
DESIGN SUMMARY

Jim Fawcett
CSE687 – Object Oriented Design
Spring 2010

Design Summary
 Principles

 Liskov Substitution

 Open Closed

 Dependency Inversion

 Interface Segregation

 Least knowledge

 Design Techniques

 Encapsulate – Single Responsibility

 Parameterize – Separate library design from application design

 Hook – Install base class as parent for application code

 Isolate – provide both interface and object factory

 Design Process

 Distinguish between application side decomposition and solution side
re-composition

Liskov Substitution

 Clients typed to use base pointers or
references can use derived pointers or
references with no knowledge of the derived
details.

 Support Liskov Substitution by:

 Providing virtual base functions

 Virtual base destructor

 Avoid use of dynamic_cast

 Don’t overload virtual functions or across class
scopes

Open Closed Principle

 Reusable software entities should be open for
extension but closed for modification.

 Support Open Closed Principle by

 Using template parameterization.

 Providing Hook base classes

 Example:

 XmlDocument prototype

Dependency Inversion

 Software clients and servers should not depend
on each others details. They should both depend
on the server’s abstraction.

 Support Dependency Inversion by:

 Providing interface with protocol language that
supports all server operations.

 Provide class factory that instantiates server objects
on the client’s behalf.

 Example:

 Parser – uses Rules derived from IRules and created by
Builder

Interface Segregation

 Don’t make clients depend on interface
methods they don’t need.

 Support Interface Segregation by:

 Segregating interfaces by functionality

 Each interface supports a specific model

 Classes implement just those interfaces they need
to support their requirements.

Least Knowledge

 Client callers know only the calling interface,
and none of the service implementation.

 Service responders know nothing of the caller
beyond the contents of the request.

 To support Least Knowledge:

 Apply dependency inversion

 Pass messages

Encapsulation

 A class should manage completely its own data
and resources.

 Clients should have no access to its internal
implementation.

 This prevents clients from putting class instance into
invalid state.

 Enforce Encapsulation with:

 Private access control of all private member functions
and data.

 Expose only encapsulated parts.

 Use no global data.

Parameterize

 Distinguish between application design and
library design.

 Parameterize reusable library classes with class
and member template arguments.

 Make library code more flexible be including
template functions that use compiler type
inference to accept a variety of argument types.

 Example:

 Tracer class from MT3Q1 and MT3Q1b, Sp2010

Hook

 Install base class as hook for application code

 Hook provides a base protocol used by a library
class.

 Applications derive from the hook and register
classes with the hook provider to support
application operations.

 Example:

 Navigator class in FileInfo folder

Isolate

 Build components that can be composed to
build large complex systems

 Components support modifying part of the
system without rebuilding unmodified parts.

 Support Isolation:

 Use dependency inversion

 Package as a Dynamic Link Library (DLL)

 Example:

 DLLProtocolDemo in class code folder

Design Process

 Distinguish between Application and Solution
side development:

 Application side development decomposes
project requirements into a set of application
specific classes that model the application
entities.

 Solution side development recomposes the
project with reusable classes that support the
application processing.

 We care about different things on each side.

The End

