
CSE687 Object Oriented Design Midterm #1 Spring 2014

CSE687 Midterm #1

Name: _____Instructor’s Solution___________________

This is a closed book examination. Please place all your books on the floor beside you.
You may keep one page of notes on your desktop in addition to this exam package. All
examinations will be collected promptly at the end of the class period. Please be
prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will
come to your desk to discuss your question. I will answer all questions about the
meaning of the wording of any question. I may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given
equal weight for grading, but not all questions have the same difficulty. Therefore, it is
very much to your advantage to answer first those questions you believe to be easiest.

CSE687 Object Oriented Design Midterm #1 Spring 2014

1. What is polymorphism? Briefly describe all of the coding defects that have an
adverse effect on polymorphism.

Answer:

Polymorphism describes an Object Oriented Language’s ability to allow an interface
pointer to bind to an instance of any class that implements the interface without any
direct knowledge of the derived type. The function called through the interface
pointer is determined by the class of the bound instance.

This substitution capability is a very important mechanism for writing extendable
code.

Here is a list of the things that break polymorphism:

 Hiding due to overloads across class scope or overloading virtual member
functions

 Overriding non-virtual member functions of a base class
 Failing to provide a virtual destructor in a class that will be a base for

inheritance

 Use of default parameters in virtual functions that differ between base and
derived

 Failure to use initialization list when defining non-default constructors at all
levels of the inheritance hierarchy

CSE687 Object Oriented Design Midterm #1 Spring 2014

2. Write all the code for a Scope class that holds type, name, and complexity
information so that each of these may be easily modified. Create a collection of
Scope instances and show how you would sort that by complexity1.

Answer:

class Scope
{
public:
 std::string& name() { return _name; }
 std::string& type() { return _type; }
 size_t& complexity() { return _complexity; }

 static bool more(const Scope* pS1, const Scope* pS2);

private:
 std::string _name = "unknown";
 std::string _type = "unknown";
 size_t _complexity = 0;
};

inline bool Scope::more(const Scope* pS1, const Scope* pS2)
{
 Scope s1Test = *pS1;
 Scope s2Test = *pS2;
 return s1Test.complexity() > s2Test.complexity();
}

using Scopes = std::vector<Scope*>;
// define some scopes
Scopes scopes{ &s6, &s4, &s3, &s1, &s2, &s5 };
std::sort(std::begin(scopes), std::end(scopes), Scope::more);

1 You may assume the existence of a std::sort function in the algorithm library that accepts two iterators describing
the range to be sorted and a compare callable object that accepts two items from the sorted range.

CSE687 Object Oriented Design Midterm #1 Spring 2014

3. Which parts of a class will the C++ compiler generate for you? How do you prevent
automatic generation and when should you prevent it?

Answer:

The compiler will generate:

 Default (void) constructor if no destructors are declared in the class
 Copy constructor if implied by using code and not declared in the class
 Assignment operator if implied by using code and not declared in the class
 Destructor if not declared in the class

 Address operator

You prevent compiler generation of these functions by defining them for the class,
by declaring them =delete, or by declaring them private and not implementing.

If the class’s bases and member data have correct copy, assignment, and
destruction semantics then you should allow the compiler to generate them.
Otherwise, you should prevent compiler generation.

Note that it isn’t useful to prevent generation of a destructor and not supply one as
this will result in compilation errors when you declare an instance of the class in
static or stack memory. It will only work if you create an instance on the heap and
never call delete.

CSE687 Object Oriented Design Midterm #1 Spring 2014

4. State the Open/Closed Principle and describe how you have used it in Project #2. If
you have not used it, describe a useful way you could use it for that project.

Answer:

Software should be closed for modification and open for extension. This implies that
the code has no latent errors nor performance problems. We normally soften this
dictum by using interfaces and object factories that are invariant. Thus clients are
not affected by any changes in the interface implementation to fix errors, enhance
performance, or make subtle changes to its semantics.

Another way of implementing OCP is to use template classes and functions. That
allows the range of operation of the classes and functions to be extended by
changing the type of the template parameter(s). Providing template policies and
traits make these extensions particularly useful.

In Project #2 you use the Parser. Parsing is extended by adding new rules derived
from IRule and new actions derived from IAction. Also, the MTree and MNode
classes are extended by supplying application specific template parameters without
changing either class2.

2 You may have needed to change the MTree<T> class simply because it was incomplete. That does not alter the
fact that using a template parameter in its design supports extension without modification.

CSE687 Object Oriented Design Midterm #1 Spring 2014

5. Write all the code for an interface for the Scope collection you defined in your
answer to the second question. Your interface needs to support sorting and
comparing elements of the collection. Please provide an object factory as part of
that interface. The comparison should return a value to indicate whether two
scopes match.

Answer:
This was supposed to be a question about Interface for Scope class, not collection,
as shown on this page. See next page for answer for Scope collection interface.

