
ASP.NET Security

Scott Guthrie

ASP.NET Team

Microsoft Corporation

Agenda

 Overview

 ASP.NET Security Concepts

 Process Identity

 Authentication

 Authorization

 Role-Based Security

 Encryption

 Defending against Common Web Hacks

 Client Side Script Injection Attacks

 SQL Injection Attacks

ASP.NET Security Concepts

 Process Identity

 NT Account server code runs under

 Authentication

 Identifying username identity of a client

 Authorization

 Controlling access of an identified user

 Role Based Security

 Organizing identities into custom groups and
controlling access by those groups

 Encryption

 Protecting traffic between server and client

Process Identity

Process Identity

 Process Identity refers to the Windows Account
that your server code is running under

 “ASPNET” account default on Win2000 and XP

 “Network Service” account default under Win2003

 Recommendation:

 Give process account as few permissions as
possible (ex: ASP.NET can’t by default write to files)

 Strongly recommend keeping the out of the box
process default process identity unless you have a
very good reason to change it

Setting Process Identity

 ASP.NET on Win 2003 enables per-application
process identities (configured via app pools)

 Each application can run under unique account

 Easily configured via IIS MMC Admin Tool

 ASP.NET on Win 2000 and Win XP enables per-
machine process identity (shared for all apps)

 Can enable per application impersonated identity –
but worked process identity shared for all apps

 Process account configured in machine.config file

 ASPNET_SetReg.exe allows the machine.config
process username/password to be encrypted
(new feature with ASP.NET V1.1)

Authentication

Authentication

 Authentication is the process of identifying
and verifying “who is” a visiting browser

 Example: REDMOND\scottgu

 Example: scottgu@microsoft.com

 Example: puid:8934839938439839843

 Three built-in authentication options:

 Windows Authentication

 Forms Based (Cookie) Authentication

 Microsoft Passport Authentication

 You can create your own modules for custom
authentication approaches

mailto:scottgu@microsoft.com

Authentication Code

 Application security code the same
regardless of authentication mode used

 “User” component provides same OM

 “Request.IsAuthenticated” property

‘ Output custom welcome message to user

If (Request.IsAuthenticated = true) Then

WelcomeMsg.Text = “Hi “ & User.Identity.Name

End If

…….

<asp:label id=“WelcomeMsg” runat=server/>

Windows Authentication

 Authenticates usernames/passwords
against NT SAM or Active Directory

 Ideal for Intranet security scenarios

 Credential resolution handled directly
by browser/server

 NTLM (under the covers)

 Basic/Digest dialog pop-up

 User.Identity.Name returns NT account:

 DOMAIN\username: REDMOND\scottgu

Windows Authentication

 Enable windows authentication by
placing web.config file in app root:

<!– Application’s Root Web.Config File -->

<configuration>

<system.web>

<authentication mode=“Windows”/>

</system.web>

</configuration>

Windows Authentication
Demo

Forms Authentication

 Utilizes html based sign-in login form to
prompt users for username/password

 Login page UI completely customizable

 Username/password store flexibility

 Can be stored anywhere, including database

 Ideal for Internet scenarios

 Works with any browser and any OS

 Doesn’t require any NT accounts on server

How Forms Authentication Works

Web Browser

1

1. HTTP GET securepage.aspx

2

2. HTTP 302 Redirect

Location: login.aspx

3

3. HTTPS POST login.aspx

<form data containing credentials>

5

5. HTTP 200 Status OK

Set-Cookie: .ASPXAUTH Auth Ticket

6

6. HTTP GET securepage.aspx

Cookie: .ASPXAUTH Auth Ticket

4

4. App

authentication

IIS/

ASP.NET

Database

Implementing Forms Auth

 Developer Steps:

