
Programming to Interfaces

Jim Fawcett

Copyright © 2004

What is an Interface?

• First answer:

public members of a class

class fileInfo {

friend class navig;

public:

fileInfo();

fileInfo(const fileInfo &fi);

fileInfo(const std::string &path);

~fileInfo();

bool firstFile(const std::string &filePattern);

bool nextFile();

void closeFile();

// some members deleted for brevity

std::string date() const;

std::string time() const;

std::string attributes() const;

bool isArchive() const;

bool isCompressed() const;

bool isDirectory() const;

// members deleted

std::string getPath(void);

void setPath(const std::string &s);

private:

// private members deleted

};

Chapter 9 - Programming to Interfaces 2

What is an Interface?

• Second answer:

public members of a class plus
global functions packaged with the
class.

Packaged means in the same
header file and in the same
namespace.

• Interface Principle:

“For a class X, all functions,
including [global] functions, that
both:

• Mention X

• Are supplied with X

Are logically part of X, because they
form part of the interface of X.”

Herb Sutter, Exceptional C++,
Addison-Wesley, 2000

class str {

private:

char *array;

int len, max;

public:

str(int n = 10); // void and size ctor

str(const str &s); // copy ctor

str(const char *s); // promotion ctor

~str(); // dtor

str& operator=(const str &s); // assignment operator

char& operator[](int n); // index operator

char operator[](int n) const; // index operator for const str

void operator+=(char ch); // append char

void operator+=(const str &s); // append str s

int size() const; // return number of chars

void flush(); // clear string contents

};

std::ostream& operator<<(std::ostream& out, const str &s);

Chapter 9 - Programming to Interfaces 3

Koenig Lookup

• This second definition is consistent with Koenig Lookup:

• Koenig Lookup:

If you supply a function argument of class type, then to find the
function name the compiler is required to look not just in the local or
surrounding scopes, but also in the namespace that contains the
argument’s type. [paraphrased from Sutter, ibid]

• For this reason, for the string class, packaged in namespace std,
which has an operator<< we can say:

std::cout << myString;

instead of:

std::operator<<(std::cout, myString);

Chapter 9 - Programming to Interfaces 4

Without Koenig lookup we are
forced to use functional
notation rather than operator
notation to indicate that << is
in the std namespace.

What is an Interface?

• Third Answer:

Abstract class with no data members, no constructor and at least one pure virtual
function.

• An abstract class has the same role as a C# or Java interface.

• It provides a means to use an implementation class but only binds to the abstraction provided
by the interface.

class ITest {

public:

virtual ~ITest() {}

static ITest* CreateTestImpl();

virtual std::string ident()=0;

virtual void addString(const std::string &str)=0;

virtual std::string getString()=0;

};

Chapter 9 - Programming to Interfaces 5

Note

• For the remainder of this presentation, we will be using the third
definition:

• An Interface is an abstract class with no data members and no constructors.

Chapter 9 - Programming to Interfaces 6

Design Layers

• It is very typical that a software design maps onto the three layers shown on
the next slide.

• Top down design determines a policy layer and top-level partitions of the
implementation layer – very little OOD at this level.

• Classes and class relationships dominate the implementation layer. Polymorphism
is an important tool to minimize coupling between components of this layer and
with the utility layer.

• Class encapsulation of data and operating system services, using bottoms up
design, determines the utility layer.

• This decomposition has the advantages that:

• The policy layer is responsible for satisfying the application’s requirements.

• The implementation layer partitions the program’s responsibilities into manageable
chunks.

• The utility layer is a rich source of reusable code. It provides a lot of small simple services
used to compose the implementation.

Chapter 9 - Programming to Interfaces 7

Program Layers – Typical Decomposition

Policy Layer

Implementation Layer

Utility Layer

uses

uses

header
included

header
included

Chapter 9 - Programming to Interfaces 8

Problems with Layering

• There is one large disadvantage to this “vertical” layering:

• Each layer is dependent on the layer below.

• Policies need to create the objects that populate the implementation.

• But, in order to create these objects, the policy layer must include header files of the
implementation modules and so depend on the implementation of those classes.

• But, the implementation is very volatile during development. Fixing design flaws and
latent errors can introduce changes into both the policy and utility layers.

