
MODULAR QUALITY ASSURANCE TOOLSET

OPERATIONAL CONCEPT DOCUMENT

CSE681 – SOFTWARE MODELING AND ANALYSIS
JOHN WALTHOUR
MAY 10, 2010

1 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

CONTENTS

Contents .. 1

Executive Summary ... 3

Architecture .. 3

Server Side Tool Holster .. 4

Concept ... 4

Uses ... 4

Activities .. 5

Structure ... 5

Critical Issues ... 7

Client ... 7

Concept ... 7

Uses ... 7

Activities .. 8

Structure ... 9

Critical Issues ... 10

Risk Analyzer ... 10

Concept ... 10

Uses ... 11

Structure ... 11

Critical Issues ... 12

Defect Analyzer ... 13

Concept ... 13

Uses ... 13

Structure ... 14

Critical Issues ... 14

Tracking Facilities .. 15

Requirements Database .. 15

Issue Tracker ... 15

Change Logger ... 17

Structure ... 18

2 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

Automated Formatter ... 18

Concept ... 18

Uses ... 19

Structure ... 19

Critical Issues ... 20

Agents ... 20

Concept ... 20

Uses ... 20

Structure ... 21

Critical Issues ... 21

Ensemble Builder .. 22

Concept ... 22

Uses ... 22

Structure ... 23

Critical Issues ... 23

System-Wide logging Facility .. 23

Concept ... 23

Uses ... 24

Structure ... 24

Critical Issues ... 25

3 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

EXECUTIVE SUMMARY

In a large project, quality assurance can become extremely difficult to manage. Managers want

to understand the project status, programmers want to spot defects as they appear, and test

personnel want to scrutinize high-risk areas. All of these needs can easily form a cacophony of

manual tasks, which Quality Assurance Toolset aims to organize and automate.

ARCHITECTURE

Comms

Client Server

Comms

QAT Client

RiskAnalyzerClient
IToolClient

DefectAnalyzerClient
IToolClient

AutoFormatterClient
IToolClient

RequirementsClient
IToolClient

BugClient
IToolClient

ChangeLogClient
IToolClient

RiskAnalyzerServer

DefectAnalyzerServer

AutoFormatterServer

RequirementsServer

BugServer

ChangeLogServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

QAT Server

Repository

Access

Controller

ISandboxMessage

passing

Logger

AgentManager

EnsembleManager

Web server

AgentClient EnsembleClient

Figure 1 – Overall Architecture

The Quality Assurance Toolset (QAT) is designed to follow a plugin-based architecture, where

each tool is plugged into the larger system. A plugin contains two parts – one part plugs into

the client, and one part plugs into the server. The client-side plugin is responsible for

generating the GUI to present to the user in HTML, and for forming messages representing the

user’s instructions to send to the server. The server-side plugin is responsible for the tools

4 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

actions, and interacts with the files on the repository server. Each of these modules is

discussed in further detail below.

SERVER SIDE TOOL HOLSTER

CONCEPT

The Server Side Tool Holster hosts the server components of all the tools in the Toolset. It runs

them as required by the Client, and allows them controlled access to the filesystem. It also

coordinates communications with the Client, allowing the entire toolset to listen on a single

socket, and routes received messages to the appropriate tool.

The Tool Holster is designed to use a pluggable architecture to accept a wide variety of code

analysis, development and processing tools. Each tool is packaged into a DLL, and implements a

common interface that the Holster uses to communicate with it. Each DLL is given a pointer to

a sandbox object that facilitates controlled access to the filesystem. This sandbox exposes file

access functions including directory listing, file reading, and file writing, but only within the

code repository.

USES

 Easy tool administration – The Tool Holster creates one unified place from which to

configure and manage all the tools in the Quality Assurance Toolset. Administrators no

longer need to learn each tool’s setup individually, or set up each tool’s access rights.

The Holster provides a unified configuration scheme, and one access control system

common to all tools.

 Enforcing tool security – The Tool Holster sandboxes the tools’ access to the file system,

preventing them from accidentally or intentionally reaching outside of the code

repository. This allows administrators to install additional tools with a measure of

confidence that the tool will not corrupt operating system files or access other files co-

located on the server.

