
Programming with C#

Jim Fawcett
CSE681 – SW Modeling & Analysis

Fall 2018

Overview

• Terminology

• Managed Code

• Taking out the Garbage

• Interfaces

• Application Domains

Terminology

• CLI: Common Language Infrastructure

• CTS: Common Type System, the .Net types

• Metadata: type information in assembly

• VES: Virtual Execution System - provided by CLR

• IL: Intermediate Language

• CLS: Common Language Specification.

• Core language constructs supported by all .Net languages.

• CLR is Microsoft’s implementation of CLI.

Managed Code

• CLR provides services to managed code:

• Garbage collection

• Exception handling

• Type discovery through metadata

• Application domains and contexts

• Fault isolation

• Interception

• Security management

• Attributes

.Net Assembly Structures

Multiple File Assembly
myLibrary.dll

Single File Assembly
myProject.exe

Manifest

Type

Metadata

MSIL code

optional

resources

Manifest

Type

Metadata

MSIL code

optional

resources

Type

Metadata

MSIL code

Type

Metadata

MSIL code

Accessing Type Information based on metadata

• Type t = obj.getType();

• Type t = Type.getType(“StringBuilder”);

• Type t = typeof(int);

• Bool query = myObj is baseType;

• Returns true if myObj derives from, or is, the baseType, else returns false

• string str = obj as string;

• Attempts to cast obj to type string

• If obj is compatible to string, it is assigned to str

• If not, then str = null

• string str = (string)obj;

• If obj is convertible to string, its conversion is assigned to str

• If not, an exception is thrown.

Taking out the Garbage

• All .Net languages, including C# use garbage collection

• Garbage collection is a multi-tiered, non-deterministic background
process

• Three tiers

• Objects in lowest tier are checked for active references often. If no
references, then the object is finalized and memory returned to the process.

• Objects in the second tier are checked once every ten times the lowest tier is
collected.

• Objects in the third tier are checked once every one hundred times the
lowest tier is collected.

• If objects are large or have lived for a while, they are likely to be moved to a
higher tier.

• You can’t deallocate resources immediately when objects go out of
scope.

More about Garbage

• C# provides destructors which implement Finalize() for disposing of
unmanaged resources.

• Destructors allow you to tell the garbage collector how to release
unmanaged resources.

• You should Implement
IDisposable::Dispose()

• Users of your class can call it’s Dispose() to support early release of
unmanaged resources, but they have to remember to do so.

• Your dispose should call Dispose() on any disposable managed objects
aggregated by your class and unregister event handlers.

• Your member functions should call Dispose() on any local disposable
managed objects.

Implementing Dispose()

• Here’s the standard way:

public void Dispose()
{
Dispose(true); // garbage collector calls Dispose(false)
GC.SuppressFinalize(this);

}
private void Dispose(bool disposing)
{
if(!this.disposed)
{
if(disposing)
{
// call Dispose() on managed resources.

}
// clean up unmanaged resources here.

}
disposed = true; // only call once

}

Minimizing Garbage

• If you have local managed objects in frequently called methods, consider
making them members of your class instead.

• Using member variable initializers is convenient:

class X
{

private: arrayList col = new ArrayList();
…

}

but don’t if col may be reinitialized to something else in a constructor.
That immediately generates garbage.

Try - Finally

• Managed classes that use unmanaged resources:
handles, database locks, …

Implement Dispose() and Finalize() to provide for early, and ensure
eventual, release of these resources.

• But Dispose() may not be called if the using code throws an exception.
To avoid that, catch the exception and use a finally clause:

try { /* code using disposable x */ }
catch { /* do stuff to process exception */}
finally { x.Dispose(); }

The using short-cut

• C# provides a short cut for try-finally:

using(x) { /* use x object */ }

is equivalent to:

try { /* use x object */}
finally { x.Dispose(); }

• You can’t have multiple objects in the using declaration. You
will need to nest the using statements to handle that case.
It’s probably easier just to use try-finally if you need to
dispose multiple objects.

Interfaces

• Abstract class provides the root of a class hierarchy.

• Interface provides a contract:
it describes some small functionality that can be
implemented by a class.

• Interfaces can declare all the usual types:

• Methods, properties, indexers, events.

• Interfaces can not declare:

• Constants, fields, operators, instance constructors, destructors, or
types.

• Static members of any kind.

• Any type that implements an interface must supply all its
members.

Using Interfaces

• Functions that accept and/or return interfaces can accept or
return any instance of a class that implements the interface.

• These functions bind caller to a contract, not to a specific
class hierarchy.

Implementing Interfaces

• .Net languages support only single inheritance of
implementation, but multiple inheritance of interfaces.

• Members declared in an interface are not virtual.

• Derived classes cannot override an interface method implemented in
a base class unless the base declares the method virtual.

• They can reimplement it by qualifying the method signature with
new.

• This hides the base’s method, which is still accessible to a client by
casting to the interface.

• Hiding is generally not a good idea.

Overrides vs. Event Handlers

• Prefer overriding an event handler over subscribing to an
event delegate.

• If an exception is thrown in an event handler method the event
delegate will not continue processing any other subscribers.

• Using the override is more efficient.

• There are fewer pieces of code to maintain.

• But make sure you call the base handler.

• When do you subscribe to an event?

• When your base does not supply a handler.

Application Domains

• “An Application Domain is the runtime unit of isolation in which a
.Net Program runs” [C# 7.0 in a Nutshell, Albahari & Albahari]

• Every .Net program runs in a default Application Domain, defined by
the CLR.

• Code in the default AppDomain can create instances of child
AppDomains.

• The .Net Framework provides an AppDomain class, used to create
new domains and configure existing domains.

• AppDomains have three purposes:

• Provide data isolation between code in separate domains.

• Support unloading .Net dynamic-link libraries effected by unloading the
domain.

• Provide separating code into domains with different security models or
threading models. That is done with .Net Context instances.

.Net Context

• A context is container for policies that a developer wants to enforce
on objects that bind to the context.

• Security policies

• Execution policies

• Custome policies

• The .Net CLR ensures that any communication between objects
bound to different contexts is done through a remoting channel.

• The channel will accept filters that provide processing of a channel message
after the client sends it and before it is delivered to the receiver.

• Filters can also be applied for return messages.

• A lot of core .Net framework functionality uses interception.

• Each Application domain has a default context, but additional
contexts may be created by developer code.

Interception

AppDomain

client context

Component Context

RPC channelproxy interceptor stub

object

Uses of interception

• The .Net Windows Communication Foundation (WCF) uses
interception to provide a lot of functionality to using programs
without the developer writing code for that.

• Instead, the WCF defines attributes, like [ServiceContract],
[ServiceBehavior], and [OperationContract].

• BasicHttpService CodeSnap

• Those attributes inject code into the assemblies created from your
code to provide communication facilities that use the TCP stack or
interprocess communication.

../lectures/CodeSnap-BasicHttpProgService.Iservice.cs.htm

The End for now

