
UML Notation

Jim Fawcett

CSE681 – Software Modeling & Analysis

Fall 2017

Table of Contents

• Diagrams

• Activity Diagram

• Activity Diagram Example

• Context Diagram

• Data Flow Diagram

• Class Diagrams

• Using Relationship

• Aggregation

• Aggregation and Composition Contents

• Inheritance

• Polymorphism

• Multiple Inheritance

• IOSTREAM Hierarchy

• Event Trace Diagram

• Module Diagram

• Structure Chart

• Package Diagram

• State Diagram

• Data Structure Diagrams

UML Notation 2

Notation Sources, Notes

• These notes describe the Universal Modeling language (UML) as
described in:

• UML Distilled, Martin Fowler, Addison Wesley, 1997

• Developing Software with UML, Bernd Oestereich, Addison Wesley, 1999

• We also discuss some additional diagrams, not part of UML. The
diagrams discussed in this chapter are presented in order from
highest level of abstraction, dealing with descriptions of top-level
software activities to the lowest level of design detail, concerning
states and control.

UML Notation 3

Architecture and Requirements Contents

• Activity Diagram
Used for high level descriptions of program behavior, often associated with software
architecture.

• shows the activities a program carries out

• which activities may be conducted in parallel

• which activities must be synchronized for correct operation

• Package diagram
Package structure of program or software system.

• Enumerates all software packages

• Used to show calling dependencies between packages

• Module diagram
(variant of structure chart – see below)
One of the main diagrams used to describe software architecture.

• shows calling dependencies between modules

• Context diagram
Also a high level description, used in documentation of architecture.

• used to show how a program interacts with its environment

• Data Flow diagram
Used in requirements documents.

• represents processing requirements and the information flows necessary to sustain them

UML Notation 4

Design Documentation Contents

• Class diagram (OMT diagram)

• shows classes that are used in a program along with their relationships

• sometimes also shows their physical packaging into modules

• Event Trace diagram

• illustrates the timing of important messages (member function invocations) between objects
in the program

• Structure Chart

• shows calling relationships between every function in a module and the calls into and out of
the module

• State Diagram

• shows how program navigates through its states

• Data structure diagram

• illustrates the layout and relationships between important pieces of data in the program

UML Notation 5

Activity Diagram (Petri Net) Contents

• An Activity diagram shows:

• activities a program carries out

• which activities may be conducted in parallel

• which activities must be synchronized for correct operation

• Each activity is shown by a labeled bubble.

• Start and stop activities are shown by darkened circles.

• Two or more activities which can be conducted in any order or in
parallel are shown starting after a synchronizing bar.

• If two or more activities must all be completed before another
activity begins, the synchronized activities are shown flowing
into a synchronizing bar.

• Activities shown in series must be completed in the order
shown.

UML Notation 6

Activity Diagram Contents

UML Notation 7

Activity Diagram Contents

•The Activity Diagram is used to model high level activities in
programs and systems. It is particularly useful for representing
business systems and other human activities.

•The activity diagram is especially useful for representing systems
that use synchronization. Often the synchronization points,
shown by thick bars, are places where materials or information is
enqueued, waiting for a subsequent activity to begin.

UML Notation 8

Extended Petri Nets Contents

• Activity diagrams extend the notation used for Petri nets by
explicitly showing decision operations with a diamond symbol
and labeled paths flowing out of the decision operation.

• Activity diagrams which incorporate decision processing are
used in much that same way that flow charts were used (one of
the earliest forms of graphical program documentation).

• They are more powerful than flow charts, however, as they
make explicit the opportunity for parallel processing and the
need for synchronization.

UML Notation 9

Activity Diagram Example Contents

• This Diagram represents work remaining to do on a Project.