 Expansion – This Holster allows for easy development of additional tools by creating a

unified pluggable architecture that many tools can operate on. Furthermore, these

tools can all be controlled by a single Client, removing the need for a clutter of tools on

5 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

each user workstation. Third party developers can contribute tools to the toolset,

delivered as simple packaged DLLs for installation.

ACTIVITIES

The Holster primarily facilitates communications between tools, the client, and the repository.

It also initializes the tools via object factories, and terminates them upon server shutdown.

Some messages from the client are expected to trigger analysis of the codebase, in which case

the sandbox functions of the Holster will be called by the active tool, and the holster will

provide the requested filestreams and listing information.

STRUCTURE

ChangeLogServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

QAT Server

Repository

Access

Controller

ISandbox

Logger

AgentManager

EnsembleManager

BugServer

RequirementsServer

AutoFormatterServer

DefectAnalyzerServer

RiskAnalyzerServer

Comms

Figure 2 – Package overview for Tool Holster

6 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

ChangeLogServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

QAT Server

Repository

Access

Controller

ISandbox

Logger

AgentManager

EnsembleManager

BugServer

RequirementsServer

AutoFormatterServer

DefectAnalyzerServer

RiskAnalyzerServer

Comms

Figure 2 illustrates the overall architecture of the Holster. The specific packages have the

following responsibilities:

 QAT Server – This is the main executive package, and coordinates the actions of all the

other server-side packages. It locates the configuration files for all the tools, and

initializes all tools, passing them in as open filestreams. It also communicates with the

client via message passing, and routes the messages appropriately.

 Comms – This package communicates with the Client. It is responsible for opening a

socket, listening on the socket, and firing events to the QAT Server when messages

arrive. It is also responsible for sending messages back to the client, and for queuing

messages when traffic is too heavy to handle immediately. All messages are encoded in

XML for universal ease in translation.

 Repository Access Controller – This package is responsible for listing and opening files

within the repository. Plugged-in tools access these functions through the ISandbox

interface, through which they can request files and file information within the

repository. This module controls all tool accesses to the filesystem, and does not permit

7 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

access outside the configured repository area. Administrators set the repository area

through this module’s configuration file.

 Logger – This package accepts event records from tools, and logs them to a file in XML

format. It makes use of queuing to improve performance, and is discussed in more

detail later in this document.

 EnsembleManager – This package manages descriptions of groups of files within the

repository known as Ensembles. It supplies the client with descriptions of the current

file structure in the repository and accepts and stores sets of files specified by the user.

Ensembles are stored in XML. This package also contains a parsing class so that tools

can share the code that reads stored ensembles.

 AgentManager – This package both configures and executes small customizable items

known as Agents that allow users to personalize the Toolset. Agents are akin to macros,

and can be scheduled to run at preconfigured times and run specified tools on specified

ensembles. This package is responsible for supplying the client with information about

existing agents, as well as accepting information from the client to reconfigure agents,

delete agents, or create new agents.

8 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

CRITICAL ISSUES

 Security – Executing many pluggable tools, some of which may be supplied by a third

party, raises a distinct security challenge. This design approaches the issue by funneling

all file accesses into one module, which will prevent tools from accessing outside the

repository.

 Modularity – The entire Holster must be very thoroughly isolated from the tools it runs.

This allows for consistency, as well as easing the process of involving third party plugins.

For this reason, tools are created using standard object factories, only receive

information from the Holster via a tool interface, and only communicate back to the

Holster via other interfaces. This isolation keeps the tool developers from needing any

knowledge of the inner implementation of the Holster.

CLIENT

CONCEPT

The Client is a web-based thick client that interacts with the user, conveys commands to the

server, and relays information about the results to the user. Each tool has a pluggable module

in the Client to match its pluggable module on the Server, and all client modules share a

common connection back to the server. The Client also serves the web pages to the user,

eliminating the need for a separate web server setup.

USES

 Tool access – The primary use of the Client is to access one of the quality assurance

tools contained in the Toolset. These tools will have user interfaces available through

the web interface.

 Agent control – Power users may also wish to configure Agents to conduct customized

operations at specified times. Normally these agents are directed to operate around

ensembles, which are also defined from the Client. See page 20 for more about agents.

