
ASP.Net – Part II

Jim Fawcett

CSE686 – Internet Programming

Spring 2011

References

 Pro ASP.Net 4.0 in C# 2010, MacDonald, Freeman, & Szpuszta,
Apress, 2010

 Programming Microsoft .Net, Jeff Prosise, Microsoft Press, 2002,
Chapters 5 and 6.

 Essential ASP.NET with Examples in C#, Fritz Onion, Addison-
Wesley, 2003

– Several of the examples used here for state management were
used with only minor modifications from this reference.

Topics

 Architecture

 Controls

 Data Binding

 State Management

Architecture

 ASP application

– ProcessXML.aspx

– ProcessXML.aspx.cs

– Web.config

 Page Class

– MapPath()

– Application

– ContentType

– Context

– IsPostBack

– Request

– Response

– Server

– Session

– Trace

– User

– …

 ProcessXML_aspx
– Page_Load(Object, System.EventArgs)
– Button1_Click(Object, System.EventArgs)
– InitializeComponent()
– …

System.Web.UI.Page

ProcessXML_aspx

(WebForm class)

XMLReadAndWrite.WebForm1

(Codebehind class)

Page Events

 public event EventHandler Init;
Page_Init(object,EventArgs)

 public event EventHandler Load;
Page_Load(object,EventArgs)

 public event EventHandler PreRender;
Page_PreRender(object,EventArgs)

 public event EventHandler Unload;
Page_Unload(object,Eventargs)

 protected virtual void
OnInit(EventArgs e);

 protected virtual void
OnLoad(EventArgs e);

 protected virtual void
OnPreRender(EventArgs e);

 protected virtual void
OnUnload(EventArgs e);

ASP.Net Directives

 @Page

– Defines Language and Code-Behind file

 @Import Namespaces

– Equivalent to using directives

 @Register

– Registers user controls with page. Page will call render on each of its
registered controls.

 @Implements

– Declares an interface this page implements

 @Reference

– Specifies a page or user control that will be compiled and linked at run-time

 @Assembly

– Links an assembly to the current page during compilation

 Plus more – see help documentation

Page Attribures

 CodeFile

– Specifies a path to a code-behind file for the page. Used with
Inherits attribute.

 Inherits

– Defines a code-behind class for the page to inherit.

 AutoEventWireup

– If true, the default, simple event handlers like Page_Load(…) are
wired up automatically.

 Debug

– If true, code behind is compiled with debug symbols.

ASP Components

 You can create library assemblies that are available to every
aspx page in your application.

– Compile the library dll assembly

– Place it in a bin directory under the application virtual directory

– It will then be implicitly referenced by any page that loads from the
application directory

– You can copy over the dll with an update without stopping IIS.

• If you do this, the new version becomes available on the next page
load.

Controls

 HTML Controls

– HTML syntax

– runat=server attribute

– Derives from HtmlControl

– Instance created at server when
page is constructed

 Examples:

– <form runat=server>

–

– <input type=file runat=server>

– <input type=radio runat=server>

 Web Controls

– asp: prefix

– runat=server attribute

– Derives from WebControl

– Instance created at server when
page is constructed

– Richer set of methods, properties,
and events than HTML Controls

 Examples:

– <asp:TextBox id=tb1
runat=server>

– <asp:Button Text=“Submit”
runat=server>

Web Control Catalog

 TextBox

 Label

 HyperLink

 Image

 CheckBox

 RadioButton

 Table – matrix addresses

 Panel

 Button

 ListBox

 DropDownList

 CheckBoxList

 RadioButtonList

 Repeater – HTML template

 DataList – HTML template

 DataGrid – no longer in toolbox
by default, but can be added

 Calendar

 Validation Controls
– RequiredField

– RegularExpression

– Range

– Compare

– Custom

Data Related Controls

 Data Controls

– GridView

– DataList

– DataSet

– DetailsView

– FormView

– Repeater

– SqlDataSource

– ObjectDataSource

– XmlDataSource

– SiteMapDataSource

 Validation Controls

– RequiredFieldValidator

– RangeValidator

– RegularExpressionValidator

– CompareValidator

– CustomValidator

More Controls

 Navigation Controls

– SiteMapPath

– Menu

– TreeView

 Login Controls

– Login

– LoginView

– PasswordRecovery

– LoginStatus

– LoginName

– ChangePassword

 Webparts

– WebPartManager

– ProxyWebPartManager

– WebPartZone

– CatalogZone

– DeclarativeCatalogPart

– PageCatalogPart

– ImportCatalogPart

– EditorZone

– AppearanceEditorPart

– BehaviorEditorPart

– LayoutEditorPart

– PropertyGrideEditorPart

– ConnectionsZone

User Defined Controls

 User controls are stored in ascx files.

