
Asp.Net Core MVC
Jim Fawcett

CSE686 – Internet Programming
Spring 2019

What is Asp.Net Core MVC?

▪Framework for building web applications

▪Based on Model-View-Controller pattern
 Model manages the application data and enforces

constraints on that model.
 Often accessed through persistent objects

 Views are mostly passive presentations of application
state.
 Views generate requests sent to a controller based on client

actions.

 Controllers translate requests into actions on the data
model and generate subsequent views.

MVC Structure

Mvc Structure
• Controllers

• Connect Views to Data

• Models
• Provide structured data,

usually persisted to a db

• Accessed through C# class
instances

• Views
• Combine markup and C#

code to display and accept
data.

MVC Life Cycle

•Clients request a named action on a specified
controller, e.g.:
• http://localhost/aController/anAction

•The request is routed to aController’s anAction
method.
• That method decides how to handle the request,

perhaps by accessing a model’s state and returning some
information in a view.

• User actions in the view, e.g., data entered, button
presses, result in get (ActionLink) or post (Button)
requests to a specific controller action.

• That process may repeat for many cycles.

http://localhost/aController/anAction

What is a Model?

•A model is a file of C# code and often an associated
data store, e.g., an SQL database or XML file.
• The file of C# code manages all access to the

application’s data through objects.
• Linq to SQL and Linq to XML can be used to create

queries into these data stores
• This can be direct

• More often it is done through objects that wrap db tables or XML
files and have one public property for each attribute column of
the table.

MvcSkeleton with CRUD Model

Adding a Model

•Right-click on Model folder and select Add Class.
• Populate the model class with public properties that

represent data to be managed.
• Usually the model is persisted to an XML file or SQL

database using LINQ or the Entity Data Framework.

What is a View?

▪Views are cshtml files with only HTML and inline
C# code, e.g., <td>@crs.Number, @crs.Name

 Code is used just to support presentation and does no
application processing.

 The HTML is augmented by HTML Helpers, provided by
Asp.Net Core MVC that provide shortcuts for
commonly used HTML constructs, e.g.:

@Html.ActionLink(“Edit”, “Edit”, new { id = crs.Id })

 Asp.Net MVC also provides tag helpers that translate
into pure markup, e.g.:

<input asp-for=“Name” />

Create View

Views are results of Controller actions (methods)

Html Helpers

• ActionLink:
links to an action method

• CheckBox

• DropDownList

• EditTextBox

• Hidden

• ListBox

• Password

• RadioButton

• TextArea

• TextBox

Adding a View

• Right-click on View folder select Add View and configure view from
the resulting dialog.

• It’s easy to generate tables and lists that can be edited and posted back to
the controller to effect changes to its model.

• The HTML helpers on the previous page make building a view a fairly simple
process.

• The wizard for Strongly Typed views does most of the work in rendering
model details.

What is a Controller?

•A controller is a C# class that derives from the class
Controller.
• A controller defines some category of processing for the

application.
• Its methods define the processing details.
• Routing to a controller is defined in Startup.Configure

method.

Data Binding

• If a controller method takes a model class as a parameter, then the
MVC infrastructure will instantiate an instance and pass to the
controller method when requested via a url.

• On postback, if View parameters have the same names as model
names, then the MVC infrastructure uses reflection to bind current
view values to the model.

MvcSkeleton with CRUD Controller
• Action methods

Action returns ActionResult

•ActionResult: base class

•ContentResult: user defined object to Response

•EmptyResult: Nothing to Response

•FileResult: Send binary file to Response

•RedirectResult: redirect to url

•RedirectToRouteResult: redirect using routes

• JasonResult: send json to Response

• JavaScriptResult: send Javascript to Response

•ViewResult: Render a view

Adding a Controller

• Right-click on the Controller folder and select Add Controller.

• Populate controller with methods whose names will become views
and that take model parameters to supply views with data and react
on postback to data changes made in view.

Web Application Development
▪ Create a new Asp.Net Core MVC project

 Delete any part of that you don’t need

▪ Add a controller for each category of processing in your application:
 A category is usually a few pages and db tables that focus on some

particular application area

▪ Add methods to each controller for each request you wish to handle.

▪ Add views as needed for each controller action

▪ Add Model classes to support the application area:
 Each model class has public properties that are synchronized with

data in the model db or XML file.

An Opinion

• This Asp.Net Core MVC structure is very flexible:
• You can have as many application categories as you need, simply by adding

controllers.

• The controllers keep the application well organized.

• You can have as many views as you need. The navigation is simple and
provided mostly by the MVC infrastructure, e.g., routing.

• You can have as many models as you need. Just add classes and use Linq to
access the data.

Things you may use

• LINQ – Language integrated query
• Linq to XML and Linq to SQL are commonly used by

models to provide data needed by a controller for one of
its views.

That’s All Folks