9 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

 Ensemble selection – Some users will wish to mark out areas in the repository to

consider as Ensembles – subsets of the larger codebase that require analysis separate

from the rest. See page 22 for more about ensembles.

ACTIVITIES

The Client serves as a gateway to the server-side components of the plugin. Its actions include:

 Communicate user actions to server – The web interface will receive direction from the

user by form submittals, and will convey this information to the client-side component

of the plugin. In turn, this component will use the shared Comms module to contact the

server, and communicate the user’s wishes.

 Report results to the user – When the server completes a report, the user will be

notified that a report has arrived and is ready for viewing. These reports are sometimes

generated by a user, but could be generated by an agent acting on the user’s behalf.

10 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

STRUCTURE

Comms

QAT Client

IToolClient

IToolClient

IToolClient

IToolClient

IToolClient

ChangeLogClient
IToolClient

Web server

AgentClient EnsembleClient

BugClient

RequirementsClient

AutoFormatterClient

DefectAnalyzerClient

RiskAnalyzerClient

Figure 3 – Package overview for the Client

Figure 3 illustrates the overall architecture of the Client. The specific packages have the

following responsibilities:

 QAT Client – This is the main executive package, which coordinates the actions of all

other packages. Its responsibilities include instantiating the client plugins, establishing

communications with the server, and communicating data between the client plugins

and the web interface. When reports arrive from the server, this package processes and

displays them, rather than the associated tool plugin. This is to enforce uniform display

of reports.

 AgentClient – This package is responsible for coordinating the creation and editing of

Agents on the server.

11 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

 EnsembleClient – This package is responsible for coordinating the creation and editing

of Ensembles on the server.

 Web Server – The Web Server component is responsible for final display of content to

the user’s web browser.

 Comms – This package communicates with the Server. It is responsible for opening a

socket, sending messages on the socket, and firing events to the QAT Client when

reports arrive. It is also responsible for queuing messages when traffic is too heavy to

handle immediately. All messages are encoded in XML for universal ease in translation.

CRITICAL ISSUES

 Usability – With many diverse tools under one GUI, it becomes vital to organize the

options and controls cleanly and effectively. The Client is intended to be a unifying,

organizing component, so care must be taken to prevent it from obscuring or impeding

the users.

 Portability – The more workstations can run the Client, the more useful the tool will be

to a wider audience. Cross-platform languages such as Java could be considered, as

they afford use on many operating systems. However, a great deal of labor is required

to allow a piece of software to use networking between platforms, so Java was

discarded as too time consuming. However, this does not absolve the developers from

a need to keep the software capable of running on many variants of Windows, including

machines in many states of patching and .NET installation, without the added support

becoming prohibitive.

RISK ANALYZER

CONCEPT

When a project contains thousands of files, it can be difficult to determine which ones need

improvement. The Risk Analyzer discovers files that are a high risk, and deserve more test

focus. For example, if a file has a high fan-in and a high fan-out, combined with a bad smell, the

file should be subjected to additional testing, and measures taken to reduce its risk.

12 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

USES

 Risk management – Developers can run the Risk Analyzer when deciding how to

allocate their time improving existing code. For example, when desiring to improve

stability, a developer could run the tool on his codebase to identify potential weak

points, and investigate further to improve high-risk code segments.

 Test Management – Testers can run the Risk Analyzer when planning tests, particularly

unit tests. High risk code segments can be tested more thoroughly, so that test time is

spent efficiently. Extra unit tests can be developed and carried out on risky modules,

while more basic tests can be conducted on lower-risk modules. Likewise, full system

tests can be arranged to exercise higher-risk modules in more ways, while still

conducting basic tests on less risky modules.

 Code Metrics – Managers desiring to measure the progress of a project could use input

from the Risk Analyzer to enhance their reports. For example, when 100 man-hours are

spent on Module A while 300 man-hours are spent on Module B, some explanation may

be required. A team lead who can identify Module B as a higher risk module could

justify extra budget spent on Module B instead of Module A.

