Relationships between C++ Classes

	Relationship
	Diagram
	Code
	Explanation

	Inheritance

D “is-a” B
	
[image: image1.emf]B D

	 class D : public B { … };
	Derived class D is a specialization of the Base class B. D inherits all the members of B except constructors

	Composition

Ownership, P is “part-of” C
	
[image: image2.emf]C P

	 class C {

 …

 Private:
 P p;

 };
	Composite class C owns, or contains, a part class P. P is created and destroyed with C. The interface of P is visible only to C, not its clients.

	Aggregation

Ownership, P is “part-of” A
	
[image: image3.emf]A P

	 class A {

 …

 Void fun()
 { P* ptrP = new P(); … }
 };
	The Aggregator class A owns a part class P. P is created by a member function of A, and so its lifetime is strictly less than that of A. A is expected to destroy P.

	Using

Referral:

U uses R through a reference
	
[image: image4.emf]U R

	 public class U {

 …

 public void register(R& r)
 {
 // use r

 }

 };
	A class U uses instance of class R, to which it holds a reference. R is created by some other entity and a reference to it is passed to some member function of class U.

_1218911850.vsd
C

P

-End1

1

-End2

*

_1218911984.vsd
A

P

-End1

1

-End2

*

_1218912336.vsd
U

R

_1218911558.vsd
B

D

