
CSE687 Object Oriented Design Midterm #3 Spring 2014

CSE687 Midterm #3

Name: _______Instructor’s Solution_________________

This is a closed book examination. Please place all your books on the floor beside you.
You may keep one page of notes on your desktop in addition to this exam package. All
examinations will be collected promptly at the end of the class period. Please be
prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will
come to your desk to discuss your question. I will answer all questions about the
meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given
equal weight for grading, but not all questions have the same difficulty. Therefore, it is
very much to your advantage to answer first those questions you believe to be easiest.

CSE687 Object Oriented Design Midterm #3 Spring 2014

1. What is meant by the term scope in the context of a C++ program? What is the
purpose of scopes and what happens when your program enters and leaves a
scope?

Answer:

There are two kinds of scopes. Classes, structs, namespaces, and enums define
scopes that have compile-time only effects – to define names and access. Functions
and control statements introduce scopes that have runtime effects as well.

Scopes are blocks of statements defined by curly braces “{” and “}”. There are also
braceless scopes defined by “if”, “else”, “for”, “while”, and “do” statements
containing a single executable statement.

When a runtime scope is entered a stack frame is allocated to hold local data and,
for functions, input parameters and a return value. As the execution leaves a scope
the destructors for all destructible objects created in that scope are called and the
memory is invalidated, e.g., becomes available for execution of the next scope.

CSE687 Object Oriented Design Midterm #3 Spring 2014

2. Write all the code for a parser rule that detects C++ executable statements. Hint:
you may wish to eliminate modifiers that don’t affect the decision.

Answer:

class Executable : public IRule // declar ends in semicolon
{ // has type, name, modifiers &
public: // initializers. So eliminate
 bool isModifier(const std::string& tok) // modifiers and initializers.
 { // If you have two things left
 const size_t numKeys = 12; // it’s declar else executable
 const static std::string keys[numKeys] = {
 "const", "extern", "friend", "mutable", "signed", "static",
 "typedef", "typename", "unsigned", "volatile", "&", "*"
 };
 for (int i = 0; i<numKeys; ++i)
 if (tok == keys[i])
 return true;
 return false;
 }
 bool doTest(ITokCollection*& pTc)
 {
 ITokCollection& tc = *pTc;
 if (tc[tc.length() - 1] == ";")
 {
 // remove modifiers, comments, newlines, returns, and initializers
 SemiExp se;
 for (size_t i = 0; i < tc.length(); ++i)
 {
 if (isModifier(tc[i]))
 continue;
 if (se.isComment(tc[i]) || tc[i] == "\n" || tc[i] == "return")
 continue;
 if (tc[i] == "=" || tc[i] == ";")
 break;
 else
 se.push_back(tc[i]);
 }

 if (se.length() != 2) // not a declaration so is an executable
 {
 doActions(pTc);
 return true;
 }
 } // To make this generally useful you also
 return true; // need to condense template type tokens
 } // and remove invocation parentheses.
}; // See ActionsAndRules in MTS14 code for
 // details.

CSE687 Object Oriented Design Midterm #3 Spring 2014

3. State the Liskov Substitution Principle (LSP). What code defects break the operation
of LSP?

Answer:

Any code that uses a base pointer or reference may be bound to an instance of a
class derived from the base. The using code need have no knowledge of the type of
the bound object or any of its details.

Liskov Substitution breaks if we:

 Override in the derived class non-virtual functions of the base.

 Fail to provide a virtual destructor in the base class.
 Overload a base class function in the derived class.
 Overload a base virtual function.
 Use default parameters in both base and derived classes with different values

for the default.

CSE687 Object Oriented Design Midterm #3 Spring 2014

4. How many virtual function pointer tables (vtbls) are created for Parser’s rules and
actions? Draw the vtble for a rule that provides a virtual method void language(),
not part of the IRule interface, that supports configuring the rule for either C++ or
C#. You are not asked to implement any code for this question.

Answer:

There is one vtble for the IRule interface and one for the IAction interface and one
for each class derived from those interfaces.

IRule::addAction and IRule::doActions are not virtual and so do not have entries in
the IRule vtbl. IRule::doTest is pure virtual so it has an entry but no corresponding
implementation.

Since DerivedRule::language is virtual, but not part of the IRule interface there is an
entry only in the DerivedRule vtble for this function. Note that it cannot be called
using an IRule pointer. You have to use a dynamic cast to call it.

pIRuleDtor Irule::~IRule

pDoTest

pLanguage

pDerivedDtor DerivedRule::~DerivedRule

pDoTest DerivedRule::doTest

pIRuleVtbl

Derived Member Data

pDerivedRuleVtbl

IRule* pIRule

IRule* pDerivedRule

DerivedRule::Language

CSE687 Object Oriented Design Midterm #3 Spring 2014

5. The std::for_each function from the standard algorithm library is declared like this:

 template<class InputIterator, class Function>
 for_each(InputIterator first, InputIterator last, Function fn)

where fn is a callable object. Write all the code to find the average value of a list of
doubles using a lambda as the callable object. Please construct a test list and apply
your code to that.

Answer:

std::list<double> ld{ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 };
double sum = 0;
for_each(begin(ld), end(ld),
 [&sum](double t) {
 sum += t;
 }
);
sum /= ld.size();

CSE687 Object Oriented Design Midterm #3 Spring 2014

6. Draw a class diagram for your design of Project #1. You do not need to include
classes associated with the parser.

Answer:

ScopeAnalyzer owns a configParser object, not shown for lack of space, that owns
the Parser, Repository, and all Rules and Actions. It gets a file specification from
FileMgr and uses Parser to analyze its code scopes. The ScopeAction stores the
Scopes in MTree. At the end of analysis ScopeAnalysis returns to Executive which
then calls Display to display the required scope information and one tree’s XML.
XmlWriter has also been elided for lack of space.

Executive

FileMgr

FileSystem::Directory

FileSystem::Path

MNode<Scope>Scope

Parser

Display

IRule

ScopeRule

IAction

Repository

ScopeAction

ScopeAnalyzer

MTree<MNode>

CSE687 Object Oriented Design Midterm #3 Spring 2014

7. Write all the code for an object factory that returns a copy of a prototype instance of
some unspecified type. Show how you would create and invoke the factory.

Answer:

#include <string>
#include <iostream>

template <typename T>
class PrototypeFactory
{
public:
 T* Create() { return new T(*_pPrototype); }
 void Register(T* pPrototype) { _pPrototype = pPrototype; }
private:
 T* _pPrototype;
};

class TheObject
{
public:
 TheObject(const std::string& str) : _str(str) {}
 void say() { std::cout << "\n " << _str; }
private:
 std::string _str;
};

int main()
{
 std::cout << "\n MT3Q7 - Prototype Factory";
 std::cout << "\n ===========================\n";

 TheObject to("Hello CSE687");
 PrototypeFactory<TheObject> protoFact;
 protoFact.Register(&to);

 TheObject* pTO = protoFact.Create();
 pTO->say();
 delete pTO;

 std::cout << "\n\n";
}

CSE687 Object Oriented Design Midterm #3 Spring 2014