STRUCTURE

Repository

Access

Controller

ISandbox

RiskAnalyzerServer
IToolServer

Risk Analyzer

Dependency

Analyzer
Parser

Figure 4 – Package overview for the Risk Analyzer

13 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

 RiskAnalyzerServer – This package acts as the Risk Analyzer’s gateway to the rest of the

server. It accepts information from the Holster and the Client through the IToolServer

interface, and accesses the repository through the ISandbox interface. It also initiates

analysis using the Risk Analyzer package, and reports the results to the Client.

 Risk Analyzer – This package contains the core risk analysis logic. It begins by

determining the dependency graph of the specified ensemble using the Dependency

Analyzer, then computes the smell of each file in the ensemble using the Parser. After

another round of computations, each file’s risk is reported back to the

RiskAnalyzerServer for communication to the client.

 Dependency Analyzer – This package uses the Parser to determine the dependency

graph of the specified ensemble. It scans through the files to discover all type

definitions, then scans through to discover all references to the defined types. This two-

pass approach is used to generate a directed graph indicating the dependencies.

 Parser – The Parser provides a versatile polymorphic framework with many uses. It

scans through files, seeking out patterns of tokens that match specified rules. Each rule

is given a list of actions, which will be executed when the parser finds a pattern of

tokens that match. Rules and actions all inherit from abstract classes, allowing for a

fully polymorphic parser.

CRITICAL ISSUES

 Performance – Since the Risk Analyzer is a tool designed to reside primarily on the

repository server, it is expected that the body of the tool will execute on a server with a

modest amount of computing power, most likely a mult-core machine. To take

advantage of this, the Analyzer works in a multi-threaded mode, allowing for much

faster analysis of the codebase.

 Sharing – Since the tool works on the repository server, there is a very real possibility

that a developer could update a file while it is being analyzed. This is a significant

concern, as it could potentially invalidate the analysis. The server relies on the local

operating system’s write locking, and opens each file in read-only mode, so other

applications can read from the file under analysis but not write to it.

14 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

DEFECT ANALYZER

CONCEPT

The Defect Analyzer’s role is to keep toxic code out of the baseline based on various code

smells. This bad smelling code can be produced by a variety of things, including hurried design,

hurried implementation, and inexperienced programmers. These smells generally highlight

code that will impede future development – perceived by most programmers as simply hard to

work with. A variety of code types smell bad, including classes with excessively long methods,

classes with too many methods, and duplicated code.

USES

 Highlighting attention-deprived code – Sometimes code is forgotten when it does not

express bugs, depriving it of its deserved refactoring. If an Agent is configured to

analyze the codebase for potential defects periodically, these areas can be brought to a

team lead’s attention, and a developer dispatched to clean this area.

 Encouraging programmers to write clean code – Programmers can easily be tempted,

or pushed by deadlines, to quickly write code that is good enough, but could become a

maintenance nightmare. In a similar vein, sometimes code designed to be a throw-away

prototype can easily become part of the codebase without a necessary refactor,

resulting in code that is far from ideal. If developers know their team lead is checking

their code for bad practices on a regular basis, they will be more likely to keep good

code in the codebase.

15 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

STRUCTURE

Repository

Access

Controller

ISandbox

DefectAnalyzerServer
IToolServer

Parser

Figure 5 - Package overview for the Defect Analyzer

 DefectAnalysisServer – The Defect Analyzer operates in a relatively simple fashion,

allowing for most logic to reside in a single package. The main DefectAnalysisServer

package sets up the Parser with rules and actions appropriate to detect various code

smells. This package then parses specified files, using the actions to note smelly code

sections as they are discovered.

 Parser – This parser is the same parser as found in the Risk Analyzer. It provides a

versatile polymorphic framework with many uses, in this case detecting smelly code. It

scans through files, seeking out patterns of tokens that match specified rules. Each rule

is given a list of actions, which will be executed when the parser finds a pattern of

tokens that match. Rules and actions all inherit from abstract classes, allowing for a

fully polymorphic parser.

CRITICAL ISSUES

 Versatility – While many smells are indicators of non-ideal programming, some

organizations may find them distracting, or disagree with them. For this reason, smells

can be disabled in the plugin’s configuration file. A possible future expansion to the

software would be to attribute a weight to each code smell, allowing managers to apply

their own priorities to the analysis.

