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Terminology

• CLI: Common Language Infrastructure

• CTS: Common Type System, the .Net types

• Metadata: type information in assembly

• VES: Virtual Execution System - provided by CLR

• IL: Intermediate Language

• CLS: Common Language Specification.

• Core language constructs supported by all .Net languages.

• CLR is Microsoft’s implementation of CLI.



Managed Code

• CLR provides services to managed code:

• Garbage collection

• Exception handling

• Type discovery through metadata

• Application domains and contexts

• Fault isolation

• Interception

• Security management

• Attributes
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Accessing Type Information based on metadata

• Type t = obj.getType();

• Type t = Type.getType(“StringBuilder”);

• Type t = typeof(int);

• Bool query = myObj is baseType;

• Returns true if myObj derives from, or is, the baseType, else returns false

• string str = obj as string;

• Attempts to cast obj to type string

• If obj is compatible to string, it is assigned to str

• If not, then str = null

• string str = (string)obj;

• If obj is convertible to string, its conversion is assigned to str

• If not, an exception is thrown.



Taking out the Garbage

• All .Net languages, including C# use garbage collection

• Garbage collection is a multi-tiered, non-deterministic background 
process

• Three tiers

• Objects in lowest tier are checked for active references often.  If no 
references, then the object is finalized and memory returned to the process.

• Objects in the second tier are checked once every ten times the lowest tier is 
collected.

• Objects in the third tier are checked once every one hundred times the 
lowest tier is collected.

• If objects are large or have lived for a while, they are likely to be moved to a 
higher tier.

• You can’t deallocate resources immediately when objects go out of 
scope.



More about Garbage

• C# provides destructors which implement Finalize() for disposing of 
unmanaged resources.

• Destructors allow you to tell the garbage collector how to release 
unmanaged resources.

• You should Implement 
IDisposable::Dispose()

• Users of your class can call it’s Dispose() to support early release of 
unmanaged resources, but they have to remember to do so.

• Your dispose should call Dispose() on any disposable managed objects 
aggregated by your class and unregister event handlers.

• Your member functions should call Dispose() on any local disposable 
managed objects.



Implementing Dispose()

• Here’s the standard way:

public void Dispose()        
{            
Dispose(true);  // garbage collector calls Dispose(false)
GC.SuppressFinalize(this);

}        
private void Dispose(bool disposing)
{
if(!this.disposed)
{
if(disposing)
{
// call Dispose() on managed resources.

}
// clean up unmanaged resources here.

}
disposed = true;  // only call once

}



Minimizing Garbage

• If you have local managed objects in frequently called methods, consider 
making them members of your class instead.

• Using member variable initializers is convenient:

class X
{ 

private: arrayList col = new ArrayList();
… 

}

but don’t if col may be reinitialized to something else in a constructor.  
That immediately generates garbage.



Try - Finally

• Managed classes that use unmanaged resources:
handles, database locks, …

Implement Dispose() and Finalize() to provide for early, and ensure 
eventual, release of these resources.

• But Dispose() may not be called if the using code throws an exception.  
To avoid that, catch the exception and use a finally clause:

try { /* code using disposable x */ }
catch { /* do stuff to process exception */}
finally { x.Dispose(); }



The using short-cut

• C# provides a short cut for try-finally:

using(x) { /* use x object */ }

is equivalent to:

try { /* use x object */}
finally { x.Dispose(); }

• You can’t have multiple objects in the using declaration.  You 
will need to nest the using statements to handle that case.  
It’s probably easier just to use try-finally if you need to 
dispose multiple objects.



Interfaces

• Abstract class provides the root of a class hierarchy.

• Interface provides a contract:  
it describes some small functionality that can be 
implemented by a class.

• Interfaces can declare all the usual types:

• Methods, properties, indexers, events.

• Interfaces can not declare:

• Constants, fields, operators, instance constructors, destructors, or 
types.

• Static members of any kind.

• Any type that implements an interface must supply all its 
members.



Using Interfaces

• Functions that accept and/or return interfaces can accept or 
return any instance of a class that implements the interface.

• These functions bind caller to a contract, not to a specific 
class hierarchy.



Implementing Interfaces

• .Net languages support only single inheritance of 
implementation, but multiple inheritance of interfaces.

• Members declared in an interface are not virtual.

• Derived classes cannot override an interface method implemented in 
a base class unless the base declares the method virtual.

• They can reimplement it by qualifying the method signature with 
new.

• This hides the base’s method, which is still accessible to a client by 
casting to the interface.

• Hiding is generally not a good idea.



Overrides vs. Event Handlers

• Prefer overriding an event handler over subscribing to an 
event delegate.

• If an exception is thrown in an event handler method the event 
delegate will not continue processing any other subscribers.

• Using the override is more efficient.

• There are fewer pieces of code to maintain.

• But make sure you call the base handler.

• When do you subscribe to an event?

• When your base does not supply a handler.



Application Domains

• “An Application Domain is the runtime unit of isolation in which a 
.Net Program runs” [C# 7.0 in a Nutshell, Albahari & Albahari]

• Every .Net program runs in a default Application Domain, defined by 
the CLR.

• Code in the default AppDomain can create instances of child 
AppDomains.

• The .Net Framework provides an AppDomain class, used to create 
new domains and configure existing domains.

• AppDomains have three purposes:

• Provide data isolation between code in separate domains.

• Support unloading .Net dynamic-link libraries effected by unloading the 
domain.

• Provide separating code into domains with different security models or 
threading models.  That is done with .Net Context instances.



.Net Context

• A context is container for policies that a developer wants to enforce 
on objects that bind to the context.

• Security policies

• Execution policies

• Custome policies

• The .Net CLR ensures that any communication between objects 
bound to different contexts is done through a remoting channel.

• The channel will accept filters that provide processing of a channel message 
after the client sends it and before it is delivered to the receiver.

• Filters can also be applied for return messages.

• A lot of core .Net framework functionality uses interception.

• Each Application domain has a default context, but additional 
contexts may be created by developer code.



Interception
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Uses of interception

• The .Net Windows Communication Foundation (WCF) uses 
interception to provide a lot of functionality to using programs 
without the developer writing code for that.

• Instead, the WCF defines attributes, like [ServiceContract], 
[ServiceBehavior], and [OperationContract].

• BasicHttpService CodeSnap

• Those attributes inject code into the assemblies created from your 
code to provide communication facilities that use the TCP stack or 
interprocess communication.

../lectures/CodeSnap-BasicHttpProgService.Iservice.cs.htm


The End for now


