
CSE681 – Software Modeling and Analysis Fall 2013 

Project #5 – Source Code Repository Architecture Document          
due Monday, Dec 9th 
Version 2.3 

Purpose: 

 
This project develops an Operational Concept Document (OCD) for a Source Code Repository client and server.  The 
purpose of the Repository is to enable insertion and extraction of source code files into a project’s baseline and to 
display information about their properties and relationships.  Authenticated check-in and versioning are required. 
 
The Repository client displays information about Repository files in a Graphical User Interface (GUI) with several 
panes used to display some metadata properties and text of the current file and panes to show the child and parent 
dependencies.  Clicking on a child or parent makes that file the current file.  File caching on Repository and its clients 
is required to avoid unnecessary file transfers. 
 

Context: 
 
This Repository is one member of a server federation, illustrated in Figure 1., designed to support software 
development.  Other members of the federation are a Test server, providing a test harness supporting continuous 
integration, and a Project server that stores and publishes project management information and supports 
collaborative communication through virtual meetings1 and shared document resources. 
 
All of the federated servers are designed as distributed virtual servers.  This means that: they can be run in virtual 
environments, server contents can be distributed across several server instances, and that they provide a cloning 
facility that will allow any authenticated user to create an instance on a local desktop with a specified subset of the 
source server contents, and that new and modified contents can be checked into the source server.  This allows local 
use of the development environment for initial creation and testing before inserting the new products into the 
project’s baseline. 
 
In Figure 1, below, we show the Federated Server context in which the Repository server must operate.  We see that 
all the servers collaborate through message-passing communication to provide a powerful software development 

environment.  The Repository’s role is to manage a project’s current baseline, e.g., the collection of its 
documentation and source code. 
 
The Project server manages all of the data required to manage a large project, e.g., definition of work packages and 
their schedules and assigned responsible individuals, and means to support collaboration between project teams, 
some of which may be in remote locations.  As an example, Figure 2 shows a hypothetical package structure for the 
Project server.  This illustrates the level of detail needed to capture the concept for a large federated system.  The 
Repository server will need a similar, though not identical, package structure.  
 
The Test server supports continuous test and integration.  Whenever a new package is inserted or an existing 
package has a new version checked into the Repository the Test Harness runs a sequence of tests against the 
modified subsystem or entire project to see if anything breaks.  This implies that every check-in of new or modified 
source code should be accompanied by one or more tests to be added to a test sequence for the project baseline.   

 
Figure 3 provides a class diagram for a major part of the Test server.  This is a rare case where classes and class 
relationships help to clarify the system concept.  Usually class diagrams are reserved for design documentation. 

                                                 
1 This might be implemented by automating google+ hangouts. 



CSE681 – Software Modeling and Analysis Fall 2013 

Figure 1 - Software Development Collaboration System

Project Server

Repository
Server

Test Harness
Server

Client

Check-in
Check-out

Run analysis tools
View reports

Run collab. Tools
View reports

Post test configurations
Run tests

View reports

Supply code to Test Harness
Post test results to Repository

Retrieve Product Status    

Chat,
Exchange Docs,

Whiteboard collab

Dependency-based Storage 
of certified code and 
documents, provides 
product analysis tools

Runs certified tests 
on certified code

Stores management information
 (work packages, schedules, job descriptions), 

provides collaboration tools

All development 
occurs here.  Posts 
results to servers.

 
 

 

QueryHandler

ServerExec

TeamStructure 
Server

Comm

WorkPackage 
Server

Scheduling 
Server

WhiteBoard 
Server

Wiki 
Server

ProgressMonitor 
Server

MessageHandler

Figure 2 – Project Server Packages

   



CSE681 – Software Modeling and Analysis Fall 2013 

 
 
 

+write()

+showAll()

«interface»

ILogger

MemoryLogger

+test() : bool

+registerTest() : void

-ArrayList

-failed : unsigned int

tester

+test() : bool

+title(in str : string) : void

-tout : ILogger

-title : string

test

aTest - Application Specific Test Driver

1 *

Figure 3 - Test Harness Structure

MemoryStream

ConsoleLogger

Console

FileLogger

FileStream

+test() : bool

«interface»

ITest

1*

class from Tested Module #1

+GenerateNext() : object

«interface»

ITestVectorGenerator

TestVectorGenerator

ApplicationTVG

ApplicationFL ApplicationCL ApplicationML  
 

 

Repository Relationships: 
 
Figure 4 illustrates how the Repository server manages dependency relationships between the resources it holds.  
Note that the metadata graph is virtual.  It does not exist as an in-memory data structure.  Instead all the graph 
relationships are embedded into metadata files.  To traverse the graph we open each metadata file in turn to get 
navigation information, closing the file when we no longer need that information.  Often that will be part of a 
recursive search.  The file is opened when we first navigate to that node of the graph, and is closed when the 
recursion pops out of that node. 
 
When a modified file is checked into the Repository a new version of its metadata file is created and added to the 
repository contents along with the modified file.  These do not replace the previous versions.  Any packages that link 
to the old version remained linked to the old version.  When the owner of a parent package wishes to update to the 
new version, without changing the parent contents, a new version of the parent metadata is created that links to the 
old parent and has a dependency to the new version.  This allows existing code that works to continue with their 
working components until it becomes convenient for the owner to update. 
 