 Expandability – Some developers, managers, or team leads may desire to add additional

code smells to the ones that come with the Analyzer. For example, some senior

engineers may have discovered a high defect count associated with a certain code

16 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

pattern on a specific project, and wants to detect use of this code pattern in similar

projects. Since smells are based on combinations of rules and actions, more can be

added to the toolset by creating more rules and actions. A possible future expansion to

the toolset would be to create a scripting language that allows new smells to be defined

by advanced users.

TRACKING FACILITIES

During development and maintenance, three types of databases are generally used: A

requirements database, an issue tracker, and a change logger. These tools share the same

structure and very similar implementation, and are therefore grouped together.

REQUIREMENTS DATABASE

CONCEPT AND USES

The Requirements Database is intended to facilitate vetting of requirements with the customer.

Since requirements are something that must be very carefully controlled and understood, they

merit having a separate storage area.

CRITICAL ISSUES

 Access Control – While most of the Quality Assurance Tools can be safely run by any

developer, the Requirements should be more carefully controlled. Companies may

choose to give only managers or team leads access to this database, or to designate a

developer as the requirements collector. In any case, access should not be granted to

all users of the QAT.

ISSUE TRACKER

CONCEPT AND USES

Every project needs some kind of tool to track bugs and shortcomings, and the Issue Tracker is

designed to fill this niche. When a user discovers an issue, he records it in the Issue Tracker,

which then notifies the lead for that project. The lead then assigns the issue to a developer,

who investigates and solves the issue. Once the issue is solved, the developer marks it as

17 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

solved, and the Issue Tracker notifies the original reporter of the issue. The issue can only be

finally closed when the reporter confirms that the issue is truly solved.

The Issue tracker also reports statistics on the quantity and nature of the issues for managers’

use. For example, a manager may want to know which part of the code generates the most

complaints, and investigate the reason for the extra issues. The manager may also wish to

reward the developer who solves the most problems, and the issue tracker would provide a

good starting point. Finally, a well-implemented issue tracker can aid Configuration

Management staff greatly in discovering what changes were made between specific versions of

a specific tool, without diving into the code information stored in the Change Logger.

CRITICAL ISSUES

 Logical organization – While it may seem like a trivial task, the issues kept in the Issue

Tracker must have enough metadata to keep them organized in a logical fashion. While

this data varies somewhat between design houses, the basic important data includes:

o Affected project(s)

o Affected requirement(s)

o Reporter

o Assignee

o Links to sub-issues

o Links to commits in Change Logger when fixed

If all this information is correctly stored, the issues stored in the Issue Tracker can be

easily sorted and searched in a logical manner.

18 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

CHANGE LOGGER

CONCEPT AND USES

The Change Logger is used to record, observe, and summarize changes to the codebase. It

interfaces with the code repository software to detect changes, and records the commit

number, developers commit comment, and the code changes associated with the commit. If

the developer specified an issue number in the comment, the log entry will be updated to

include a link to this issue number.

This Logger is useful for team leads to quickly understand changes that are made to the

codebase as they are made across a wide development team, and for managers to obtain

metrics for the project. For example, managers can measure commitment volume get an

approximation of effort spent to resolve a particular issue.

CRITICAL ISSUES

 Interoperability – This tool’s usefulness is inextricably linked to its ability to

communicate with the code repository software. For this reason, this plugin must be

written with support for a wide variety of repository servers, such as SVN, MKS, and

Perforce.

19 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

STRUCTURE

The three tracking tools share a common structure, illustrated in Figure 6:

Repository

Access

Controller

ISandbox

IToolServer
RequirementsTrackerServer

ChangeLoggerServer

IssueTrackerServer

IToolServer

IToolServer

Database

Management

System

Figure 6 - Package overview for Tracking Tools

 RequirementsTrackerServer, IssueTrackerServer, ChangeLoggerServer – These

packages represent the main packages for each of the tracking tools. Their

responsibilities include communicating with the user through the client, and

communicating with the database through the Database Management System. The

ChangeLoggerServer also communicates with the repository through the Respository

Access Controller.

 Database Management System – The Database Management System handles database-

related functions, and does not understand the data stored within the database.

