CSE687 – Object Design, Spring 2007

 Project #1 Notes

Detecting Data Declarations – lots of special cases
double d;

int x[] = { 0, 1, 2, 3, 4 };

void fun(const U& u, int y) { … }

Widget* CreateWidget();

void(*fptr)(short y);
const volatile long int z;

Widget* pW = &myWidget;

Widget& rW = *new Widget;

struct { char a; double d; } myStruct = { ‘z’, 3.1415927 };

class { … } myClass;

Reduction algorithm – part A:

For every semiExpression ending in ;

1. throw away an initializer assignment and everything to its right.
2. remove all qualifiers, e.g., short, const, register, …

3. for each item within a parenthesis pair, ending in a comma or closing parenthesis, apply the above rules, if you need argument declarations.

4. throw away the parentheses and everything outside them.

5. throw away all *, &, [, and] punctuators.

6. If you are left with two tokens, the second is the name of a declared datum.

Reduction algorithm – part B:

For every semiExpression ending in {, find the function definitions, as described in class. That eliminates if(…) {…}, switch(…) {…}, etc. Then:

1. for each item within a parenthesis pair, ending in a comma or closing parenthesis, apply the above rules.

2. throw away the parentheses and everything outside them.

Results of applying this reduction algorithm to the declarations at the top of the page:
double d

int x

U u
int y

short y

int z
Widget pW

Widget rW

These last two rare cases are harder to detect

struct myStruct

class myClass

One pass design or two pass design?
One pass design:

1. You must read files in inclusion order so that you see declarations of types before they are used.

2. Recursive scanner in the Parser folder does that.

Two pass design:

1. You can read files in any order.

2. You find all the types defined in any of the files on the first pass.

3. Then, you find relationships between the types on the second pass.

The two pass design seems much simpler to me.

Question:

Do you need to analyze the *.cpp implementation files?

Answer:

Yes, the only way to detect aggregation relationships is to look for data declarations for types you’ve detected as local data or as data stored on the heap.

Also, there may be private types defined in the implementation files as implementation helpers.