 1) Configure Web.Config for Forms auth

 2) Write your Login page

 3) Implement password check in login page

Forms Auth Web.Config
<configuration>

<system.web>

<authentication mode=“Forms”>

<forms name=“.MyAppCookieName”

loginUrl=“login.aspx”

protection=“all”

timeout=“30”

requireSSL=“false”

slidingExpiration=“true”

path=“/” />

</authentication>

</system.web>

</configuration>

Forms Auth Web.Config
 Consistent machine keys must be set

for web farm scenarios

<configuration>

<system.web>

<machineKey validationKey=“autogenerate”

decryptionKey=“autogenerate”

validation=“SHA1” />

<!– Validation = [SHA1|MD5|3DES] -->

</system.web>

</configuration>

Writing A Login Page

 1) Provide your Custom HTML UI

 Typically have textboxes + checkboxes

 2) Login button event handler

 Validate username/password however you
want (database call, AD call, etc)

 3) Call ASP.NET APIs to:

 Issue authentication cookie

 Redirect to original URL

FormsAuthentication Class

 RedirectFromLoginPage Method

 After authentication, redirects back to
original request URL

 GetAuthCookie Method

 Retrieves the authentication cookie
(doesn’t add it to the outgoing response)

 SetAuthCookie Method

 Appends the authentication cookie to
the outgoing response (no redirect)

Forms
Authentication Demo

.NET Passport Authentication

 Single sign-in across member sites

 No separate usernames/passwords required

 Large installed based: 165 million users today

 Built-in support within Windows XP

 Ideal for Internet security scenarios

 Integrated into ASP.NET authentication

 Requires Passport SDK installation

 More details at http://www.passport.com

Custom Web Authentication

 Application.AuthenticateRequest event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

 Scenarios:

 Custom SOAP authentication

 Non-cookie forms auth for mobile devices

 Customize forms authentication

Authorization

Authorization Strategies

 1) Windows Security & ACLs

 ACLs checked for Windows authentication

 Independent of impersonation

 2) URL Authorization

 Imperative “allow” or “deny” tags

 Supports non-Windows accounts

 Easy XCopy Deployment Solution

 3) Custom Authorization

 Role your own (database calls, etc)

Using URL Authorization

 Example: deny user “fred”, allow users
“scott” and “mary”

<configuration>

<system.web>

<authorization>

<deny users=“fred”/>

<allow users=“scott”/>

<allow users=“mary”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: deny user “fred”, allow all other users

<configuration>

<system.web>

<authorization>

<deny users=“fred”/>

<allow users=“*”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: deny anonymous users (force
authentication to take place)

<configuration>

<system.web>

<authorization>

<deny users=“?”/>

<allow users=“*”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: force authentication only on the
Checkout.aspx page

<configuration>

<location path=“Checkout.aspx”>

<system.web>

<authorization>

<deny users=“?”/>

<allow users=“*”/>

</authorization>

</system.web>

</location>

</configuration>

URL Authorization Demos

Custom Web Authorization

 Application.AuthorizeRequest event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

 Scenarios:

 Implement per-request billing system

 Restrict access based on time of day or
other custom parameters

 Restrict access based on behaviors (e.g.
implement a per-day access limit, etc).

Role Based Security

Custom Roles
 Role based security allows application devs to

define custom identity groups
 Roles not tied to NT domain groups

 Examples: “Brokers”, “SalesPeople”, “Admins”,
“VP”, “Premium”, “Partners”

 Enables more flexible authorization of
resources and code than per user checks
 Declaratively through Web.Config

 Through code: User.IsInRole method

 Goal: Application administrators can modify
role members once app deployed
 No code or configuration changes required

Defining Roles

 Roles are specified programmatically
using Application_Authenticate event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

‘ Global.asax Authenticate Event Handler

Sub Application_Authenticate(Sender as Object, E as EventArgs)

Dim roles() as String = GetRolesFromMyDB(User.Identity.Name)

Context.User = new GenericPrincipal(User.Identity, roles)

End Sub

Authorizing against Roles

 Roles can be used to grant/deny access
within Web.Config files:

<configuration>

<system.web>

<authorization>

<allow roles=“Admins”/>

<allow roles=“Premium”/>

<deny users=“*”/>

</authorization>

</system.web>

</configuration>

Roles and Code

 User.IsInRole() method can be used to
check roles within code at runtime

‘ Restrict who can make expensive purchase

If ((amount < 10000) Or (User.IsInRole(“VP”)) Then

‘ Do purchase

Else

Throw New Exception(“You require VP expense approval!”)

