
Course Context
CSE687 – Object Oriented Design

Jim Fawcett, January 19, 2010

These notes layout a knowledge substrate on which the course is built. We will skim through each of

these context areas at the beginning of the course to get you started. We will discuss the details

throughout this course.

The purpose of CSE687 – OOD is to provide a sophisticated view of Software Design in general and

Object Oriented design in particular. But software design does not happen in a vacuum. We need the

surgical instruments that a good programming language provides to turn a design into an effective

implementation. Moreover, a programming language shapes the design techniques we use and our

ideas about design. We also need some background information about the platform:

Machine Context:

1. Application = one or more processes

2. Execution images + loaded DLLs = process

3. Threads are basis of execution

a. Each thread has its own stackframe and thread local storage

b. All threads in a process share the same address space

4. Handles – references to data structures in the OS kernel. OS API has functions that create,

manipulate, and destroy these data structures much like objects.

5. MMFs – memory mapped files used to share code and data between processes

a. Two processes can share the same MMF and so share memory

window handle

window

Layout of Processes and Threads

Process

Process Code

Heap Allocations

Thread Stack, Thread Local Storage

process handle

thread handle thread handle

Thread Stack, Thread Local Storage DLL Code

Global Memory
shared by threads, user serialized

Worker ThreadMain (UI) Thread

Other

Heaps
can be

serialized by

Windows

Default Process Heap
serialized by Windows,

used by Win32 functions

heap handle

window

window handle

heap handle

send or post

messages

only

module handle

Brush handle

Pen Handle

1

2

3

4

C

D

E

shared

B

A

3

4

2

1

A

E

shared

C

B

D

A

3

shared

D

2

Process #1
Virtual Address

Space

Physical
RAM

Page File

Memory-Mapped
File

Process #2
Virtual Address

Space

shared

Memory-Mapped Files

C++ Language Context:

1. Memory model

a. Static

i. Holds global data, static data, and code

ii. Lifetime is life of process

b. Stack – composed of stack frames, one for each thread in process

i. Scratchpad memory for function invocations and block statements

ii. Curly braces “{“ and “}” define a scope. Each scope gets its own stack frame.

iii. Lifetime is life of invocation

iv. C++ code calls constructor at declaration and calls destructor when leaving stack

frame scope

c. Heap

i. Memory resources used by application

ii. Lifetime is time between calls to new and delete

2. Compilation model

a. Preprocessor generates composite source

i. C++ source for one implementation file (.cpp)

ii. C++ source for each included header file (.h) placed at the location of the

include statement

b. Compiler generates one obj file for each compilation of an implementation file

c. Linker builds execution image (exe), dynamic link library (dll), or static library (lib) from a

set of objs. This is a process of code deposition and resolution of all inter package

references.

d. Binding – process of associating a memory address with a name in the code text

i. Values: associates name of a type with memory location sized to hold instances

ii. Functions: associates an invocation with memory location of code to execute

e. Early binding

i. Inline functions are partially compiled but code is not deposited in client code in

another package

ii. Template classes and functions are validated but no code is generated since the

type is not known until a client declares an instance.

iii. All other code is translated into object form. That has unresolved addresses for

all references outside the package (compilation unit). References inside the

package are fully resolved.

f. Late binding:

i. Object code for all inline functions is deposited at the site of the invocation.

ii. Template code is compiled and deposited for all client declarations and

invocations.

3. Computational Model

Object Oriented Design Context

1. Class is an encapsulated service

2. Class relationships

a. Strong composition (holds data member) – object contains composed object

b. Weak composition or Aggregation – object holds pointer or reference to another object

c. Inheritance – class derives from one or more base classes

i. Public inheritance supports substitution of derived types. It creates a

specialization of the base type.

ii. Public, protected, and private inheritance support sharing code and resources

defined and held by base classes

d. Using – member functions take an instance of a used type on which to operate

3. Types

a. Primitives: char, int, double, …

b. class, struct, enum

c. Qualifiers: const, static, volatile, *(pointers), &(C++ references)

d. Arrays of primitives or instances of classes or instances of structs

e. Classes and structs can hold instances or references to any of the above.

4. Templates: like text substitution at late compile time

a. Actually much deeper than that as we will see when Template Metaprogramming is

discussed.

b. Intended to have only one source for code that only depends on a specified type. That

type is not specified in the template design, but is specified when a client uses the

template.

c. Also intended to replace macros, which are a source of problems in many contexts.

5. Typedefs – type aliases

a. Used to provide universal names for template types that are unknown at template

compile time, e.g., early binding.

b. Used to provide short names for verbose template syntax

u  U

B

D

CComposition

UUses

Class Relationships

Object Relationships

client

Aggregation

client

aggregation

uses

friend

abuses

Is-A

friendfriend

using

d  D

b  B

c  C

