Relationships between C++ Classes


	Relationship
	Diagram
	Code
	Explanation

	Inheritance

D “is-a” B
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	  class D : public B { … };
	Derived class D is a specialization of the Base class B.  D inherits all the members of B except constructors

	Composition

Ownership, P is “part-of” C
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	  class C {

    …

    Private:
        P p;

  };
	Composite class C owns, or contains, a part class P.  P is created and destroyed with C.  The interface of P is visible only to C, not its clients.

	Aggregation

Ownership, P is “part-of” A
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	  class A {

    …

    Void fun()
    { P* ptrP = new P(); … }
  };
	The Aggregator class A owns a part class P.  P is created by a member function of A, and so its lifetime is strictly less than that of A.  A is expected to destroy P.

	Using

Referral: 

U uses R through a reference
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	  public class U {

    …

    public void register(R& r)
    {
        // use r

     }

  };
	A class U uses instance of class R, to which it holds a reference.  R is created by some other entity and a reference to it is passed to some member function of class U.
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