
ASP.Net – Part I

Jim Fawcett

CSE686 – Internet Programming

Spring 2014

Building an Asp.Net Application

• Create a Visual Studio 2013 project

– Visual C# > Web > Asp.Net Web Application > OK

– Web Forms > OK

• Add a WebForm

– Add > New Item > Web Form > OK

– Add controls from toolbox

– Manually add styles, and text

• Build and run.

• Iterate to add additional capability

– More forms

– XML and SQL data

– More controls

Example

Example - Continued

Server-Side Programs

• You can run any .Net webform that resides in a virtual
directory simply by requesting it from a browser:
– http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE686/code/

AspApps/BasicAsp/PickAgain.aspx
– Provided that directory permissions allow this.

• On Windows platforms most server-side processing takes
the form of Active Server Page (ASP), ASP.Net, or
ASP.Net MVC applications.

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE686/code/AspApps/BasicAsp/PickAgain.aspx

Running Example Code

• Asp.Net applications run from a virtual server:

lcs-vc-fawcett2.syr.edu

for which I have administrator privileges, needed to set virtual
directory properties.
– To run the examples from your own machine, just right click on a zip

file in the college server and select “save target as”.
– If you are running Win7 or Win8 you need to use IIS Manager to create

a virtual directory and application. Use Asp.Net 4.5 Application Pool.
– Now you can open the site with

http://localhost/VirtualDirectoryName/formName.aspx
– You can also run applications in Visual Studio by opening the sln if the

application has one.

http://localhost/setName/formName.aspx

Traditional ASP

• Traditional (pre .Net) ASP provides interpreted
application scripts running in the memory space of the
IIS web server.

– A traditional ASP page consists of a mix of HTML, sent directly to
the requesting browser and Javascript or Vbscript executed on
the server, usually to generate html for display or interact with a
backend database.

– Traditional ASP uses a set of standard server side COM objects
and can use custom COM objects as well.

– Deploying custom COM objects to remote servers has been a
major problem.

Server-Side Objects

• Traditional ASP provides seven objects used for server-side programming:
– Application:

• starts when IIS starts and runs until IIS shuts down

– ASPError
• ASPError object is returned by Server.GetLastError(), and has the properties:

Source, Category, File, Line, Description, ASPDescription

– ObjectContext
• Access to COM+ objects

– Request:
• Provides methods:

Form(), QueryString(), Cookies(), ServerVariables()

– Response:
• Provides methods:

Write(), Clear(), End(), Flush(), Redirect(), Buffer, Expires, IsClientConnected(), PICS()

– Server:
• Provides methods:

Execute(), Transfer(), MapPath(), URLEncode(), HTMLEncode(), GetLastError()

– Session:
• starts when a user requests first page and ends with a timeout

ASP .Net

• ASP.Net supports the traditional style, but adds
processing power of compiled C# and a pervasive object
model.

– We can create user-defined classes in C# and use them on ASP
pages. Any .Net language can be used this way.

– Web controls are based on CLR objects. Control state is sent
back and forth between client and server in a hidden viewstate.

– An ASP.Net page can easily be turned into a server control that
can be used on any other ASP page.

ASP.Net Environment

Web Server

IIS

ASP.Net

Request
Object

Response
Object

System.IO.Directory
System.IO.Path
System.IO.File

ADO.Net

GET

POST

HTML

XML

.Net Language
Compilers

ASP.Net WebForm

• An ASP.Net Web Form page has:

– A single form control:

• <form id=“form1” runat=“server”> … </form>

– Zero or more server controls:

• That render themselves to HTML

• Have methods, properties, and events

– Server controls come in two flavors:

• HTML controls that have html tags

– <input id=“Checkbox1” type=“checkbox” runat=“server”/>

• Standard (Web) controls

– <asp:Button ID=“Button1” runat=“server” Text=“…” />

Page Rendering Model

• When an aspx page is requested, a Page object is
instantiated, and an object is created for each control on
the page.

– Each of the control objects is added to the page’s controls
collection.

• When the page renders:

– It generates HTML representing the form

– Calls each of its controls to render itself, resulting in:

• HTML generated for each control.

• Javascript that generates a postback to the server each time the
client takes some action that triggers a client-side HTML-based
event.

The First Call

• The first time a page is loaded
after creation or a change to
its text:

– ASP.Net parsers extract code
from the codebehind file and
build a class, derived from
System.Web.UI.Page, that
contains a collection for the
page’s controls, renderning
code, events, …

– The aspx file is parsed, and a
class, derived from the code
behind-based class, is built to
render the page.

System.Web.UI.Page

Class Created from

Markup

Code behind class

Page Serving Model

Web Server

C#
Event

handlers

CSS

Javascript

Browser

HTML

Document Object Model
(DOM)

Flow Model

Renderer

http::GET

Box Model

Asp.Net Dynamic Serving Model

HTML

Relational
Data

Model

Asp Page
Model

Control
Model

ADO.Net

Aspx

Server Object Models
Request, Response,
Session, Application,

...

