl.dsw
 dirControl.h VBScript can communicate only with an IDispatch interface. dirControl.html </center> <OBJECT ID="dirControl" dirControl.idl CLASSID="CLSID:B5F2D436-8933-4D7E-98D6-E93EA600B42D"> dirControl.ncb </OBJECT> dirControl.opt dirControl.plg <SCRIPT LANGUAGE="VBScript"> dirControl.SetCurrDir("c:\su\cse791do\code\dirControl")
Document.writeln "" dirControl.rc dirControl.tlb Document.write "Directory Contents:" dirControlps.def Document.Write dirControl.GetDirContents() dirControlps.mk </SCRIPT> dirControl i.c </BODY> dirControl p.c </HTML> dlldata.c fileInfo FILEINFO.CPP 🖳 My Computer 🥭 Done | 🗹 🏈 🗊 💽 | 🔍 C. 🗐 s., Tod..., clas..., 题 ... 🎇 c. 🗐 D. 📴 M. 📿 L. 🛷 M. 🔍 C. 📿 L. 📿 L. 🔍 C. 🥙 R. 📿 d. 送 🍕 🔣 😫 Խ 😻 🇞 🛛 4:20 PM 🊯 Start 60 Table of Contents

Browser Object Model

Server Object Model

Security Issues

Threats

- Data integrity
 - code that deletes or modifies data
- Privacy
 - code that copies confidential data and makes it available to others
- Denial of service
 - code that consumes all of CPU time or disk memory.
- Elevation of privilege
 - Code that attempts to gain administrative access

Protections

Least privilege rule:

- Use the technology with the fewest capabilities that gets the job done.
- Digital signing
 - Who are you?
- Security zones
 - Trusted and untrusted sites
- Secure sockets layer (SSL)
- Transport layer security (TLS)
- Encryption

Extending The Web

Current Extensions

- Describe data with XML
- Extend HTML into XHTML
- Separate style from content with CSS
 Cascading style sheets
 - Can be included from a file to give uniform style of pages and documents
- Document Object Model DOM
 - Defines a scripting interface

The Extensible Web

Some recent W3C Technologies
 www.w3.org/2003/Talks/0521-

BudapestW3CTrack-IH/6.html

www.w3.org/2003/Talks/0521-BudapestW3CTrack-IH/23.html

Areas of Exploration

- XML
- TVWeb
- MathML
- RDF

Accessibility

- Universal Data Services
- merger of features
- Mathematical Markup Language
- Resource Description Framework
- for the handicapped
- SMIL Synchronized Multimedia Integration Language
- Internationalization
- Speech

People in the Web

Web Development

- Web server, HTTP
 - Tim Berners-Lee, Robert Cailiau
- Mosaic web browser
 - Marc Andreessen

Internet

- TCP/IP protocol
 - Vinton Cerf, Robert Kahn
- Internet flow control

Larry Roberts

References

- World Wide Web Consortium
 - Excellent Tutorial Papers, standards
- Source of several slides used here
 - Mark Sapposnek
- webdev.htm
 - Tutorials
 - Web developer's links
 - Web designer's links
 - Tech details links
- XHTML Black Book, Steven Holzner, Coriolis, 2000
 - Aging but comprehensive treatment of HTML, XHTML, JavaScript
- Web Developers Virtual Library
 - More tutorials

End of Presentation