
Software Design

Jim Fawcett
CSE687 – Object Oriented Design
Spring 2009

Software Design 2

Software Development

 Strategy:
Concept

– Rationale, options

Organizing ideas
and structure

– Uses

– Partitions and responsibilities

– Critical issues

 Tactics
Implementing ideas and structure

– Activities

– Classes and relationships

– Algorithms

– Data management

Strategy Tactics

Architecture Design Implementation

Software Design 3

Design Goals
Make each software Component:

 Simple
– Small functions
– Low Cyclomatic Complexity
– Small number of functions

 Understandable
– Self documented
– Descriptive names
– Simple

 Maintainable
– Simple, flexible, and robust

 Selectable
– Capability summary
– Keywords

 Reusable
– Selectable, understandable,

low fan-out
(not counting framework lib
calls)

 Reliable
– Repeatable behavior
– Free of latent errors

 Robust
– Will not crash with unexpected

inputs or environment

 Flexible
– Changes don’t propagate
– Supports substitution of

implementations

 Extendable
– Supports addition of new

implementations

Software Design 4

Simplicity

 Small functions
– Lines of code ≤ 50

 Low cyclomatic complexity
– All functions CC ≤ 10

– Average much lower

 Small number of functions
– Functions per module ≤ 20

– Average much lower

 Measurable by size and complexity

Software Design 5

04/05/2007 08:57:59 AM 13640 Sockets.cpp

===

cyclo lines function name

3 32 SocketSystem::GetLastMsg

3 14 SocketSystem::SocketSystem

2 9 SocketSystem

1 6 SocketSystem::getHostName

3 22 SocketSystem::getIpFromName

2 10 SocketSystem::getNameFromIp

1 4 Socket::Socket

1 4 Socket::Socket

1 5 Socket::Socket

1 1 Socket::Socket

1 5 Socket

1 6 operator=

3 14 Socket::connect

1 5 Socket::disconnect

1 4 operatorSOCKET

5 25 Socket::send

5 19 Socket::recv

1 7 Socket::getLocalIP

2 12 Socket::getLocalPort

2 12 Socket::getRemoteIP

2 12 Socket::getRemotePort

3 22 SocketListener::SocketListener

1 6 SocketListener

1 7 SocketListener::waitForConnect

1 6 SocketListener::stop

1 4 SocketListener::getLocalIP

1 4 SocketListener::getLocalPort

3 97 main

04/05/2007 08:57:59 AM 4905 Sockets.h

==

cyclo lines function name

- type: class SocketSystem

- type: class Socket

1 1 error

1 1 getHandle

- type: class SocketListener

Software Design 6

Socket is Almost Simple

 Small functions

 Low complexity

 Interface is fairly large

– 15 member functions

 Couples well with SocketListener

Software Design 7

Understandable

 Self documented
– Manual page

 read about operations and interface

– Maintenance page
 see how to build

– Test stub
 see how it works

 Descriptive names
– Name describes operation or result

 Simple
 Measurable by detecting decorations

Software Design 8

///

// Tokenizer.h - Reads words from a file //

// ver 1.4 //

// //

// Language: Visual C++ 2005 //

// Platform: Dell Dimension 9150, Windows XP SP2 //

// Application: Prototype for CSE687 Pr1, Sp06 //

// Author: Jim Fawcett, CST 2-187, Syracuse University //

// (315) 443-3948, jfawcett@twcny.rr.com //

///

/*

Module Operations:

==================

This module defines a tokenizer class. Its instances read words from

an attached file. Word boundaries occur when a character sequence

read from the file:

- changes between any of the character types: alphanumeric, punctuator,

or white space.

- certain characters are treated as single character tokens, e.g.,

"(", ")", "{", "}", "[". "]", ";", ".", and "\n".

A tokenizer is an important part of a scanner, used to read and interpret

source code.

Public Interface:

=================

Toker t; // create tokenizer instance

returnComments(); // request comments return as tokens

if(t.attach(someFileName)) // select file for tokenizing

string tok = t.getTok(); // extract first token

int numLines = t.lines(); // return number of lines encountered

t.lines() = 0; // reset line count

Software Design 9

Tokenizer is Understandable

 Simple model

 Simple interface

 Cohesive

 Couples only to input stream

Software Design 10

Maintainable

 Maintenance consists of
– Fixing latent errors

– Modifying existing functionality

– Adding new functionality

 Is maintainable if:
– Needs no maintenance

 So simple it obviously has no defects

 Additions made by composing with new components

– Easy to fix, modify, and extend
 Used through interface so changes don’t propagate

 Interface can be bound to new implementations

 Simple so easy to test

 Only indirectly measurable

Software Design 11

class IAction

{

public:

virtual ~IAction() {}

virtual void
doAction(SemiExp& se)=0;

};

class IRule

{

public:

virtual ~IRule() {}

void addAction(IAction*
pAction);

void doActions(SemiExp& se);

virtual bool doTest(SemiExp&
se)=0;

protected:

std::vector<IAction*>
actions;