End If

Role Based
Security Demo

Encryption

Encryption

 ASP.NET supports wire encryption of
network traffic using SSL through IIS

 https://www.foobar.com/login.aspx

 Request.IsSecureConnection

 Indicates whether request is SSL based

 System.Security.Cryptography

 .NET Namespace provides cryptographic
encoding/decoding of arbitrary data

https://www.foobar.com/login.aspx

Encryption

 Recommendations:

 Use SSL when passing username/
password credentials over the web

 Encrypt or one-way hash passwords
stored within databases (secures in
event of DB penetration)

 Never store secrets or passwords in clear
text – use framework to encrypt within a
secret store (example: DAPI)

Common Web Hacks

Client Side Script Injection

 Very common hacking technique used
on the web today

 Hacker Technique:

 Find place on website where input is taken
from users, and then redisplayed on a page

 Provide client-side script for input, unless
developer html encodes it on the server,
the script will execute when redisplayed

 Note: All web applications (PHP, ASP,
JSP and ASP.NET) susceptible to this

CSS Injection Example

<script language=“VB” runat=“server”>

Sub Page_Load()

Label1.Text = “Hello “ & Request.QueryString(“name”)

End Sub

</script>

<html>

<body>

<asp:label id=“Label1” runat=“server/>

</body>

</html>

Home.aspx?name=<script>alert(‘Gotcha!’);</script>

Client Side Script Injection

 Prevention Techniques:

 HtmlEncode all inputs from the browser

 Server.HtmlEncode(input)

 HttpUtility.HtmlEncode(input)

 ASP.NET V1.1 ValidateRequest feature

 Enabled by default in ASP.NET V1.1

 Detects and raises error when some
common CSS attacks are passed to server

 Still use HtmlEncode in addition though!

Client Side Script
Injection Demo

SQL Injection Attacks

 Very dangerous hacking technique –
leads to data loss/corruption/penetration

 Hacker Technique:

 Find place on website where input is taken
from users (not necessarily redisplayed)

 Assume input is being used in a database
operation, try to escape out of a developer’s
late-bound database query and cause
alternative query to be executed

 Note: All web applications (PHP, ASP,
JSP and ASP.NET) susceptible to this

SQL Injection Example
<script language=“VB” runat=“server”>

Sub Page_Load()

Dim connection As SqlConnection

Dim command As SqlCommand

Dim query As String

query = "SELECT * from Products Where QtyInStock > " & Request ("qtyinstock")

connection = New SqlConnection(ConfigurationSettings.AppSettings(“products"))

command = New SqlCommand(query, connection)

connection.Open()

DataGrid1.DataSource = command.ExecuteReader()

DataGrid1.DataBind()

connection.Close()

End Sub

</script>

SQL Injection Prevention

 Always, Always, Always use type-safe
SQL parameters for data access -> no
lazily constructed SQL statements

 Use stored procedures for data access
and avoid dynamic SQL statements

 Make sure you use parameters when calling
the SROCS or still be susceptible to attacks!

 Disable dynamic SQL statement in DB –
require all access through SPROCs you write

 Limit the ASP.NET account to only have
access to the SPROCs it needs

SQL Injection Demo

Summary

 Security is a critical feature of every app

 Design and incorporate it up front

 Always be vigilant about potential attacks

 ASP.NET provides a rich and flexible
security architecture

 Built-in support for common scenarios

 Flexible enough for custom adapting

Additional Resources

 Online Discussion Groups:

 www.asp.net Security Forum

 www.aspadvice.com Security Listserv

 Microsoft Prescriptive Guidance Books:

 http://msdn.microsoft.com/practices/

 Watch for:

 Improving Web Application Security –
Threats and Countermeasures patterns &
practices book (currently in beta)

http://www.asp.net/
http://www.aspadvice.com/
http://msdn.microsoft.com/practices/