How will you make it convenient to support these relationships?  What functionality must be provided by the client 
and the Repository so that human users find it very easy to use this facility? 
 
 



CSE681 – Software Modeling and Analysis Fall 2013 

M1.3

M2.2

M3.3

M4.1M5.2

F2.1

F3.2

F1.2

F5.2 F4.1

F1.2

F2.1 F3.2

F5.2

F4.1

Repository Manifest Network File Dependency Graph

XML File
Manifest M2

Version 2
Source Code

File F4
Version 1

Figure 4 – Repository Dependency Relationships

 
 

 
 

Repository Policies: 
 
One reasonable policy for check-in is that dependencies must already exist in the repository.  If we use that policy 
we will need to define an open check-in state that allows changing parts of the check-in without creating a new 
version.  So, for example, if we which to check-in a package that has children not yet in the Repository we can do an 
open check-in and add the child packages whenever we are ready.  When all of the dependencies are resolved, we 
close the check-in.  You will need to think about policies that control what you can do with an open check-in. 
 
In order to allow projects to craft their own policies, it would be useful to support rule-based policies, in much the 
same way that the Parser supports code analysis rules.  One such policy concerns ownership.  That is, who is allowed 
to check-in a particular package?  To enable ownership management you will need to provide an owner element in 
file metadata.  The same is true for open check-ins. 
 



CSE681 – Software Modeling and Analysis Fall 2013 

Requirements: 
 
The Repository:  
 
1. The Repository client shall support insertion and extraction of files and their metadata from a, possibly remote, 

Repository server using Windows Communication Foundation (WCF).  Files shall be stored in the Repository in a 
suitable directory structure with metadata that indicates categories selected by the users.  We will assume that 
each GUI has a unique directory because two or more GUIs may have files with the same name but different 
contents. 

 
2. The Repository shall provide a separate tool that searches metadata files to build a map of parents for each file 

in the repository.  This tool is run each time the Repository starts.  When a file is inserted into the Repository its 
parent relationship with each of its children is recorded in the map. 

 
3. The Repository Client shall be a WPF application that provides an information view with two information panes, 

one for metadata and one for file text.  The client shall also provide two navigation panes, one showing the 
current file’s children and one showing its parents.  Clicking on either a child or parent changes the current file 
to the file represented by the clicked link. 

 
4. The Repository Client shall provide a second file management view that supports local browsing for files to 

insert into the remote Repository and means for the user to provide description text and lists of child 
dependencies and keywords.  The metadata tool, implemented in Project #2, shall be used to automatically 
build a metadata file from the information supplied here.  This view shall also support editing metadata 
information for the current file. 

 
5. The Repository shall accept text query messages2 and return the fully qualified name3 of every file containing 

that text in a clickable list.  Clicking on any item in the list makes that file the current file in the client display. 
 

6. The repository shall accept metadata query messages specifying metadata tags and return the contents of each 
element of the metadata for every file in the file set.  This information is used by the Repository Client to build 
its display information.  If a file does not have an associated metadata file, the query shall emit an error 
message and continue processing the remaining files. 

 
7. Your project submission shall include two prototypes, one of which is a recursive search tool that uses the 

metadata graph, shown in Figure 4., to make Text and Metadata queries against a package and all its 
dependencies.  You may select another topic that interests you for the second prototype.   

 
8. Your submission shall supply a zip file containing the Project #5 Operational Concept Document and the 

solution for your project prototypes and all their files. It shall also include compile.bat and run.bat files that 
compile and run your project prototypes without the user needing to specify any information.  Please make sure 
these work as expected when you extract the zip in an empty directory at any level in your computer’s file 
system.  In order for that to work you must use relative directory paths in your Repository and Client code. 

 
 

Note: 
 
You are not asked to implement the Repository virtual server nor to consider the Project and Test server concepts.  
You are asked to develop a concept for the Repository server and prototypes to illustrate the concept and explore its 
feasibility.  There are many interesting questions on which this Project Statement has been nearly silent: 

1. How are the virtual servers implemented? 
2. How are rule-based policies implemented? 
3. What kind of notifications and other communications are needed that the Repository must receive and 

process or emit? 
4. How is file caching implemented? 
5. What about security issues? 

                                                 
2 A query message should contain one or more categories to filter the search. 
3 Returning the filename and category may be more effective than returning a physical server path. 



CSE681 – Software Modeling and Analysis Fall 2013 

6. How can ownership be configured to support change in a controlled but flexible and low-friction way? 
7. How are server contents distributed across multiple servers? 
8. How are queries routed across multiple servers? 
9. What are the Repository packages?  How do they communicate?  What are their activities? 
10. How will the Repository integrate into the server Federation?  What facilities does it need to provide to 

support interactions with the Project and Test servers? 
11. What facilities will the Project and Test servers need to provide so the Repository can carry out its mission? 

 
There are many more questions to ask and explore.  Part of your grade will be to identify interesting ideas and 
issues, some not discussed here, and explore them in moderate detail. 
  


