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Building an Asp.Net Application

• Create a Visual Studio 2013 project

– Visual C# > Web > Asp.Net Web Application > OK

– Web Forms > OK

• Add a WebForm

– Add > New Item > Web Form > OK

– Add controls from toolbox

– Manually add styles, and text

• Build and run.

• Iterate to add additional capability

– More forms

– XML and SQL data

– More controls



Example



Example - Continued



Server-Side Programs

• You can run any .Net webform that resides in a virtual 
directory simply by requesting it from a browser:
– http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE686/code/

AspApps/BasicAsp/PickAgain.aspx
– Provided that directory permissions allow this.

• On Windows platforms most server-side processing takes 
the form of Active Server Page (ASP),  ASP.Net, or 
ASP.Net MVC applications.

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE686/code/AspApps/BasicAsp/PickAgain.aspx


Running Example Code

• Asp.Net applications run from a virtual server: 

lcs-vc-fawcett2.syr.edu 

for which I have administrator privileges, needed to set virtual 
directory properties.
– To run the examples from your own machine, just right click on a zip 

file in the college server and select “save target as”.  
– If you are running Win7 or Win8 you need to use IIS Manager to create 

a virtual directory and application.  Use Asp.Net 4.5 Application Pool.
– Now you can open the site with 

http://localhost/VirtualDirectoryName/formName.aspx
– You can also run applications in Visual Studio by opening the sln if the 

application has one.

http://localhost/setName/formName.aspx


Traditional ASP

• Traditional (pre .Net) ASP provides interpreted 
application scripts running in the memory space of the 
IIS web server.

– A traditional ASP page consists of a mix of HTML, sent directly to 
the requesting browser and Javascript or Vbscript executed on 
the server, usually to generate html for display or interact with a 
backend database.

– Traditional ASP uses a set of standard server side COM objects 
and can use custom COM objects as well.

– Deploying custom COM objects to remote servers has been a 
major problem.



Server-Side Objects

• Traditional ASP provides seven objects used for server-side programming:
– Application:

• starts when IIS starts and runs until IIS shuts down

– ASPError
• ASPError object is returned by Server.GetLastError(), and has the properties:

Source, Category, File, Line, Description, ASPDescription

– ObjectContext
• Access to COM+ objects

– Request:
• Provides methods:

Form(), QueryString(), Cookies(), ServerVariables()

– Response:
• Provides methods:

Write(), Clear(), End(), Flush(), Redirect(), Buffer, Expires, IsClientConnected(), PICS()

– Server:
• Provides methods: 

Execute(), Transfer(), MapPath(), URLEncode(), HTMLEncode(), GetLastError()

– Session:
• starts when a user requests first page and ends with a timeout



ASP .Net

• ASP.Net supports the traditional style, but adds 
processing power of compiled C# and a pervasive object 
model.

– We can create user-defined classes in C# and use them on ASP 
pages.  Any .Net language can be used this way.

– Web controls are based on CLR objects.  Control state is sent 
back and forth between client and server in a hidden viewstate.

– An ASP.Net page can easily be turned into a server control that 
can be used on any other ASP page.
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ASP.Net WebForm

• An ASP.Net Web Form page has:

– A single form control:

• <form id=“form1” runat=“server”> … </form>

– Zero or more server controls:

• That render themselves to HTML

• Have methods, properties, and events

– Server controls come in two flavors:

• HTML controls that have html tags

– <input id=“Checkbox1” type=“checkbox” runat=“server”/>

• Standard (Web) controls

– <asp:Button ID=“Button1” runat=“server” Text=“…” />



Page Rendering Model

• When an aspx page is requested, a Page object is 
instantiated, and an object is created for each control on 
the page.

– Each of the control objects is added to the page’s controls 
collection.

• When the page renders:

– It generates HTML representing the form

– Calls each of its controls to render itself, resulting in:

• HTML generated for each control.

• Javascript that generates a postback to the server each time the 
client takes some action that triggers a client-side HTML-based 
event.



The First Call

• The first time a page is loaded 
after creation or a change to 
its text:

– ASP.Net parsers extract code 
from the codebehind file and 
build a class, derived from 
System.Web.UI.Page, that 
contains a collection for the 
page’s controls, renderning 
code, events, …

– The aspx file is parsed, and a 
class, derived from the code 
behind-based class, is built to 
render the page.