The interface needs a virtual destructor, static creational function, and pure virtual
declarations for each of the Scope class methods. I replaced the more function
from Q2 with operator< to show how to use that for sorting.

--------- Beginning of Answer – Interface for Scope class ---------------------------

struct IScope
{
 using Name = std::string;
 using Type = std::string;
 using Complexity = size_t;

 virtual ~IScope() {}

 static IScope* Create();
 static IScope* Create(const Name& name, const Type& type, Complexity comp);

 virtual Name& name() = 0;
 virtual Type& type() = 0;
 virtual Complexity& complexity() = 0;
 virtual bool match(const IScope* pS) = 0;
 virtual bool operator<(const IScope* pS) = 0;
};

// Scope class definition here

IScope* IScope::Create() { return new Scope; }

IScope* IScope::Create(const Name& name, const Type& type, Complexity comp)
{
 return new Scope(name, type, comp);
}

 -------- End of Answer – Interface for Scope Class -------------------------------

CSE687 Object Oriented Design Midterm #1 Spring 2014

The Scope Collection is somewhat more complex but the interface is simple.

-------- Beginning of Answer – Interface for Scope Collection --------------------------

template <typename Compare> // bool compare(const Scope* pS1, const Scope* pS2)
struct IScopeCollection
{
 using Scopes = std::vector<IScope*>;
 using iterator = Scopes::iterator;

 static IScopeCollection<Compare>* create();
 virtual ~IScopeCollection() {}
 virtual iterator begin() = 0;
 virtual iterator end() = 0;
 virtual IScopeCollection<Compare>& add(IScope* pS) = 0;
 virtual void sort(Compare& compare) = 0;
};

-------- End of Answer – Interface for Scope Collection --------------------------------

template<typename Compare>
class ScopeCollection : public IScopeCollection<Compare>
{
public:
 ScopeCollection() {}
 ScopeCollection(std::initializer_list<IScope*> lsp)
 {
 for (auto pScope : lsp)
 _scopes.push_back(pScope);
 }
 ScopeCollection<Compare>& add(IScope* pS)
 {
 _scopes.push_back(pS);
 return *this;
 }
 typename IScopeCollection<Compare>::iterator begin() { return _scopes.begin(); }
 typename IScopeCollection<Compare>::iterator end() { return _scopes.end(); }
 void sort(Compare& compare)
 {
 std::sort(
 _scopes.begin(),
 _scopes.end(),
 compare);
 }
private:
 std::vector<IScope*> _scopes;
};

template<typename Compare>
IScopeCollection<Compare>* IScopeCollection<Compare>::create()
{
 return new ScopeCollection<Compare>();
}

CSE687 Object Oriented Design Midterm #1 Spring 2014

6. Draw a class diagram for your design of Project #2. You do not have to include
classes associated with the parser.

Answer:

ScopeAnalyzer gets a file specification from FileMgr and uses Parser to analyze its
code scopes. The Parser’s actions save that information in Scope objects placed in
MNodes in the MTree and place a reference to each scope in a vector of scopes in
the ScopeCollection object.

When all the files have been analyzed the Matcher requests ScopeCollection to sort
its collection using a Matcher selected comparison object (not shown for lack of
room). It then examines the scope collection for matches, looking at scopes that
have sort proximity.

Executive

FileMgr

FileSystem::Directory

FileSystem::Path

MTree<Scope>

MNode<Scope>Scope

Parser

Display

Matcher

IRule

ScopeRule

IAction

Repository

ScopeAnalyzer

ScopeCollection

ScopeAction

CSE687 Object Oriented Design Midterm #1 Spring 2014

7. Describe the C++ memory model and how it affects your design of Project #2.

Answer:

C++ recognizes three forms of memory: static, stack, and heap.

 Static Memory:
Objects are created in static memory by preceding their declarations with the
keyword “static”. Static objects have the life-time of the program. A static
object’s constructor when static memory is initialized at the beginning of the
program. Their destructors are called when the thread of execution leaves
main.

 Stack Memory:
Objects are created in stack memory by declaring them as function
parameters or declaring them locally in a function. Stack-based objects have
a lifetime defined by the thread of execution residing within the scope in
which the object is declared. Their constructors are called at the point of
declaration and their destructors are called when the thread of execution
leaves the scope in which they are declared.

 Heap Memory:
Objects are created on the heap by declaring them with the “new” keyword
and destroying them with “delete”. Heap-based objects live from execution
of the statement using “new” to the statement using “delete”. The new
statement causes the allocated object’s constructor to be called and delete
invokes the object’s destructor.

Project #2 focuses on discovering and evaluating function scope structures
which reside in stack memory. Scope information is stored in STL containers
that use heap memory for data storage. We occasionally use references stored
in static memory to provide global access to widely used objects. The Parser’s
repository can be accessed by this kind of static reference.

Throughout the project design we make a number of decisions about how to
store objects and data. We choose to use static, stack, or heap storage based
on the required lifetime and accessibility of those objects and data.