Postback http::POST via Javascript event handler from a Form control

ASP.Net Page Contents

• An ASP.Net page contains:
– Directives for the compiler, which must include a <@Page … >

directive.
– Literal HTML content, intended for the client
– Code in C#, VB, Jscript.Net. The Code will:

• Respond to client-side events that result in a PostBack to the server

and may also:
• generate HTML for client
• get or send data to a database on this or a remote server
• interact in some way with the server’s file system

– Traditional script, e.g.: Javascript or Vbscript
– Embedded ASP.Net server controls

• Means to collect information from, and present information to, clients
• Control state is preserved in transactions between client and server using a

hidden viewstate.

– Server HTML controls, based on the traditional HTML controls
• Also manages information between client and server. Preserving state

requires more work on programmer’s part.

Page GET Life Cycle

• Browser issues an HTTP GET request for an aspx page.

• The IHttpHandler::ProcessRequest method is called.

• Handler creates a Page-derived class by loading the aspx
page specified in the request, and loading any requred
dynamic link libraries (dlls), residing in the application’s
bin directory.

• Server calls Page’s ProcessRequest, which results in a
recursive call to __Render__control for the page and
each of its child controls.

– Each control’s __Render__control call is responsible for
constructing html for it’s own part of the page display.

Page POST Life Cycle

• Any event triggered by a user action in the client browser generates
a submit request and subsequent HTTP POST message. The body
of the message contains data from the form to be processed on the
server.

• POSTed data is captured by the server’s request object and
processed by event handlers in the original aspx page’s C#
Codebehind. This processing almost always results in more
rendering and the page is then sent back to the client.

• Complete cycle:

– GET  reply  user action  POST  reply  user action …

– The Page.IsPostback property tells server code whether processing is in
response to a GET or a POST command.

What’s So Great about Asp.Net?

• The object model, with its Page class that supports Asp.Net pages,
is extremely helpful in building effective websites:

– We can build a Page derived class that will serve as a base class for all
our web pages that contains all the code common to pages in the site:

• styles

• controls (navigation bar and user access control for example)

• Headers and Footers

– User defined controls are easy to define and reuse.

– All of the power of the .Net framework is available for our server-side
processing, e.g.:

• directory and file manipulation

• Regular expression analysis

• XML processing

• Web services

• Advanced data management classes

ASP .Net Applications

• You can build an ASP application using notepad to create an aspx
page, a C# code page, and, optionally, a web.config file.

• Here’s what is required to do that:
– Create an aspx file that has:

• Page directive that contains an Inherits attribute that specifies a class from the code
page, e.g., Inherits=“_Default”

• HTML including a form and one or more controls

– Create a codebehind cs file that contains:

• Event handlers for each of the aspx control events you want to handle

• Helper code

• Make each of these members of a class derived from System.Web.UI.Page

• Declare protected fields with names the same as the IDs of the controls on the aspx
page, e.g., TextBox UserName;

• Compile the cs file into a library dll and place the dll in a bin subdirectory immediately
below the aspx application.

• Of course, you can do that quickly by running the website wizard.

Page Hierarchy using Reflection

Hierarchy discovered by using

reflection in Form_Load, e.g.,

GetType(), GetType().BaseType,

and GetType.BaseType.BaseType

HTMLServer Controls

• Input: Button, Reset, Submit, Text, File, Password, Checkbox,
Radio, Hidden

• Textarea, Table, Image, Select, Horizontal Rule, Div

• <INPUT id=“UserID” style=“…” type=“text” runat=“server”>

• Allows you to take any valid html page and change its extension to
aspx and have it run as an ASP.Net application.

– This makes migration from older sites somewhat easier.

WebServer Controls

• Label, TextBox, Button, LinkButton, ImageButton, HyperLink,
DropDownList, ListBox, CheckBox, CheckBoxList, RadioButton,
Image, ImageMap, Table, BulletedList, HiddenField, Literal,
Calendar, AdRotator, FileUpLoad, Xml, MultView, Panel, PlaceHolder,
View, Substitution, Localize

• <asp:Label id=“Label1” runat=“server”
BorderColor=“maroon”>default text</asp:Label>

• Richer behavior, styles, and configurations than HTML controls.

Server Controls

• WebServer Controls

– These controls have state which is marshalled between client
and server in a hidden ViewState variable.

– Events, like button clicks, that happen on the client side, are
marshalled back to the server to trigger event handlers in C#,
processed on the server.

• This event model is based on encapsulated Javascript processing
that posts page data back to the server when a specific event
occurs.

References

• Pro ASP.Net 4.0 in C# 2010, MacDonald, Freeman &
Szpuszta, Apress, 2010

• Programming Microsoft .Net, Jef Prosise, Microsoft Press,
2002

• http://Asp.net/ has some interesting tutorial material
and videos on ASP.Net.

