
CSE687 - Object Oriented Design Spring 2015

Project #1 – XML Document Model due Thursday, Mar 19

Version 0.0

 Note: This document is still under construction

Purpose:
This project requires you to develop an XML parsing facility that reads XML strings or text files, builds a Document object that
can be queried for information about the XML contents, supports programmatic modification of the Document, and can write
the revisions to another XML string or file. The project requires you to develop C++ modules to: parse the input, build a
tree-based in-memory representation of the XML called a parse tree1, and support modifications of that representation. This
facility will support read and write operations. It will also support the programmatic creation of new XML strings and files.

Requirements:
Your XML Framework:

1. Shall use standard C++2 and the standard library, compile and link from the command line, using Visual Studio 2013,

as provided in the ECS clusters and operate in the environment provided there3.

2. Shall use services of the C++ std::iostream library for all input and output to and from the user’s console and C++
operator new and delete for all dynamic memory management.

3. Shall provide a facility to read XML strings and files and build an internal parse tree representation wrapped in a
Document object. Each XML element is represented by a node in the tree. Each element may have a finite number of
attributes, e.g., name-value pairs, stored in a std::vector in the element node. The Document shall support copy,
move, and assignment operations4 as well as read and write operations to and from both strings and files.

4. Shall provide the capability to find any element based on its unique id attribute5 for all those elements that possess id
attributes. If an element with the specified id attribute is found, a pointer to the element node is returned. If no such
element exists a null pointer is returned.

5. Shall provide the capability to find a collection of elements that have a specified tag. The elements are returned with a
std::vector that holds pointers to each element that has the specified tag. If no such elements exist, an empty vector is
returned.

6. Shall provide the capability to add a child element to, and remove a child from, any element in the tree, found by id or
tag. Addition returns a pointer to the added element. Removal returns a pointer to the parent from which the element
was removed. Shall also provide the ability to add a root element to an empty document tree6.

7. Shall, given a pointer to any element, provide a facility to return a std::vector containing all the name-value attribute
pairs attached to that element. If the element has no attributes an empty std::vector is returned.

8. Shall provide the ability to add or remove an attribute name-value pair from any element node.

9. Shall provide the capability to read an XML string or file and build the corresponding internal tree representation. Shall
also provide the capability to write an XML string or file corresponding to the internal tree representation.

10. Shall provide an executive module that accepts a command line argument specifying an XML file to parse, displays the
corresponding tree structure, adds a child element with tag “testTag” to an element with id “testId” and display the
resulting tree, then remove the added element and redisplay the tree. The executive shall repeat this demonstration

1 Parse trees are not required to support balancing operations since XML is not inherently balanced.
2 This means, for example that you may not use the .Net managed extensions to C++.
3 VC++ version 12.0 is provided by Visual Studio 2013, and is available in all the ECS clusters.
4 The requirement to implement correct copy and assignment operations for a linked data structure like an XmlDocument is difficult. It is
recommended that you leave this to the end. We will take off no more that 1 point for each of these two operations.
5 This is intended to work like Microsoft .Net’s XmlDocument.GetElementbyId(string) where the input is an attribute value and the result is
an XmlElement.
6 The intent is to support construction of an XmlDocument programmatically, without starting by reading XML text from a file or string.

CSE687 - Object Oriented Design Spring 2015

starting with a literal string encoding of a suitable XML string7.

11. Your project submission shall be uploaded in a zip file archive, including two batch files named compile.bat and run.bat
that compile your project and run it using appropriate command line arguments. Please also include a Visual Studio
solution that when run demonstrates you meet these requirements8.

Note that there is no requirement to provide a graphical user interface. If you do so, you should also provide a command
line interface, as required in #10. Please demonstrate that you meet all of the requirements, stated above.

7 This requirement asks you to demonstrate reading XML from a string as well as from a file.
8 This implies that you are required to demonstrate programmatically that you meet all these requirements. You can do that by having your
executive execute a series of steps, each of which shows that you meet a requirement and the entire sequence demonstrates you meet all
of them.

