
CSE687 – Object Oriented Design Midterm #3 Spring 2018

CSE687 Midterm #3

Name: __________________________________ SUID: _____________

This is a closed book examination. Please place all your books on the floor beside you. You may

keep one page of notes on your desktop in addition to this exam package. All Exams will be

collected promptly at the end of the class period. Please be prepared to quickly hand in your

examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to

your desk to discuss your question. I will answer all questions about the meaning of the

wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal

weight for grading, but not all questions have the same difficulty. Therefore, it is very much to

your advantage to answer first those questions you believe to be the easiest.

///

 A good answer to a question about ideas and principles discusses the ideas and principles,

 how they will be used, and gives brief examples.

 A good answer to a code question is brief, clear code that does what is asked and very little

 else. You can discuss elaborations of the code in comments.

 I note the irony that I sometimes elaborate functionality of my code due to an over-abundance

 of enthusiasm, although that is usually done to instruct.

 Grades are based on both contents of answer and clarity of presentation. Quality of English

 grammar was not considered.

///

CSE687 – Object Oriented Design Midterm #3 Spring 2018

Box class is the complete answer

for “write all code …”

1. Write all the code for a class that wraps any C++ primitive1 to enable instances of the class to behave

like the primitive2, but, may add additional functionality. Hint: you will need constructors and

assignment operator to accept a primitive value. You will also need a cast operator to retrieve the

primitive value. Can you think of a design situation where that might be useful?

///
 // Box class – see MTCode-S18.CodeUtilities
 // - wraps primitive type in class, so it can be a base for inheritance
 // - preserves primitive syntax

 template<typename T>
 class Box
 {
 public:
 Box() : primitive_(T()) {}
 Box(const T& t) : primitive_(t) {}
 operator T&() { return primitive_; } // cast operator
 T& operator=(const T& t) { primitive_ = t; return primitive_; }
 virtual ~Box() {}
 private:
 T primitive_;
 };
 ///
 // ToXml interface - defines language for creating XML elements

 struct ToXml
 {
 virtual std::string toXml(const std::string& tag) = 0;
 virtual ~ToXml() {};
 };
 ///
 // PersistFactory<T> class
 // - wraps an instance of user-defined type, preserving semantics of user-defined type
 // - adds toXml("tag") method
 // – this is a “useful” design situation. See MTS18-Code.Utilities for details
 template<typename T>
 class PersistFactory : public T, ToXml // T can’t be primitive, but
 { // can be Boxed primitive
 public:
 PersistFactory() = default;
 PersistFactory(const T& t)
 {
 T::operator=(t);
 }
 std::string toXml(const std::string& tag)
 {
 std::ostringstream out;
 out << "<" << tag << ">" << *this << "</" << tag << ">";
 return out.str();
 }
 };
 }

1 A primitive type is a type defined by the C++ Language. Examples are int and double.
2 This is similar to boxing in C#.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

2. State the interface segregation principle (ISP). Have you applied ISP in your implementation of

Project #1?

“Clients should not be forced to depend upon interfaces they do not use”.

We have used ISP extensively in Project #1. The facilities for making queries and persisting the

NoSqlDb to XML have been segregated from the core db functionality. A client uses them only if

they need to make queries using our facilities or to persist the db. Other instances are the use of

Edit and TestClass packages. This is clearly illustrated by my answer to MT2-Q2.

Defining one interface, like IPayLoad, and changing it for different applications, is not ISP.

Note that following the Single Responsibility Principle is very likely to segregate interfaces, as

described above. However, following Interface Segregation Principle does not imply that SRP is also

used, so these two principles are not equivalent.

.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

3. Write all the code for a function that accepts a callable object and executes it. If execution throws
an exception, the thread running your method should sleep for a specified amount of time, and then
retry. It should do this for a specified number of times before returning a failure to execute.

//----< retry execution >--//
/*

 - invokes callable object co
 - if exception is thrown, retries maxCount times
 - sleeps duration milliseconds between each try
 - tricky part is returning error value, which we do with ErrorPolicy
 - this is a great demonstration of why we may need template policies
 - uses callable signature Ret Callable(Arg), useful for opening streams.
 Ret is the opened stream, arg is the fileSpec to open.

*/
template <typename Ret, typename Callable, typename Arg, typename ErrorPolicy>
Ret reTry(
 Callable co,
 Arg arg,
 ErrorPolicy ep,
 std::chrono::duration<size_t, std::milli> duration = std::chrono::milliseconds(100),
 size_t maxCount = 10
)
{
 size_t count = 0;
 while (true)
 {
 try
 {
 Ret ret = co(arg);
 std::cout << "\n operation successful";
 return ret;
 }
 catch (...)
 {
 if (++count < maxCount)
 {
 std::cout << "\n operation failed - retrying";
 std::this_thread::sleep_for(duration);
 continue;
 }
 }
 std::cout << "\n operation failed";
 Ret ret; // didn’t get callable’s return so create a default
 ep.setErrorState(ret); // set ret’s error state using template policy

 //
 // This is what setErrorState does for streams:
 // std::ios* pStream = dynamic_cast<std::ios*>(&ret);
 // if (pStream != nullptr)
 // pStream->setstate(std::ios::failbit);
 //

 return ret;
 }
}

There is no requirement to use Ret, Arg,

or ErrorPolicy. See MT3Q3b code.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

4. You are preparing to design a class that may need to be extended in the future, in ways you can’t

anticipate now. How might you do that?