 They contain an @control directive that plays the same role as
the @Page directive for WebForms.
– <%@ Control classname=“UserControlCS” %>

 In an aspx file that uses the control:
– <%@ Register

TagPrefix=“cse686” TagName=“IP” Src=“MyControl.ascx”
%>

– <cse686:IP id=“myControl1” runat=“server” />

 A user control may contain HTML and codebehind with
methods, properties, and events.

 Events are declared as delegates with the event qualifier

Custom Server Controls

 Custom Server Controls are stored in C# files.

 A Server Control contains a C# class that defines the attributes:
– [Bindable(true)]

– [Category(“Appearance”)]

– [ToolboxData(“<{0}:NavBar runat=server></{0}:NavBar>”)]

 And a class NavBar : System.Web.UI.WebControls.WebControl

 In an aspx file that uses the control:
– <%@ Register

TagPrefix=“cse686” assembly=“NavControl”
namespace=“NavControl

%>

– <cse686:NavBar id=“NavBar1” runat=“server” />

Data Binding

 Data Binding provides an abstraction for loading a control with
data provided by some collection.

 The data is cached in the control until it is rendered on the
client’s page by putting it onto the response buffer, formatted
according to the control’s policy.

 We have already seen an example of binding an HTML table to
an XML file, in Lecture #2.

 Binding is often used when an ASP application connects to a
database through a DataReader or DataSet.

Data Binding

 Controls that Support Data Binding must expose:

– a property called DataSource

– a method called DataBind()

 The data source must provide:

– IEnumerable interface

 Example:
DataSet ds = new DataSet();

ds.ReadXML(Server.MapPath(“test.xml”);

ListBox1.DataSource = ds;

ListBox1.DataTextField = “file”; // omit if flat

ListBox1.DataBind();

Data Binding

 Data Binding Controls

– HtmlSelect

– CheckBoxList

– DataGrid

– DataList

– Repeater

– DropDownList

– ListBox

– RadioButtonList

 Data Sources

– Array

– ArrayList

– HashTable

– Queue

– SortedList

– Stack

– StringCollection

– DataView

– DataTable

– DataSet

– IDataReader

– Classes that implement
IEnumerable

State Management

 Adding user state inherently reduces scalability.
– So if you are trying to provide a resource that handles a large

volume of traffic, you will want to minimize use of state.

 Types of state
– Application:

Shared across all clients of this application

– Session:
Per client state persistent over page boundaries. Requires cookies
or URL mangling to manage client association.

– Cookie:
Per client state stored on client. Clients can disable cookies.

– ViewState:
Shared across post requests to the same page. Sent back and
forth with each request.

Application State

 In Global.asax: (add new item/Global Application Class)
void Application_Start(object src, EventArgs e)

{

DataSet ds = new DataSet(); // populated by clients

Application[“SharedDataSet”] = ds;

}

 In Application Page:
private void Page_Load(object src, EventArgs e)

{

DataSet ds = (DataSet)(Application[“SharedDataSet”]);

// client interacts with DataSet

}

Session State

 By default session state is managed in the same process and
application domain as the application so you can store any data
in session state directly.

 Session state is available as a property of both Page and
HttpContext classes.

 It is:
– Initialized in Global.asax

– Accessed in any member function of the Page.

 You specify whether you want session ids managed as cookies
or URL mangling in the web.config file:

<configuration>

<system.web>

<sessionState cookieless=“true” />

</system.web>

</configuration>

Session State

 In Global.asax:
void Session_Start(object src, EventArgs e)

{

DataSet ds = new DataSet(); // populated by clients

Session[“myDataSet”] = ds;

}

 In Application Page:
private void Page_Load(object src, EventArgs e)

{

DataSet ds = (DataSet)(Session[“myDataSet”]);

// client interacts with DataSet

}

Cookies

 Protected void Page_Load(Object sender, EventArgs e)

{

int age = 0;

if(Request.Cookies[“Age”] == null)

HttpCookie ac = new HttpCookie(“Age”);

ac.Value = ageTextBox.Text;

Response.Cookies.Add(ac);

age = Convert.ToInt32(ageTextBox.Text);

}

else

{

age = Convert.ToInt32(Request.Cookies[“Age”].Value);

}

// use age

}

ViewState

 ViewState is used by ASP controls to transfer control state back
and forth between server and client.

 You also can use ViewState to transfer application state:

private void Page_Load(Object sender, EventArgs e)

{

ArrayLIst cart = (ArrayList)ViewState[“Cart”];

if(cart == null)

{

cart = new ArrayList();

ViewState[“Cart”] = cart;

}

}

// use cart with:

ArrayList cart = (ArrayList)ViewState[“Cart”];

cart… yada, yada, yada

End of Presentation

