
Handouts/cse687/Code/Hiding 

How to Avoid Hiding 
and a few other Evils 

Jim Fawcett 
CSE687 – Object Oriented Design 

Spring 2006 
 

Avoid: 
1. Redefining, in derived classes, non-virtual base class functions 

a. Non-virtual member functions do not have vtable entries and so the function called is the 
type of the pointer or reference, not the type of object attached to the pointer or 
reference. 

b. So it is possible for a base class function to be called on a derived class object, with 
possibly disasterous results. 

2. Overloading non-virtual base class functions in derived classes 
a. Overloads work only within a single scope, not across both base and derived class scopes. 
b. The result may be hiding of base class member functions that are inherited by the derived 

class. 
3. Overloading virtual functions 

a. If a derived class redefines a base class virtual function, which is a correct procedure, that 
will hide the base class overloads that are inherited. 

4. Using default parameters in virtual functions 
a. Parameters don’t have vtable entries, so they are bound based on the type of pointer or 

reference to an object, not of the object type. 
b. This results in a derived class using base class defaults even though the derived class 

defined different values for the defaulted parameters. 
 



Handouts/cse687/Code/Hiding 

Always: 
1. Provide a virtual destructor if your class may be used as the base class for a derivation. 

a. If you don’t do that, and a client creates an instance of a class derived from your base 
class on the heap, bound to a base pointer, then when the client calls delete on that 
pointer, the destructor called is based on the type of pointer not the type of object, so the 
base destructor only will be called. 

 
Definitions: 

1. Overriding: 
Providing, in a derived class, a declaration and definition of a virtual base class function, using 
exactly the same function signature and the same or covariant return type. 

a. A covariant return type is a pointer or reference of the derived type, when the base virtual 
function returns a pointer or reference of the base type. 

2. Overloading: 
Providing, in the same class, or in the same global scope, a function definition that uses the 
function identifier of another existing function with a different sequence of formal parameter 
types. 

a. Note that you cannot overload on return type, because a client is not compelled to use the 
return type, so the compiler cannot figure out which function to bind to. 