• The same comments apply to the implementation/utility layering.

• The need to include headers of unstable code means that the includer is also
unstable and changes migrate throughtout the system – a very distressing
situation for large systems.

Chapter 9 - Programming to Interfaces 9

Programming to Interfaces

• If we introduce interfaces which we strive to make stable then changes in lower
layers don’t affect the design of the upper layer. That layer is simply recompiled
without change when the implementation (not the interface) is changed.

• An interface is an abstract base class that has no implementation. Thus it has no latent
errors or performance problems to fix. As long as the layer above only uses that
interface, changes in the implementation of interface functions don’t break the client’s
code. Note that those implementations are provided by classes that derive from the
interface.

• Upper layers still have to include the lower layer’s header files in order to create the
objects in that layer. This means that the upper layer must be recompiled whenever
the lower layer’s implementation changes, because the size of the objects are very
likely to change.

Chapter 9 - Programming to Interfaces 10

Binding to Interfaces, not Implementation

Policy Layer

Implementation Layer

Utility Layer

uses

uses

Implementation
Interface

Utility
Interface

included

header

included

header

included

included

Chapter 9 - Programming to Interfaces 11

Isolating Layers

• But, with a little extra work, we can do better. By providing object factories to
build all objects in an implementation, clients that program only to interfaces
no longer need to include header files of the imple-mentation, they just include
header files of the factories, as shown on the next page.

The result of this architecture is that:

• The policy layer depends only on the implementation interface and object factories,
neither of which are likely to change.

• The implementation layer depends only on its own interface and implementation and
on the interface and object factories of the utility layer.

• The utility layer depends only on its own interface and implementation.

• When a change is made to the implementation, we now find that we need not
recompile the policy layer.

Chapter 9 - Programming to Interfaces 12

Using Object Factories to Isolate Layers

Policy Layer

Implementation Layer

Utility Layer

uses
Implementation

Interface

Utility
Interface

implementation
factory

Utility factory

header
included

included

included

header
included

Chapter 9 - Programming to Interfaces 13

Example Application

• We will illustrate these ideas with a little prototype code.

• The example has three implementation layer classes Widget1, 2, and 3. The
implementation layer provides an IWidget interface that establishes a
protocol for clients to use when interacting with the implementation.

• The policy layer, Client, simply instantiates the Widget objects, using an
object factory provided by the Widget project.

• It then proceeds to use them by calling a function of the public interface,
IWidget, on each one.

Chapter 9 - Programming to Interfaces 14

Factory module

Implementation Layer

Creatable module

public:

 virtual ~creator();

 static Base *create();

 static classID id();

creator<Base,Derived>
private:

 static std::map<classID, Base*(*)()> registry;

public:

 objFactory();

 void reg(classID id, Base*(*pFun)());

 Base* makeObj(classID id);

objFactory<Base>

Policy Layer

Object Factory Application

Note that Policy Layer

Includes headers that

Only refer to Base

value
key

public:

 announcer();

Example1

public:

 announcer();

Example2

public:

 virutal ~tester();

 virtual void announce() = 0;

 static void registerObjects(objFactory<tester> &factory);

 static std::string type(int n);

ExampleInterface

Chapter 9 - Programming to Interfaces 15

Effect of Changes

• Changes to Interface provided by
component

• Changes to Implementation of
component

Interface

Abstract Class

Implementing Class

Chapter 9 - Programming to Interfaces 16

Changes to Interface

• Changing the signature of a method:

• Breaks the design of every client using the method.

• Changing the order of methods:

• Forces recompilation of every client

• Adding a new method:

• May force recompilation of every client

Chapter 9 - Programming to Interfaces 17

Changes to Implementation

• If client has reference to concrete class:

• Forces recompilation, may break client’s design.

• If client has reference to interface but creates implementing component:

• Forces recompilation.

• If client has reference to interface and uses a factory to create implementing
component:

• Factory must be recompiled, clients simply relink.

• If the factory holds pointers to static creational functions even factory does not
have to be rebuilt.

• If component is built as a DLL, provides an interface and a pluggable factory:

• New library is copied over the existing library. Nothing needs to be done to client.

Chapter 9 - Programming to Interfaces 18

End of Presentation

Chapter 9 - Programming to Interfaces 19