UML Notation 10

collect demo

files

read Petzold

chap 2,3,7,8

read Proj #1

statement

create project with

3 modules

lang

timer.h, timer.cpp

proto2.c

proto2.cpp

report.doc

process.cpp

C++

C

- copy proto2.cpp to timetest.cpp

- add timer.h,.cpp

- create new process module

create project with

2 modules

- copy proto2.cpp to timetest.cpp

- add calls to time functions

- create new process module

add calls to time

functions in timetest

add call to

createProcess in loop

in process module

declare timer

object in timetest

add call to

createProcess in loop

in process module

test and check

Proj #1 statement

modify process

module:

replace createProcess

with function call

test and check

Proj #1 statement

Context Diagram Contents

• A context diagram shows how the processing you will build interacts with its
environment.

• Each rectangle represents some source of information used by your program or some
sink of information provided by your program. Your program does not provide these
sources and sinks.

• The central oval represents all the processing you are obligated to develop.

• Each line represents information required for your processing to succeed (inputs) or
information your processing will generate (outputs).

• The information flows shown on the context diagram must match exactly the
inputs and outputs on your top level Data Flow Diagram (DFD), described next.

UML Notation 11

Context Diagram Contents

PAGE
command

line

file system

standard error

standard

output

filenames,

commands
paged text

fi
le

n
a

m
e

fi
le

 h
a

n
d

le

e
rr

o
r

m
e

s
s

UML Notation 12

Data Flow Diagram Contents

• A data flow diagram represents processing requirements of a
program and the information flows necessary to sustain
them.

• All processing represented by the context diagram is decomposed
into a set of a few (perhaps three or four) process bubbles which are
labeled and numbered.

• The information necessary to sustain each process and generated by
each process are shown as input and output data flows.

• Inputs from the environment and outputs to the environment are
show exactly as they appear in the context diagram.

• When the inputs and outputs exactly match the context diagram we
say that the data flow diagram is balanced.

• If each of the processes represents approximately the same amount
of requirements detail we say that the diagram is properly leveled.

UML Notation 13

Data Flow Diagram Contents

information1

Process 1

in
fo

rm
a
ti
o
n
3

information2

Process 2

information5
Process 4

in
fo

rm
a
tio

n
4

Process 3

in
fo

rm
a
tio

n
7 inform

ation6

Process 5

input

UML Notation 14

Data Flow Diagram Contents

•Data Flow Diagrams (DFDs) are used during the analysis of
requirements for complex systems. Each bubble represents a
specific process which has been allocated tasks and
requirements, so that all of the program’s obligations are
partitioned among the processes shown on the top level DFD.

•Each data flow represents information necessary to sustain a
process or generated by a process.

•Note that Data Flow Diagrams are not officially part of the UML.

UML Notation 15

An Example Data Flow Diagram Contents

This diagram represents processing in the DUPLICATES
program.

UML Notation 16

Command Line

Processing

1

Directory Search

2

Data Collection

3

Display

4
path spec

starting

path

filenam
e,

pathnam
e

duplicates

FileS
tore

D
ata S

tructure
er

ro
rs

erro
rs

currDirectoryName

Lower Level Data Flow Diagrams Contents

• We usually divide the processes in a data flow diagram into
logical operations which may not all need the same amount
of detail to describe their processing requirements. When
this is the case, we decompose the more complex processes
into lower level data flow diagrams.

• If a process is decomposed into lower level sub-processes this is shown on a lower
level data flow diagram.

• Each process in the lower level data flow diagram must be numbered showing its
parent’s number and a unique number for each of its own processes, e.g., 3.4.

• The lower level diagram must balance with its parent. That is, each of its input
flows and output flows must match those of its parent.

• If necessary a lower level data flow diagram may be further decomposed into still
lower level diagrams. This is not uncommon for complex programs.

UML Notation 17

Duplicates Program
Lower Level Data Flow Diagram Contents

UML Notation 18

Searching

Display

4.1

Duplicates

Display

4.2

Logging

Display

4.3

FileStore

Data Structure

currpathname

duplicates

duplicates log

duplicates

paths

Class Diagrams Contents

• A class diagram shows the classes that are used in a program
along with all relevant relationships between classes.

• A class diagram sometimes also shows the physical packaging of
classes into modules.

• There are two especially important relationships between classes:

• Aggregation shows an ownership or “part-of” relationship. This
relationship is denoted by a line with a diamond attached to the owning
class and terminating on the owned class. The UML requires the
aggregation diamond to be filled with black if the owning class creates
and destroys the owned object.

