
CSE687 Object Oriented Design Midterm #2 Spring 2014

CSE687 Midterm #2

Name: _______Instructor’s Solution_________________

This is a closed book examination. Please place all your books on the floor beside you.
You may keep one page of notes on your desktop in addition to this exam package. All
examinations will be collected promptly at the end of the class period. Please be
prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will
come to your desk to discuss your question. I will answer all questions about the
meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given
equal weight for grading, but not all questions have the same difficulty. Therefore, it is
very much to your advantage to answer first those questions you believe to be easiest.

CSE687 Object Oriented Design Midterm #2 Spring 2014

1. Describe all the standard C++ relationships between classes. How did you use each
of them in your design of Project #2?

Answer:

The C++ class relationships are:

 Inheritance – publically derived classes inherit the public interface and
implementation of the base class with the exception of constructors,
assignment operator, and destructor. Those, however, are generated by the
compiler if not declared in the derived class. Inheritance was used in Parser,
e.g., classes derived from IRule, IAction, IBuilder, and ITokenCollection.

 Composition – The composer holds an instance of the composed class as a
data member. The C++ language guarantees that constructors will be called
for the composed as the first act of the composer constructor. Thus, the
composed is always an integral part of the composer, and, in fact, lies within
the memory foot print of the composer. The Parser’s Repository holds an
instance of a ScopeStack as a data member.

 Aggregation – The aggregating class may hold a pointer typed to hold an
instance of the aggregated class and may eventually create a new instance
bound to the pointer. Alternately the aggregator may create an instance of
the aggregated class as local data in one of its member functions. The
Parser’s builder, ConfigureParser, holds references of many aggregated
objects, e.g., every derived rule and action as well as the tokenizer and a
semiexpression instance.

 Using – a using class does not own its used instance. That must be provided
by some other code and passed as an argument to a member function of the
using class. The Parser uses all it’s rules, owned by the ConfigureParser
instance.

 Friend – a class may grant another class or function access to its private
data through a friend statement. We should avoid this unless there is no
other way to meet the class’s requirements. (No loose of points if you don’t
mention this.)

CSE687 Object Oriented Design Midterm #2 Spring 2014

2. Write all the code for a Scope class that holds type, name, complexity, and an
ordered collection of child scope types. Now write a matching function using all this
information and uses a tolerance on complexity values. That would support
matching when the complexities are close but not equal. The function should return
true/false values.

Answer:

class Scope
{
public:
 std::string& name() { return _name; }
 std::string& type() { return _type; }
 size_t& complexity() { return _complexity; }
 std::vector<std::string>& childType() { return _childType; }

 static bool match(Scope* pS1, Scope* pS2);

private:
 std::string _name = "unknown";
 std::string _type = "unknown";
 size_t _complexity = 0;
 std::vector<std::string> _childType; // child scope types must be added in
}; // order encountered in parent scope

inline bool Scope::match(Scope* pS1, Scope* pS2)
{
 if (pS1->type() != pS2->type())
 return false;
 size_t complexityTolerance = 1;
 bool complexityMatch =
 (pS1->complexity() < pS2->complexity() + complexityTolerance) &&
 (pS1->complexity() > pS2->complexity() - complexityTolerance);

 bool childTypeMatch = true;
 if (pS1->childType().size() == pS2->childType().size())
 {
 for (size_t i = 0; i < pS1->childType().size(); ++i)
 {
 if (pS1->childType()[i] != pS2->childType()[i])
 {
 childTypeMatch = false; // assumes each child type added in
 break; // order encountered in parent scope
 }
 }
 }
 else
 {
 childTypeMatch = false;
 }
 return childTypeMatch && complexityMatch;
}

CSE687 Object Oriented Design Midterm #2 Spring 2014

3. Which parts of a C++ class are not inherited? Why do you think the language was
designed this way?

Answer:

Constructors, assignment operator, and destructor are not inherited, but will be
generated if the class does not declare them and are needed by code that uses the
class. Of course, generated methods are only correct if all the class’s bases and
member instances have correct construction, assignment, and destruction
semantics.

It would not make sense for these to be inherited since derived classes usually
declare instances of data members and so inheriting these methods from the base
class would not provide correct semantics as the derived data would not be
initialized, assigned, and destroyed.

CSE687 Object Oriented Design Midterm #2 Spring 2014

4. State the Dependency Inversion Principle and describe how you have used it in
Project #2. If you have not used it, describe a useful way you could use it for that
project.