AUTOMATED FORMATTER

CONCEPT

The Automated Formatter is what many programmers informally refer to as a “Pretty Printer.”

The goal of such a formatter is simple – to make all code in the project look like it came from

the same company. Many styles of code in each language exist, and the differences between

them are only cosmetic. For example, some hold that opening braces should be on the line

20 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

following an if statement, while some hold that it should be on the same line. Developers can

argue for hours over which style is the most readable, leading many managers and team leads

to dictate mandatory standards, which developers must conform to manually. The Automated

Formatter aims to save time and prevent mistakes by automatically processing the code and

cosmetically modifying it to become consistent.

USES

This tool is primarily designed for developers to run on their code after committing to the

repository. Developers can set up Agents to run the Formatter for them, or they can run it

manually. This tool is not designed for managers who may not understand the consequences of

running this tool on various source items.

STRUCTURE

IToolServer

Repository

Access

Controller

ISandbox

AutoFormatterServer

Parser

Figure 7 - Package overview for Automated Formatter

 AutoFormatterServer – This is the main executive for the tool. It opens each specified

file and uses the parser to identify sections of code that it knows the desired formatting

for – for example, a function declaration. It then outputs to an intermediate file the

correctly formatted version of this section. If an unrecognized code segment is

discovered, it outputs without modification. After the file’s processing is complete, it

copies the intermediate file over the original file.

 Parser – This parser is the same parser as found in the Risk Analyzer and Defect

Analyzer. It scans through files, seeking out patterns of tokens that match specified

rules. Each rule is given a list of actions, which will be executed when the parser finds a

pattern of tokens that match. Rules and actions all inherit from abstract classes,

21 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

allowing for a fully polymorphic parser. The rules used in this case simply detect notable

components, and the actions notify the AutoFormatterServer for further processing.

CRITICAL ISSUES

 Cosmetic accuracy – This tool must only make changes that are truly cosmetic, and take

pains to not alter the code’s critical structure. This tool will be tested with a variety of

input files to ensure it does not edit code it does not understand.

 Performance – A great deal of files must be processed, without affecting each others’

processing, making this an ideal tool for parallelization. Many threads can be spun off,

each processing a file at a time. The number of threads should be chosen based on the

host’s number of cores and the write speed of the host’s hard disks.

AGENTS

CONCEPT

Agents are small, customizable units that can be used to personalize the toolset. Agents work

off three pieces of information:

 A trigger – can be a time, an event from another tool, or a manual trigger

 A tool to run – can be any of the tools in the toolset

 An ensemble to run the code on – generated with the Ensemble Builder

When the trigger event occurs, the agent runs the specified tool on the specified ensemble.

USES

 Nightly status report – A manager or team lead, desiring to remain knowledgeable,

could setup an agent to run on the repository nightly to generate a status report

available in the morning. This manager would become very informed. For example,

each morning he could learn how many issues had been solved the previous day, how

many issues had been reported, and what had been done to decrease risk on the

project.

22 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

 Risk notification – A developer is likely to want notification when he submits code that

significantly increases the risk of a project. He can set up an agent to run the Risk

Analyzer on his area of the codebase whenever code is committed to that area, and

know immediately when changes increase risk. This is one of the ideal uses of the Risk

analyzer, and allows for prompt correction when high-risk code is introduced. The same

setup can be used with the Defect Analyzer to allow for quick detection and correction

of code toxicity.

STRUCTURE

QAT Server

AgentManager

IToolStarter

Repository

Access

Controller

ISandbox

Figure 8 – Package overview of Agent Manager

AgentManager – This package is responsible for creation, editing, and invoking of Agents. It

relies on user input from the Client to create and edit Agents, and invokes based on either time

or events from the QAT Server. When an Agent needs to invoke a tool, it does so through the

QAT Server’s IToolStarter interface. This interface is used to reduce the chances that a change

in the QAT Server will trigger a change in the AgentManager. The AgentManager needs access

to the filesystem to read ensemble files and to load and save agent data, which it accomplishes

through the ISandbox interface.