• Inheritance shows a specialization or “is-a” relationship between classes.
This relationship is denoted by a line with a triangle pointing toward the
base class. The line terminates on one or more derived classes which
specialize the behaviors of the base class. However, each derived class is
required to handle all of the messages the base class responses to and
are therefore also considered to be (specialized) base class objects.

UML Notation 19

Classes and Objects Contents

Class : a set of objects of one specific type

UML Notation 20

vec

Operation:

 vec(int len);

 ~vec();

 vec& operator(double, const vec &);

 vec operator(const vec&, const vec&);

 double& operator[](int n);

 vec& operator=(const vec&);

Attribute:

 double *array;

 int length;

 static double shared;

vec

myVec

object of class

class symbol class symbol with details

Objects Contents

Object: an element of some class

Each class represents a specific collection of data attributes of
one or more types (its state) and a collection of functions
(behaviors) which modify or disclose the state of an object of the
class.

Each class has, by default, a unique state, independent of any
other object of the class. However, a class may declare that one
or more data members must be shared by all objects of the class.

UML Notation 21

Generic Classes Contents

• It is frequently convenient to define a class in terms of a generic
parameter of unspecified type. We call these generic classes and
represent them with the symbols:

UML Notation 22

vec<T>

Operation:

 vec(int len);

 ~vec();

 vec& operator(T, const vec &);

 vec operator(const vec&, const vec&);

 T& operator[](int n);

 vec& operator=(const vec&);

Attribute:

 T *array;

 int length;

vec<T>

myVec<double>

object of class

class symbol class symbol with details

Template Class Declaration Contents

template <class T> class vec {

public:

vec(int size=0); // constructor

vec(const vec<T>& v); // copy constructor

~vec(void); // destructor

vec<T>& operator=(const vec<T>&); // assignment

T& operator[](int n); // indexing

T operator[](int n) const; // indexing

vec<T> operator*(T &t); // scalar multiplication

friend vec<T> operator*(T &t, const vec<T>& v);

// scalar multiplication

vec<T> operator+(const vec<T>&); // vector addition

vec<T> operator-(const vec<T>&); // vector subtraction

vec<T> operator*(const vec<T>&); // vector multiplication

T operator,(const vec<T>&); // inner product

int size(); // show size

void write(ostream&, int, int); // formatted write to output

friend ostream& operator<<(ostream&, const vec<T>&);

// output stream inserter

void read(istream&); // formatted read from in

friend istream& operator>>(istream&, vec<T>&);

// input stream extractor

private:

char *_vName; // pointer to name allocated on heap

int _arSize; // vector dimension

T *_array; // pointer to array allocated on heap

};

UML Notation 23

Associations Contents

An association is a relationship linking two or more classes or
objects.

UML Notation 24

class 1 class 2

class 4class 3

class 5 class 6

Relationships Contents

• The hollow ball indicates a multiplicity of zero or one for class 1

• The solid ball indicates a multiplicity of zero or more (many) for
class 2.

• Absence of a ball indicates a multiplicity of one.

• There is one-to-one relationship between classes 3 and 4 and one
to many relationship between classes 5 and 6.

UML Notation 25

Link Attributes Contents

• A model may have attributes which clearly belong to the association relationship
rather than to one of the classes in the association. In this case the association is
given those attributes, and is denoted as shown below.

Here, class 1 and class 2 have a one to many relationship in which the
relationship has attributes denoted by an association attributes list.

UML Notation 26

class 1 class 2

association

attributes

association

name

Association Examples Contents

The diagram below captures the relationship between a student and her department.

Here, the program of study is meaningless without the relationship between the student
and her department.

UML Notation 27

department

transcript

program of

study

SSN,

name,

...

student

Association Example Contents

• This second diagram illustrates the relationship between a team leader and
his team members.

skills, assignment, role

project person

team member

2-5

team leader

UML Notation 28

Using Relationship Contents

• Using is an association that models one class using the behavior of another to carry out its

own activities.

• The using relationship is implemented when a member function of the User class is passed

an object of the Usee class or when it creates a local instance of the Usee class.

