
Packages Page 1

Appendix 1 - Packages

Jim Fawcett
copyright (c) 1999-2010

CSE784 – Software Studio

Class Notes

Packages Page 2

Limitation of Single File Program

 What’s wrong with a single file program?

– nothing, but as programs grow larger, this format
becomes very limiting

– all functions are at the same (global) level; that’s
what C does, you don’t have a choice

– programs grow too large to comprehend as a
single entity

– eventually, as file size grows, the compiler can not
swallow the whole file

 Solution:

– break programs up into packages

– each package consists of one or two files:

– C++ uses header files that contain all public
declarations so other packages know how to use
the package’s services

– A C++ implementation file contains all data and
function definitions; that is, it provides the services
that the header file announces

– C# has no header files, instead placing all
implementations inline in class declarations.

Packages Page 3

Modularity

 “In object oriented languages classes and objects
form the logical structure of the system; we place
these abstractions in packages to produce the
system's physical architecture.”

 Grady Booch, Object Oriented Design with
 Applications, Benjamin/Cimmings, 1991

 Modularization consists of dividing a program into
packages which can be compiled separately.
C++ and C# perform type checking across
package boundaries.

– C++ uses header files to accomplish this.

– C# uses metadata, embedded in every assembly.

Packages Page 4

Information Cluster

Model Type:
abstract system model

Logical View:
 An information cluster encapsulates complex, sensitive,

global, or device dependent data, along with functions
which manage the data, in a container with internals not
accessible to client view.

 Public access is provided by a series of accessor and
mutator functions. Clients don’t have access to private
functions or data.

Implementation:
 C package using file scope for encapsulation. All private

functions and global data are qualified as static.

 C#, C++ class using public, protected, and private
keywords to implement public and protected interfaces.
Each class (or small, intimately related group of classes)
should be given its own package.

 Each package implementing an information cluster
contains a manual page and maintenance page which
describe the logical model for the cluster and its
chronological modification history. Each package includes
a test stub with compilation controls.

private data

private

functions

public functions

Packages Page 5

Packages

 C# Packages

– A C# package consists of a single source code file with the
extension “.cs”.

– It starts with a Manual Page and Maintenance Page and ends
with a Test Stub.

– The test stub is surrounded with compilation guards so that it
is compiled when “TEST_PACKAGENAME” is defined as a
compilation constant.

– Each package is given its own project which includes the
package file and the files of any packages it depends upon.

 C++ Packages

– A C++ server package consists of two files:

• Header file with extension “.h” which declares the public services of
the package with class and global function declarations.

• Implementation file with extension “.cpp” which implements the
public services of the package and may also implement private
classes and global functions to simplify its development and
maintenance.

– The header file starts with Manual and Maintenance pages.
The entire header is surrounded by compilation controls to
avoid duplicate declarations.

– The implementation file starts with a prolog block (which is
also the first part of the header’s Manual Page) and ends with
a Test Stub, surrounded by compilation controls so it is
compiled only when “TEST_PACKAGENAME” is defined as a
preprocessor pragma.

Packages Page 6

Modular System

Model Type:
abstract system model

Logical Model:

 collection of information clusters communicating through public
interfaces. Each information cluster is packaged in a file or files.

Implementation:

 One Executive package and a series of Server packages.

 One C, C++, or C# server package for each major program
activity.

 The Executive package is responsible for all program activities,
using the services of dedicated servers.

 Each server package:

– Implements one cohesive set of responsibilities.

– Is self documenting and self testing through the use of
Manual Pages, Maintenance Pages, and Test Stubs.

Executive

Server #1 Server #2

Server #3 Server #4

Packages Page 7

C# Package Implementation

 C# has no header files, so each appropriately decorated
source file is a package.

Each package begins with a manual page and maintenance
page:

 Manual page describes a logical view of the package and
provides brief descriptions of all public services provided.

 Maintenance page provides a chronological record of
changes to the package since its creation, cited by
version number.

The file may also contain a design notes page which
describes organizing principles, major data structures,
and key processes which set the course of the package’s
design.

 The test stub is the last part of the file and is guarded to
permit compilation without the stub in the context of a larger
system:

 #if(TEST_MODNAME)

 static void Main(string[] args)

 {

 // tests go here

 }

#endif

Packages Page 8

C++ Package Implementation

 Each C++ package begins with preprocessor guard statements
which prevent multiple declarations, e.g.:

 #ifndef MODNAME_HPP

 #define MODNAME_HPP

 :

 header body

 :

 #endif

The endif statement is the last in the header file.

 The test stub is the last part of implementation file and is also
guarded to permit compilation without the stub:

 #ifdef TEST_MODNAME

 int main(int argc, char* argv[]) {

 :

 return err_code;

}

#endif

 Each package’s header file begins with a manual page and
maintenance page:

 Manual page describes the logical view of package and
provides brief descriptions of all public services provided by
the package

 Maintenance page provides a chronological record of changes
to the package since its creation, cited by version number.

 Either header file or implementation file may also contain a
design notes page which describe the organizing principles,
major data structures, and key processes which set the course
of the package’s design.

Packages Page 9

C# Package Structure

 File: modname.cs

 manual page goes here

 maintenance page goes here

 declarations with inline implementations go here

#if(TEST_MODNAME)

 Static void Main(string[] args)

{

 - test code goes here

 }

 #endif

Packages Page 10

C++ Package Structure

 Header File: modname.h

 #ifndef MODNAME_HPP

 #define MODNAME_HPP

 - manual page goes here

 - maintenance page goes here

 - declarations go here

 #endif

 Implementation File: modname.cpp

 - prologue goes here

 #include “modname.hpp”

 - function definitions go here

 #ifdef TEST_MODNAME

 void main(int argc, char* argv[])

{

 - test code goes here

 }

 #endif

Packages Page 11

Incremental Development Model

 Begins with requirements analysis, development of
architecture and preliminary design. Result should be a
design concept and partitioning into packages.

As soon as packages are defined, one is selected that has
no dependencies on other packages (at least one almost
always exists). This package’s development proceeds by
implementing one or two functions, adding tests of the new
capabilities to the test stub, and verifying nominal
operation.

 This process continues iteratively until package is complete.
Detailed unit test then begins. Its goals are to exercise all
paths and predicates in code to find all latent errors, correct
them, and verify.

Next a package is selected which depends at most on the
tested package. It is subjected to same process to develop
a complete and verified package. It is then integrated with
the first package.

This continues until all the packages have been integrated.
Development completes by carrying out qualification test to
demonstrate that software meets all its contractual
obligations.

The outstanding virtue of this approach is that only a small
amount of new code is brought into a throughly tested
baseline at each stage of devel-opment.

Packages Page 12

Incremental Development

Req. Anal.

Preliminary Design

Design Design Design

Code & UT Code & UT Code & UT

Integration Test

Qualification Test

Integration Test

Integration Test

correct code

correct code

partially tested

code

partially tested

code

phases

Packages

Packages Page 13

Limitations of Packages

 What’s wrong with modular
decomposition?

– nothing, but this format is not very flexible

– packages are defined statically (at compile time)

– new instances can not be created at run time

– this means that the flexability afforded by run-time
creation of data does not extend to packages which
contain both functions and data

 Solution:

– classes support declaration of objects which can be
defined either statically or dynamically

– classes define both functions and data. An object, which
is simply an instance of a class, can be defined statically
in static memory, in local memory (on the stack), or
dynamically on the heap, just like any intrinsic data type

– a program can define as many objects as it needs up to
the amount that your computer memory can hold

– Classes are packaged into packages

Packages Page 14

End of Presentation