CRITICAL ISSUES

 Security – Since Agents can be set up by any user and by run by the server, care must be

taken to ensure no Agent runs at a higher privilege level than the instigating user. For

example, if Alice sets up an Agent to run whenever a change is committed to Project

Alpha, this agent should only ever run at Alice’s security level. If Bob submits a change

23 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

to Project Alpha, the Change Logger will detect the change and fire off Alice’s Agent as a

result of Bob’s actions. Agents must be designed to check that they are running under

the owner’s credentials before executing any tools.

ENSEMBLE BUILDER

CONCEPT

The Ensemble Builder is used to define subsets of the main code repository for examination by

other tools in the toolset. It is often desirable to run analyses on a single project or subproject

at a time, rather than looking at the baseline as a whole. A GUI is made available to the user to

select files to include in the ensemble, as well as to load from or save to an XML file.

USES

 Monitoring sub-projects – On a large project, sub-projects may have individual team

leads. These team leads are more interested in measuring the health of the subset of

the codebase they are responsible for, and would want to define an ensemble

describing the sub-project. This would allow the team lead to focus the Risk and Defect

analyzers on their sub-project, leaving the main project health measurements to the

project lead.

 Monitoring individual contributions – Individual developers may also be interested in

defining ensembles for their own code, as they may have worked on many modules.

They may also be interested in cleaning up their code to match the company standard,

as enforced by the Automated Formatter. They may also desire to use the Change

Logger tool to observe changes to other modules – for example, to receive notification

when an issue affecting them has been solved.

24 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

STRUCTURE

QAT Server

EnsembleManager

Repository

Access

Controller

ISandbox

Figure 9 – Package overview for the Ensemble Manager

EnsembleManager – Since the Ensemble Manager’s tasks are relatively simple, they can be

contained in one package. This package is responsible for accepting and acting upon direction

from the user regarding creating, loading, and saving of Ensembles.

CRITICAL ISSUES

 Portability – Not all repositories remain in the same place through their whole lifespan,

so a list of files contained within the ensemble must be flexible. To account for the

possibility of changed or branched codebases, ensemble paths are all stored relative to

the directory in which they currently reside.

SYSTEM-WIDE LOGGING FACILITY

CONCEPT

Since multiple QAT tools may be running at any given moment, all accomplishing very different

tasks, the Toolset needs a coherent logging facility that all modules can use to log events. This

logging facility will be accessed by any of the other tools in the toolset, and can be viewed

through its client. The output will be in XML, for easy viewing.

25 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

USES

 Use metrics – Managers may want to know how much use the various tools incur, and

use these metrics to decide which tools to purchase in the future.

 Ease of administration – Errors are bound to occur in the Toolset, and having a clear log

of events can help debug issues. Administrators can use the log to submit clear bug

reports.

STRUCTURE

ChangeLogServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

IToolServer

Logger

BugServer

RequirementsServer

AutoFormatterServer

DefectAnalyzerServer

RiskAnalyzerServer

Figure 10 – Package overview for the Logger

Logger – This feature is simple enough to merit a single package. This package is responsible

for receiving input from all tools in the toolset, and logging them efficiently in clear XML.

26 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

CRITICAL ISSUES

Performance is a major issue that must be considered in the design of the logging facility. With

optimized tools such as the Risk Analyzer and the Defect Analyzer combing through thousands

of files, there’s great potential for logged events to come in at a rapid rate. If these events are

written to the disk every time they are received, the logger could bog down and become

inoperable. To investigate the significance of this lag, a prototype logger was written to

measure the difference between writing immediately to disk and using a queue to store log

entries, and dumping the queue to disk when it reaches a certain size. The prototype was built

with a high-resolution timer around the code accomplishing the logging, as follows:

 private void Log(string data)

 {

 System.Diagnostics.Stopwatch timer = new System.Diagnostics.Stopwatch();

 timer.Start();

 if (filewriter != null)

 {

 // under one scenario, keep in the queue until full, then flush queue

 if (enable_buffer)

 {

 log_buffer.Enqueue(data);

 if (log_buffer.Count > BUFFER_SIZE)

 Flush();

 }

 // under one scenario, write directly to file

 else

 {

 filewriter.WriteLine(data);

 filewriter.Flush();

 }

 }

 num_log_events++;

 timer.Stop();

 time_spent_logging += timer.Elapsed;

 }

 // flush the buffer

 public void Flush()

 {

 string str = "";

 for (str = log_buffer.Dequeue(); log_buffer.Count > 0; str = log_buffer.Dequeue())

 {

 filewriter.WriteLine(str);

 }

 filewriter.WriteLine(str);

 filewriter.Flush();

 }

Buffering was enabled or disabled using the enable_buffer member variable, allowing the

same timer code to operate both types of logging for consistency.

