Running Visual C++, Version 6.0

1. Creating a new workspace and project:

· Click File/New/Project to get a tabbed dialog box with project tab selected.

· Enter a workspace location by typing or browsing (if the path you type does not exist it will be created).

· Enter a name for your project (will reside in a subdirectory in your workspace by default – change by editing the location).

· Check Create new workspace (or you can add to current workspace
 if you have one open).

· Select Win32 Console Application for projects not using windows GUI or COM
.
· Click OK

2. Creating a new file:

· Click on File/New/Files to get a tabbed dialog box with files tab selected.

· Check add to project

· Enter a file name or browse.

· Select either “C++ Source File” or “C/C++ Header File.

· Click OK.

· Enter source code in the window and click File/Save.
3. Adding an existing file to the project:

· Click on Project/Add to Project/Files to get a file manager window.

· Browse through directories until you find the file you want.

· Select it and click OK

4. Compiling and Linking:

· Click Build/Build or hit F7 key

· Warnings and errors are shown in the bottom window. Fix these and rebuild.

5. You can build and run by clicking on the “!” symbol on the build toolbar.
6. Running the result of a build:

7. Click Build/Execute or depress Ctrl F5

· Enter command line parameters before running:

· Click Project/Settings to get a tabbed dialog box.

· Click on Debug tab and enter Program arguments for the command line

8. Click OK

· Enter define definitions before running:

· Click Project/Settings to get a tabbed dialog box.

· Click on C/C++ tab

· Add to existing Preprocessor definitions by typing a comma and your definitions

9. Click OK

· Debugging:

· Click on Tools/Customize to get a tabbed dialog box. Select toolbars and check Debug (you should only need to do this once)

· Click on Build/Start Debug/step into or depress F11

· Single step by over, through, or out of, by clicking on buttons on the floating debug menu. You can figure out what each of the icons means by letting the cursor rest for a moment on an icon. A tool tip will pop up with a short description of the resulting action.

· Add watches by clicking on the eyeglasses icon.

10. Add breakpoints by clicking on the hand icon on the floating debug menu.

11. Using Help:

· Click Help/Search to get a tabbed dialog box accepting either a search string or a query.

· Help files are hypertext and you can usually find what you want with some link following.

Running Borland C++, Version 5.0

1. Creating a new workspace and project:

· Click File/New/Project to get a form with project tab selected as default

· Enter a path and name for your project (Note: must be on the N: drive if you are running in Neptune cluster).

· Select Application [.exe]

· Select Win32 for Platform

· Select Console for Target Model

· You don’t need any of the Frameworks or Controls checked. You may wish to check code guard for pointer problems. Only check that if you think you might have a pointer problem because it makes big slow code (lots of run time checking, but very effective diagnostics)

· Click OK

· You will see a project window materialize in the ide. Select and delete the .def and .rc files. You don’t need them for a console application.

· Double click on the .cpp file to begin edition a new file.

2. Creating a new file:

· Right click on the project window to get a pick-list. Click on Add Node to get a file manager window.

· Enter a file name to add a new file of that name to the project Don’t add header files to your project. They should be included by their corresponding .cpp files instead.

· Double click on the new file name in the project window to start editing it.

· Enter source code in the window and click File/Save

3. Adding an existing file to the project:

· Right click on the project window to get a pick-list. Click on Add Node to get a file manager window.

· Use the browse controls to browse through your directories to find the file you want Double click on the file to add it to your project. Don’t add header files to your project. They should be included by their corresponding .cpp files instead.

· Double click on the new file name in the project window to start editing it.

· Enter source code in the window and click File/Save

· To add a header file to your working directory Click File/New/TextEdit or File/Open to get the file manager to find an existing file.

· After editing the code, Click File/Save As to get a file manager window that will allow you to save this file to your working directory.

4. Compiling and Linking:

· Click Project/Make All or depress F9

· Warnings and errors are shown in the bottom window. Fix these and rebuild.

5. Enter command line parameters before running:

· Click Options/Environment/Debugger and enter the command line arguments in the Arguments box.

· Click OK

6. Enter define definitions before running:

· Click Options/Project/Compiler to get a defines window.

· Add to existing Preprocessor definitions by typing a comma and your definitions

· Click OK

7. Debugging:

· Click on the step over or step through icons on the speed bar just above the edit window.

· Add watches by clicking on Debug/Add Watches

· Add breakpoints by placing the mouse cursor over the vertical silver bar on the left side of the edit window and clicking. You will see a red horizontal bar to indicate the breakpoint. Remove breakpoints the same way.

8. Running the result of a build:

· Place a breakpoint at the closing brace of main, click Debug/Run to get a window showing all your output.

9. Using Help:

· Click Help/Keyword Search/Index to get a tabbed dialog box accepting either a search string or a query.

· Help files are hypertext and you can usually find what you want with some link following.

� It can be very convenient to have several related projects in the same workspace, allowing you to switch between projects quickly and view files from another project with a double click.

� If you select an inappropriate project type, e.g., Win32 Application instead of Win32 Console Application, you will get a large stream of errors with messages that seem to make no sense.