Answer:

The Dependency Inversion Principle (DIP) states that software entities should
depend on abstractions, not on implementation details. That means that we use
interfaces and object factories to provide client access without binding to any
implementation detail.

The parser is a good example application of DIP. The ConfigureParser builder is an
object factory for derived rules and actions. The parser accesses its rules with IRule
pointers and the rules access their actions with IAction pointers.

CSE687 Object Oriented Design Midterm #2 Spring 2014

5. Write all the code for a component that finds a common substring in two input
strings if it exists. If so it returns the starting and ending positions for each input
string. Given two strings it should return a Boolean value to note the presence or
absence of a substring and support returning positions as a separate call. Note that
this question focuses on the component structure and does not expect you to
develop the fastest way to do this comparison.

Answer:

struct ICompString // component part
{
 using Interval = std::pair<size_t, size_t>;
 using Positions = std::pair<Interval, Interval>;

 virtual ~ICompString() {}
 static ICompString* Create();
 virtual bool compare(const std::string& s1, const std::string& s2, size_
t matchLength) = 0;
 virtual Positions locate() = 0;
};

class CompString : public ICompString // comparison part
{
public:
 bool compare(const std::string& s1, const std::string& s2, size_t matchL
ength);
 Positions locate();
private:
 Interval Interv1{ 0, 0 };
 Interval Interv2{ 0, 0 };
};

ICompString* ICompString::Create() { return new CompString; }

CSE687 Object Oriented Design Midterm #2 Spring 2014

//----< find common substring >-------------------------------------

bool CompString::compare(const std::string& s1, const std::string& s2, siz
e_t matchLength)
{
 bool match = false;
 for (size_t i = 0; i < s1.size() - matchLength + 1; ++i)
 {
 for (size_t j = 0; j < s2.size() - matchLength + 1; ++j)
 {
 if (s1[i] == s2[j])
 {
 for (size_t k = 0; k < std::min(s1.size(), s2.size()); ++k)
 {
 if (s1[i + k] != s2[j + k])
 {
 if (k >= matchLength)
 {
 Interv1.first = i;
 Interv1.second = i + k - 1;
 Interv2.first = j;
 Interv2.second = j + k - 1;
 return true;
 }
 else
 break;
 }
 }
 }
 }
 }
 return false;
}

CompString::Positions CompString::locate()
{
 Positions pos;
 pos.first = Interv1;
 pos.second = Interv2;
 return pos;
}

CSE687 Object Oriented Design Midterm #2 Spring 2014

6. Draw a package diagram for your design of Project #2.

Answer:

The Executive creates FileMgr, ScopeAnalyzer, and Display. It then starts its timer
and requests FileMgr to build a file specification set for analysis, then starts
ScopeAnalyzer. When ScopeAnalyzer returns it stops its timer.

ScopeAnalyzer retrieves a file specification from FileMgr and passes to Parser for
analysis. Parser’s actions build an MTree<MNode<Scope>> in the Repository and
add references for each MNode<Scope> in the ScopeCollection. This process is
repeated until there are no more files to analyze.

When file analysis is complete ScopeAnalyzer sorts the ScopeCollection and requests
ScopeMatcher to find match candidates, which it may explore further using its
access to the MTree, via the Repository. When completed it returns to the
Executive which then requests Display to show the results.

MTree

FileMgr

FileSystem

Scope

ScopeCollection

Display

Parser

ScopeMatcher

Timer

Executive

Actions & Rules

ScopeAnalyzer

CSE687 Object Oriented Design Midterm #2 Spring 2014

7. Describe the C++ compilation model and how it affects your implementation of
Project #2.

Answer:

The C++ compilation model consists of several phases:

 Preprocessing replaces macros with their definitions, #include directives
with the included header text, and includes or excludes source text based on
#ifdef and #ifndef directives.

 Compilation operates on one compilation unit, e.g., a preprocessed cpp
implementation file, at a time, generating obj files for each.

 Linking binds the obj files and any specified libraries into an executable exe
file.

 Loading binds executable with any specified dynamic link libraries to
assemble the final image in memory.

The C++ compilation model encourages us to define separate packages for each
program activity which are then built into an executable whole. We manage the
compilation sequence with preprocessor directives and can build the project in parts
for incremental testing.

In Project #2 we define several packages each of which focuses on a single activity
like file management, parsing, scope analysis, and display. Each package that
depends on the services of another package must include the header file of the used
package, e.g., #include “service.h”. For any standard libraries that are used by the
package there must be a directive: #include <libfile>.

If you have elected to build some of the program’s services as Dynamic Link
Libraries, your project must contain the Lib file that describes the DLL exports.