27 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

This was tested under the following scenarios:

1. Single utility using unbuffered log – one utility was run, dumping events into the log at

its maximum rate. The logger dumped directly to disk and flushed its write buffer upon

each logging event. The following performance was observed:

Run Events logged ms/event
 1 1000 0.029769
 2 1000 0.010579
 3 1000 0.013244
 4 1000 0.010557
 5 1000 0.010891
 6 1000 0.010649
 7 1000 0.010507
 8 1000 0.010366
 9 1000 0.010308
 10 1000 0.010707

Average: 0.012758 ms

2. Single utility using buffered log – one utility was run, dumping events into the log at its

maximum rate. The logger queued events, and dumped its buffer every 10 items. The

following performance was observed:

Run Events logged ms/event
 1 1000 0.002058
 2 1000 0.002038
 3 1000 0.001925
 4 1000 0.0019
 5 1000 0.001809
 6 1000 0.001911
 7 1000 0.001783
 8 1000 0.001868
 9 1000 0.001899
 10 1000 0.001863

Average: 0.001905 ms

3. Single utility using large buffered log – one utility was run, dumping events into the log

at its maximum rate. The logger queued events, and dumped its buffer every 100

items. The following performance was observed:

28 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

Run Events logged ms/event
 1 1000 0.003667
 2 1000 0.002414
 3 1000 0.001943
 4 1000 0.002063
 5 1000 0.002053
 6 1000 0.001907
 7 1000 0.001881
 8 1000 0.001891
 9 1000 0.001889
 10 1000 0.001905

Average: 0.002161 ms

4. Multiple utilities using unbuffered log – twenty instances of the test utility were

activated, creating significant traffic density. The logger dumped directly to disk and

flushed its write buffer upon each logging event. The following performance was

observed:

Run Events logged ms/event
 1 20000 0.013722
 2 20000 0.013248
 3 20000 0.013512
 4 20000 0.014017
 5 20000 0.014076
 6 20000 0.013575
 7 20000 0.013487
 8 20000 0.0131
 9 20000 0.013531
 10 20000 0.014042

Average: 0.013631 ms

5. Multiple utilities using buffered log – twenty instances of the test utility were activated,

creating significant traffic density. The logger queued events, and dumped its buffer

every 10 items. The following performance was observed:

Run Events logged ms/event
 1 20000 0.002948

29 Modular Quality Assurance Toolset

CSE681 John Walthour 2010-5-10

2 20000 0.002908
 3 20000 0.00305
 4 20000 0.002778
 5 20000 0.002943
 6 20000 0.00293
 7 20000 0.002605
 8 20000 0.002798
 9 20000 0.003218
 10 20000 0.002894

Average: 0.002907 ms

6. Multiple utilities using large buffered log – twenty instances of the test utility were

activated, creating significant traffic density. The logger queued events, and dumped

its buffer every 100 items. The following performance was observed:

Run Events logged ms/event
 1 20000 0.003097
 2 20000 0.003172
 3 20000 0.00298
 4 20000 0.003031
 5 20000 0.003
 6 20000 0.003214
 7 20000 0.002948
 8 20000 0.003296
 9 20000 0.002961
 10 20000 0.002901

Average: 0.00306 ms

From these results, it appears obvious that queuing log entries will improve performance

dramatically. First, the addition of logging reduces the time per logging event by a factor of

approximately five – from 12.8s in Scenario 1 to 1.9s in Scenario 2, and from 13.6ms in

Scenario 4 to 2.9ms in Scenario 5. Scenarios 3 and 6 illustrate that the queue size has an effect

on performance, but require more experimentation to understand fully. It would appear that

each configuration of hard drives has an ideal burst length, and that each system should be

configured such that the logger’s queue flushes match the ideal burst length.