• In a typical design there are many using relationships – too many to show conveniently. In

this case we show only those that are critical to the design.

User Usee

UML Notation 29

Using Example Contents

class User {

public:

User(const std::string &name);

void show(Usee &usee);

private:

std::string _name;

};

Void User::show(Usee &usee1) {

Usee usee2("Jake");

std::cout << "\n I am " << _name << ", and use two objects.";

usee1.showUsee();

usee2.showUsee();

}

User Usee

UML Notation 30

Aggregation Contents

• Aggregations are special associations which model a “part-of” or “contained”
semantic relationship.

In this diagram class 1 contains classes 2 and 3. Classes 2 and 3 are part-of
class 1.

UML Notation 31

class 1

class 2 class 3

Aggregation and Composition Contents

Aggregations are “part-of” or containment relationships. Here, class 2 is part of class 1. A
stronger form of aggregation is the composition relationship. This is an aggregation in which
the part-of represents an exclusive ownership. An owned object is created when the owner is
created and is destroyed when its owner is destroyed.

Composition is denoted by a dark fill in the diamond end of the aggregation symbol. When C++
programmers use the term aggregation they mean this stronger compositional form since
aggregation is usually implemented by making the owned class a data member of the owning
class. In C++ this creates the stronger compositional relationship.

UML Notation 32

class 1

class 3

class 2

class 4

Composition Example Contents

class part {

public:

part(const std::string &name);

void showPart();

private:

std::string _name;

};

class whole {

public:

whole(const std::string &name);

void show();

private:

std::string _name;

part a;

part b;

};

whole part

stringstring

UML Notation 33

Aggregation Example Contents

The diagram below illustrates the aggregation relationship inherent in a team.

The behaviors and attributes of the team are the sum of all the behaviors and
attributes of the team leader and all the team members. In this sense aggregation
represents an “and” semantic relationship.

UML Notation 34

project team

team leader team member

Inheritance Contents

Inheritance models an “is-a” semantic relationship. Here the classes 2 and 3 inherit from
class 1. We say that classes 2 and 3 are derived from base class 1.

That means that class 2 “is-a” class 1 and the same must be true for class 2. The “is-a”
relationship is always a specialization. That is, both classes 2 and 3 must have all attributes
and behaviors of class 1, but may also extend the attributes and extend and modify the
behaviors of class 1.

UML Notation 35

class 1

class 2 class 3

Inheritance Example Contents

class Base {

public:

Base(const std::string &name);
virtual ~Base() { }

virtual void show();

private:

std::string _name;

};

class Derived : public Base {

public:

Derived(const std::string &name);

virtual void show();

private:

std::string _name;
};

Base

Derived

UML Notation 36

Inheritance Example Contents

The inheritance diagram below represents an architecture for a graphics
editor. The display list refers to graphics objects, which because of the “is-a”
relationship, can be any of the derived objects.

UML Notation 37

graphics

object

line circle polygon

display

list

Inheritance Example Contents

The base class graphicsObject provides a protocol for
clients like the display list to use, e.g., draw(), erase(),
move(), ... Clients do not need to know any of the details that
distinguish one of the derived class objects from another.

In C++, the protocol functions are qualified as virtual. This means
that a derived class may override any base class definition to
provide class specific semantics for this function. Furthermore,
this means that the list manager client can be ignorant of specific
types of objects addressed, simply calling the base protocol on
any one of them.

UML Notation 38

Importance of Polymorphism Contents

• When a base class provides a protocol by defining one or more virtual
functions that are overridden by derived classes, clients can use the base
protocol to interact with any of the derived classes and need not know the
details that distinguish one derived class from another. This is called
polymorphism.

• Polymorphism lets us minimize coupling between clients and the objects they
use.

• Polymorphism also allows us to extend a library to satisfy the needs of an
application, provided that the library designer has defined a base protocol and
allowed us to derive from that base. The next example illustrates this. A
directory navigation object uses a base processing class that applications can
derive from to insert their own processing into the computa-tional stream.