System.Web.UI.Page

Class Created from

Markup

Code behind class



Page Serving Model
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ASP.Net Page Contents

• An ASP.Net page contains:
– Directives for the compiler, which must include a <@Page … > 

directive.
– Literal HTML content, intended for the client
– Code in C#, VB, Jscript.Net.  The Code will:

• Respond to client-side events that result in a PostBack to the server

and may also:
• generate HTML for client
• get or send data to a database on this or a remote server
• interact in some way with the server’s file system

– Traditional script, e.g.: Javascript or Vbscript
– Embedded ASP.Net server controls

• Means to collect information from, and present information to, clients
• Control state is preserved in transactions between client and server using a 

hidden viewstate.

– Server HTML controls, based on the traditional HTML controls
• Also manages information between client and server.  Preserving state 

requires more work on programmer’s part.



Page GET Life Cycle

• Browser issues an HTTP GET request for an aspx page.

• The IHttpHandler::ProcessRequest method is called. 

• Handler creates a Page-derived class by loading the aspx 
page specified in the request, and loading any requred 
dynamic link libraries (dlls), residing in the application’s 
bin directory.

• Server calls Page’s ProcessRequest, which results in a 
recursive call to __Render__control for the page and 
each of its child controls.

– Each control’s __Render__control call is responsible for 
constructing html for it’s own part of the page display. 



Page POST Life Cycle

• Any event triggered by a user action in the client browser generates 
a submit request and subsequent HTTP POST message.  The body 
of the message contains data from the form to be processed on the 
server.

• POSTed data is captured by the server’s request object and 
processed by event handlers in the original aspx page’s C# 
Codebehind.  This processing almost always results in more 
rendering and the page is then sent back to the client.

• Complete cycle:

– GET  reply  user action  POST  reply  user action …

– The Page.IsPostback property tells server code whether processing is in 
response to a GET or a POST command.



What’s So Great about Asp.Net?

• The object model, with its Page class that supports Asp.Net pages, 
is extremely helpful in building effective websites:

– We can build a Page derived class that will serve as a base class for all 
our web pages that contains all the code common to pages in the site:

• styles

• controls (navigation bar and user access control for example)

• Headers and Footers

– User defined controls are easy to define and reuse.

– All of the power of the .Net framework is available for our server-side 
processing, e.g.:

• directory and file manipulation

• Regular expression analysis

• XML processing

• Web services

• Advanced data management classes



ASP .Net Applications

• You can build an ASP application using notepad to create an aspx 
page, a C# code page, and, optionally, a web.config file.

• Here’s what is required to do that:
– Create an aspx file that has:

• Page directive that contains an Inherits attribute that specifies a class from the code 
page, e.g., Inherits=“_Default”

• HTML including a form and one or more controls

– Create a codebehind cs file that contains:

• Event handlers for each of the aspx control events you want to handle

• Helper code

• Make each of these members of a class derived from System.Web.UI.Page

• Declare protected fields with names the same as the IDs of the controls on the aspx 
page, e.g., TextBox UserName;

• Compile the cs file into a library dll and place the dll in a bin subdirectory immediately 
below the aspx application.

• Of course, you can do that quickly by running the website wizard.



Page Hierarchy using Reflection

Hierarchy discovered by using 

reflection in Form_Load, e.g., 

GetType(), GetType().BaseType, 

and GetType.BaseType.BaseType



HTMLServer Controls

• Input: Button, Reset, Submit, Text, File, Password, Checkbox, 
Radio, Hidden

• Textarea, Table, Image, Select, Horizontal Rule, Div

• <INPUT id=“UserID” style=“…” type=“text” runat=“server”>

• Allows you to take any valid html page and change its extension to 
aspx and have it run as an ASP.Net application.

– This makes migration from older sites somewhat easier.



WebServer Controls

• Label, TextBox, Button, LinkButton, ImageButton, HyperLink, 
DropDownList, ListBox, CheckBox, CheckBoxList, RadioButton, 
Image, ImageMap, Table, BulletedList, HiddenField, Literal, 
Calendar, AdRotator, FileUpLoad, Xml, MultView, Panel, PlaceHolder, 
View, Substitution, Localize

• <asp:Label id=“Label1” runat=“server” 
BorderColor=“maroon”>default text</asp:Label>

• Richer behavior, styles, and configurations than HTML controls.



Server Controls

• WebServer Controls

– These controls have state which is marshalled between client 
and server in a hidden ViewState variable.

– Events, like button clicks, that happen on the client side, are 
marshalled back to the server to trigger event handlers in C#, 
processed on the server.

• This event model is based on encapsulated Javascript processing 
that posts page data back to the server when a specific event 
occurs.
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