
C# Threads

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2005

Thread Class

 Every Win32 thread is passed a function to run when created.

– When the thread returns from the function it terminates.

 In C#, Threads are managed by the System.Threading.Thread
class.

– C# threads are passed a static or instance function of some C#
class using a standard delegate of type ThreadStart.

Starting C# Threads

 Thread thread =

new Thread(new ThreadStart(ThreadFunc));

 thread.Start();

 ThreadFunc can be:

– Static or instance member of the class instance that created the thread

– Static or instance member of some other class, e.g.:

ThreadStart(SomeClass.aStaticFunction);
ThreadStart(someClassInstance.aNonStaticFunction);

Thread States

 A thread that has been started, but not yet terminated can be in
one of the following states:

– Running

– Waiting to run

– Suspended

– Blocked

Thread Properties

 IsBackground – get, set
– Process does not end until all Foreground threads have ended.
– Background threads are terminated when application ends.

 CurrentThread – get, static
– Returns thread reference to calling thread

 IsAlive – get
– Has thread started but not terminated?

 Priority – get, set
– Highest, AboveNormal, Normal, BelowNormal, Lowest

 ThreadState – get
– Unstarted, Running, Suspended, Stopped, WaitSleepJoin, ..

Sharing Resources

 A child thread often needs to communciate with its parent thread. It does
this via some shared resource, like a queue.

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

Synchronization

 When two or more threads share a common resource access needs
to be serialized - a process called synchronization.

– Consider the shared queue on the previous slide. Should the parent
start to enqueue an element in an empty queue, but have its time-slice
expire before finishing, the queues links are in an undefined state.

– Now, if the child thread wakes up, and attempts to dequeue an element
the result is undefined.

Synchronization with C# Lock

// send messages to child thread

string msg = "";

for(int i=0; i<50; ++i)

{

msg = "message #" + i.ToString();

Console.Write("\n Sending {0},",msg);

// Enqueuing changes links so must lock

lock(demo.threadQ) { demo.threadQ.Enqueue(msg); }

// control writer speed - twice as fast as reader

Thread.Sleep(50);

}

lock(demo.threadQ) { demo.threadQ.Enqueue("end"); }

child.Join();

Console.Write(

"\n\n child thread state = {0}\n\n",child.ThreadState.ToString()

);

Demonstration Program

 QueuedMessages folder

– Illustrates communication between parent and child threads using
a queue.

– Also illustrates use of C# lock operation.

Other Locking Mechanisms

 The .Net Threading Library also provides:

– Monitor
• Locks an object, like C# lock, but provides more control.

– Interlocked
• Provides atomic operations on 32 bit and 64 bit data types, e.g., ints,

longs, pointers.

– Mutex
• Guards a region of code.
• Can synchronize across process boundaries.

– AutoResetEvent and WaitOne
• Allows fine-grained control of the sequencing of thread operations.

– ReaderWriterLock
• Locks only when writing, allowing free reads.

Locking Certain Collections

 ArrayList, Hashtable, Queue, Stack, and other collections provide
Synchronized() function, supporting high performance locking.

ArrayList unsync = new ArrayList();

ArrayList sync = ArrayList.Synchronized(unsynch);

Your code needs no lock constructs with sync.

Method Decoration

 Methods can be decorated with a MethodImpl attribute, synchronizing
access much like a Win32 critical section.

[MethodImpl (MethodImplOptions.Synchronized)]

string myMethod(string input)

{

…

}

Note that this synchronizes a region of code, while lock and Monitor
synchronize objects.

WinForms and Worker Threads

 A UI thread is a thread that creates a window. A worker thread
is a thread spawned by a UI thread to do work in the
background while the UI thread services UI messages.

 A worker thread must never access UI functions directly. It
accesses them through Form’s Invoke, BeginInvoke, and
EndInvoke functions, passing a delegate as an argument.

BeginInvoke Example

for (i = 1; i <= 25; i++)

{

s = "Step number " + i.ToString() + " executed";

Thread.Sleep(400);

// Make asynchronous call to main form.

// MainForm.AddString function runs in main thread

// because we activated the delegate through form's

// Invoke (synchronous) or BeginInvoke (asynchronous) functions.

// To make synchronous call use Invoke.

m_form.BeginInvoke(m_form.m_DelegateAddString, new Object[] {s});

// check if thread is cancelled

if (m_EventStop.WaitOne(0, true))

{

// clean-up operations may be placed here

// ...

// inform main thread that this thread stopped

m_EventStopped.Set();

return;

}

}

Delegate arguments

passed as an array of

objects

Demonstration Programs

 ProcessDemo and ProcessDemoWin32
– Illustrates creating a child process

 QueuedMessages
– Illustrates communication between threads using queues and the

C# lock operation.

 FormInvokeDemo folder
– A more interesting demonstration of the above.

 WorkerThread folder
– Simple Demonstration of UI and Worker thread communication

using Form.Invoke(…)

 ThreadPoolDemo folder
– Illustrates how to use the ThreadPool to run functions

End of Presentation