UML Notation 39

Multiple Inheritance Contents

A derived class may have more than one base class. In this case
we say that the design structure uses multiple inheritance.

UML Notation 40

base class 1 base class 2

derived class

Multiple Inheritance Contents

The derived “is-a” base 1 and “is-a” base 2. Multiple inheritance
is appropriate when the two base classes are orthogonal, e.g.,
have no common attributes or behaviors, and the derived class
is logically the union of the two base classes.

The next page shows an example of multiple inheritance taken
from the C++ Standard Library iostream module. The classes
iostream, ifstream, and ofstream all use multiple inheritance to
provide their behaviors.

UML Notation 41

IOSTREAM Hierarchy

UML Notation 42

ios

istream ostream

istream_with_assign

istrstream

ifstream

ostream_with_assign

ostrstream

ofstream

iostream

fstream strstream stdiostream

streambuf

stdiobuf

filebuf

strstreambuf

Contents

Summary of Class Relationships

Relationship Diagram Code Explanation

Inheritance

D “is-a” B
public class D : B { … }

Derived class D is a
specialization of the Base class
B. D inherits all the members of
B except constructors

Composition

Ownership, P is “part-
of” C

public class C {
…
private double p = 3.142;

}

Composite class C owns, or
contains, a part class P. P is
created and destroyed with C.
The interface of P is visible only
to C, not its clients. Example: P
is a value type.

Aggregation

Ownership, P is “part-
of” A

public class A {
…
private P p = new P();

}

The Aggregator class A owns a
part class P. P is created by a
member function of A, and so its
lifetime is strictly less than that
of A. Example: P is a reference
type.

Using

Referral:
U uses R through a

reference

public class U {
…
public void register(R r)

// use r
}

}

A class U uses instance of class
R, to which it holds a reference.
R is created by some other entity
and a reference to it is passed to
some member function of class
U.

UML Notation 43

B D

C P

A P

U R

Event Trace Diagram Contents

• An Event Trace diagram illustrates the timing of important messages (member function

invocations) between objects in a program.

• Each object is shown by a vertical bar

• Message traffic is shown by labeled horizontal lines flowing toward the object on which a

method was invoked.

• Time progresses downward in the diagram, but note that the diagram does not attempt to

show iteration loops or calling options. If one of two calls may be made depending on some

condition they are either both shown or neither is shown.

• Iterations are sometimes hinted by preceding a method name with a * symbol indicating

that that method will be invoked multiple times in succession.

• These diagrams usually show the major events, but don’t try to capture all little details -

there may be hundreds of messages flowing, but perhaps only a few are important enough

to show.

UML Notation 44

Event Trace Diagram Contents

object 1 object 2 object 3 object 4

new

new

new

msg1(...)

msg2(...)

msg3(...)

* msg4(...)

msg5(...)

msg6(...)

self

delegation

message

 sequence of

 messages

thick bar shows

life-time of

object

UML Notation 45

Event Trace Diagram Example Contents

This example is from the Duplicates program.

UML Notation 46

dupsExec

main()
navig dupsProc fileStor

display

dupsProc

fileStor

startPath

navig

start

walk

dirsProc*

fileProc*

add

walk*

fileMap

time

Module Diagram Contents

• Module diagrams show function calling dependencies between modules in
a program.

• Each module is represented by a labeled rectangle. Calling modules are shown
above the modules they call.

• A program should be decomposed into a single executive module which directs the
activities of the program and one or more server modules that provide processing
necessary to implement the program’s requirements.

• If we use a relatively large number of cohesive small server modules it is quite likely
that we will be able to reuse some of the lower level modules in other programs we
develop.

• An executive module usually is composed of a single file containing manual page,
maintenance page, and implementation.

• A server module is composed of two files

• header file with manual and maintenance pages

• implementation file with function bodies and test stub

UML Notation 47

Hypothetical Module Diagram Contents

Executive

Server #1 Server #2

Server #3 Server #4

UML Notation 48

Package Diagram Contents

• Package Diagrams serve the same purpose as Module Diagrams.
They represent the calling relationships between packages.