Here are four common ways, and one not so common way, to make our code extensible:

a. Use templates with template policies. We can modify the way a template class behaves by

substituting appropriate policy classes for different application needs. See MT3Q3, above.

b. Provide template method(s) that accept callable objects. See the Query class in MTS18-

code for an example.

c. Use inheritance and polymorphic classes. We can extend an inheritance hierarchy simply by

adding new derived classes that override base virtual functions. The parser is an

outstanding example of the flexibility afforded by the use of inheritance.

d. Use interfaces and object factories. This is an elaboration of the item, c., above. If we

implement an interface with code that compiles to a dynamic link library, then we can

extend the existing functionality by adding a new library that implements the interface and

modifying the small amount of code in the object factory to create instances needed in the

new library. See XmlElement for example.

e. Add additional interfaces and support querying from one interface for another supported

interface, as illustrated in the Object Factory demo in Lecture #12.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

5. What methods are not inherited by a derived class from its base class. How does the C++ language

ensure that Liskov Substitution works for derived class pointers and references in code that may use

those methods.

The constructors (copy and move), assignment operators (copy and move), and destructors used in

the derived class are not inherited from the base by derived classes3. However, the compiler will

generate those operations, as follows:

a. A default constructor will be generated only if no constructors are declared.

Copy constructors will always be generated, if needed and not declared.

b. Move constructors will only be generated if no copy operations, assignment operations, and

no destructor are defined.

c. Copy assignment will always be generated, if needed and not declared.

d. Move assignment will only be generated if no copy operations, assignment operations, and

no destructor are defined.

e. A destructor will always be generated, if not declared.

The compiler generated operations simply apply the operation to each of their bases and data

members. These will be correct if each of the bases and members have correct construction,

assignment, and destruction semantics4.

Since all other methods used by the derived class are inherited5, any call made using a base

reference or pointer can be made on a derived reference or pointer. That would not be the case if

the compiler did not generate those methods.

Note that “all other”, above includes non-virtual and private methods of the base. Yup, they are

inherited. We demonstrated that with the Non-Virtual Interface Principle demo in Lecture #10.

3 Technically ALL methods are inherited, but constructors, assignment operators, and destructor, USED by the
derived class are not inherited. The inherited assignment is always hidden by explicitly defined or compiler
generated assignment operators, but they can, and often do, explicitly invoke the base operations. All other
operators are inherited as well. Similarly, the derived constructors often explicitly invoke the inherited base
constructors to implement their operations.
4 In is incorrect to say that the compiler generated functions are shallow. They simply delegate to the base and
member operations, which, if needed and correct, are deep.
5 So EVERY method of the base class is present in the derived class, either by inheritance or by compiler
generation. That, of course, can be broken by using =delete in the derived class and not in the base for compiler
generated methods.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

6. What are template policies and template traits? Have you used them in your implementation of

Project #1?

A template policy is a template parameter6 that is used to modify the operation of a template class,

e.g., it does not replace the primary functioning of instances of the class, but only modifies how they

carry out their operations. See the answer to question 3 for an example. You could also argue that

the parameter of the template method in Query class used to accept callable objects is a policy, e.g.,

a policy that modifies Query instances to support user-defined query operations.

A trait is an alias for a template parameter type that provides an immutable name for that type,

regardless of how it is instantiated by an application. Traits allow us to write code in a template

function or class that depends on the specific type of a template parameter without knowing how

the application will instantiate it. The DbCore<P>::iterator, from Project #1, is an example.

6 A template policy is almost never the primary template parameter. I would not classify PayLoad as a template
policy in the NoSqlDb classes.

CSE687 – Object Oriented Design Midterm #3 Spring 2018

7. How can you safely retrieve a value computed by a C++11 thread?

There are two common ways to do that. First, and preferred, is to use std::async which returns a
std::future with the result. Second, you can pass a C++ std::thread an argument by reference, then,
after joining, access the value of the argument, assuming the thread’s function stores its result in
the reference argument.

size_t theFirstMeaningOfLife()
{
 std::cout << "\n The meaning of life: ";
 for (size_t i = 0; i < 5; ++i)
 {
 std::this_thread::sleep_for(std::chrono::milliseconds(500));
 std::cout << "thinking ... ";
 }
 return 42;
}

void theSecondMeaningOfLife(size_t& answer)
{
 std::cout << "\n The meaning of life: ";
 for (size_t i = 0; i < 5; ++i)
 {
 std::this_thread::sleep_for(std::chrono::milliseconds(300));
 std::cout << "thinking ... ";
 }
 answer = 42;
}

int main()
{
 std::cout << "\n MT3Q7 - Getting a std::thread result";
 std::cout << "\n ======================================\n";

 // async with future is thread safe by design
 std::future<size_t> fut = std::async(theFirstMeaningOfLife);
 std::cout << "\n the first meaning of life is: " << fut.get();
 std::cout << "\n";

 // for thread safety, must join before accessing ref value
 size_t mol;
 std::thread t(theSecondMeaningOfLife, std::ref(mol));
 t.join();
 std::cout << "\n the second meaning of life is: " << mol;

 // prefer the first method
 std::cout << "\n\n";
 return 0;
}

You could also use a callback to do something application specific with the result, but that isn’t

directly retrieving the computed result, as the child thread runs the callback .

No code is required for this question.