• Package is a synonym for Module, e.g., means the same thing

• Their structure is a bit more free form however. Instead of
showing calling relationships by above/below positioning, the
package diagram uses arrows to show the direction of the call.

• The package icon is slightly different as well, as shown on the next
slide.

• I use module diagrams when there are just a few – the diagram is
simpler.

• I use package diagrams when there are many packages. It’s easier
to draw the diagram accurately.

UML Notation 49

Package Diagram Contents

UML Notation 50

UML Notation 51

Structure Chart Contents

• The structure chart shows calling relationships between every function in a module and
calls made into and out of the module.

• Callers are always shown above callees.

• Lines without arrow heads are drawn from the caller to the callee.

• All data flowing between the invoking and invoked function are shown with labeled
arrows.

• These arrows are called data couples and are usually labeled with the name shown in the
argument list of the called function.

• If a control signal is passed between functions it is shown with a hollow ball. Note
however, that what one function may consider data another function may consider
control, e.g., used to make a decision. If in doubt about how to draw a couple show it as
data.

• Recursive calls or calls which would result in many crossing lines are shown with lettered
circles instead.

Often one Structure Chart is made for each module in a program. The gray boxes are calls
to, or by, functions outside the module.

UML Notation 52

Structure Chart Contents

UML Notation 53

function 1

function 2 function 3 function 4 function 5

function 7 function 9function 8function 6

data5 data6
data4

data1

data2 data3

An Example Structure Chart Contents

navExec::main

navig::navig

dupsProc::dupsProc

dupsProc::startPath

navig::use

navig::start

dupsProc::display

navig::walk

dupsProc::fileProcdupsProc::dirsProc

dupsProc::makeLower dupsProc::makeLower fileStore::add

fileStore::fileStore

fileStore::fileMap

p
d
p

d
ir fd

fi
le

,

p
a
th

file

d
ir

a
rg

v
[1

]

UML Notation 54

State Diagram Contents

• A State diagram shows the dynamic behavior of a finite state
machine. Programs which incorporate language grammar
processing or controller activities are often represented by state
diagrams.

• A state diagram contains a set of labeled bubbles, one for each state of
the machine.

• Labeled lines are drawn between states showing transitions from state to
state. The labels indicate the event that triggered a transition from the
source state to the destination state.

• start and terminal states are shown with filled circles.

• In a sense, state diagrams are activity diagrams where the
transition conditions have been emphasized and no
synchronization or parallel activities are shown.

UML Notation 55

State Diagram Contents

UML Notation 56

1st state

2nd state 3rd state

4th state

event h

5th state

Last state

event causing a

state transition

 stop

 start

event a

event b

event c

event d
event e event g

event f

State Transition Diagrams Contents

State transition diagrams are usually used to represent low level
design details, particularly when representing the processing of a
grammar.

I have used them to represent the operation of a tokenizer and to
show how code analysis grammar works.

UML Notation 57

State Diagram Example Contents

• This diagram represents processing required to analyze C or C++
source code, looking for function definitions, class or struct
declarations, typedefs, and global data declarations.

UML Notation 58

scanning

text

checking

type

check for

function

EOF

display function

and count lines

display

 stop

 start

found '{'

found '('

identifier is not

 a key

scopeLevel = 0

found struct

or class

display

complete

checking

type

display

typedef

display

complete

check for

global

scopeLevel = 0

no typedef

found

declaritor

no

declaritor

identifer

is a key
scopeLevel > 0

no typedef

found ';'

Data Structure Diagrams Contents

• Data structure diagrams have no special syntax.

• Their structure is defined to show the layout and relationships between
data items in a program.

• There are diagrams used for data base design called entity-relationship
diagrams which do have a syntax formalism. We shall not be concerned
with them in this course.

• Data Structure diagrams are often used to document the design
of modules and classes which manage complex data for a
program.

UML Notation 59

Duplicates Program
Data Structure Diagram Contents

UML Notation 60

typedef map< string, list<pathSet::iterator> > fileMap typedef set< string> pathSet

path1

iterator

list
file name

path2

path3

Note: Only one copy of each file name is stored in the fileMap

and only one copy of each path is stored in the pathSet.

End of Presentation