};

class Parser

{

public:

Parser(SemiExp& se);

~Parser();

void addRule(IRule* pRule);

bool parse();

bool next();

private:

ITokCollection* pTokColl;

std::vector<IRule*> rules;

};

Software Design 12

Parser is Maintainable

 Very simple structure

 Very simple operation

 Partitions activities into Parsing, Rules,
and Actions

 Very loose coupling

 Example of Open/Closed Principle

Software Design 13

Selectable

 Five million lines of code project
– Has roughly 10, 000 modules

 Average of 500 lines of code per module
– 10 functions with 50 lines of code each

 Need ways to find parts to salvage and reuse
– Need to make quick decisions

 Localize candidates by functionality or application
– has operational summaries in prologue and manual page

– Need to quickly evaluate candidates
 Easy to build

– has maintenance information with build process

 Easy to run
– has test stub

 Measurable by detecting decorations

Software Design 14

///

// blockingQueue.cpp - queue that blocks on deQ of empty queue //

// ver 1.0 //

// Language: Visual C++, ver 7.1, SP 2 //

// Platform: Dell Dimension 8300, Win XP Pro, SP2 //

// Application: CSE687 - Object Oriented Design //

// Author: Jim Fawcett, CST 2-187, Syracuse Univ //

// (315) 443-3948, jfawcett@twcny.rr.com //

// //

///

/*

Module Operations

=================

This module provides a simple thread-safe blocking queue, based

on the STL queue container adapter. When a client thread attempts

to deQ an empty queue, it will block until another thread enQs an

item. This prevents very high CPU utilization while a reading

thread spin locks on an empty queue.

Public Interface

================

BQueue<std::string> Q // create blocking queue holding std::strings

Q.enQ("an item"); // push onto queue

std::string str = Q.deQ(); // pop from queue

size_t s = Q.size(); // number of elements in queue

Q.clear() // remove all contents from queue

*/

Software Design 15

BlockingQueue is Selectable

 Simple functionality

 Simple interface

 Clear Manual Page

 Clear Maintenance Page

 Test Stub

– Easy to see what BQueue does

Software Design 16

Reusable

 Selectable
– Has prologue and Manual Page

 Understandable
– Has module operation description
– Meaningful names
– Simple structure

 Low fan-out
– Dependent on very few other components

 Needs no application specific code
– Uses delegates
– Provides base class “hook”

 Fan-out and selectable/maintainable are
measurable

Software Design 17

class defProc

{

public:

virtual ~defProc() { }

virtual void dirsProc(const std::string &dir);

virtual void fileProc(const fileInfo &fi);

};

class navig

{

public:

navig(defProc &dp); // accept user defined proc

~navig(); // restore user's dir

void start(std::string dir, const std::string& fileMask="*.*");

// start dir navigation

std::string getPath();

private:

static const int PathBufferSize = 256;

void walk(const std::string &dir, const std::string& fileMask);

// directory walker

std::string userDir_; // user's working directory

defProc &dp_; // provides extendable processing

// of file and directory names

};

Software Design 18

Navig is Reusable

 Provides a base class “hook” called
defproc

 Application code derives from defproc
so that Navig calls application code
whenever it encounters a file or
directory.

Software Design 19

Reliable

 Understandable model

 No surprises

– Operates according to known model

– Processing is repeatable

– No race conditions or deadlocks

 Thoroughly tested

 Probably only measurable “after the fact” by
keeping statistics on bugs and testing.

Software Design 20

Tokenizer Maintenance

Maintenance History:
====================
ver 1.4 : 10 Feb 07
- fixed bug in braceCount to eliminate changing count when brace
is in a quoted string or comment

ver 1.3 : 24 Feb 06
- fixed bug in eat comment that hung on ending comment with no
newline, by testing for stream state good.

ver 1.2 : 06 Feb 06
- added stream closing to destructor and attach memeber functions
ver 1.1 : 01 Feb 06
- added if test at end of getTok() to avoid returning space after
C comment as a token

ver 1.0 : 12 Jan 06
- first release

Software Design 21

Tokenizer is Reliable

 Code is not simple

– Many special cases that you may not
think of while designing

 It took awhile to get there

 Kept records of bugs and fixes

 Responded to bug reports

Software Design 22

Robust

 Will not crash with unexpected inputs or
environment
– Use partitions to isolate processing

 Interfaces, AppDomains, COM components, controls

– Use exception handling to trap unexpected
events

– Validate user input, especially strings and paths

 Indirectly measurable by looking for
partitions, exception handling, and
validation code.

Software Design 23

Parser* ConfigParseToConsole::Build()

{

try

{

// configure to detect and act on preprocessor statements

pToker = new Toker;

pSemi = new SemiExp(pToker);

pParser = new Parser(*pSemi);

pPreprocStatement = new PreprocStatement;

pPrintPreproc = new PrintPreproc;

pPreprocStatement->addAction(pPrintPreproc);

pParser->addRule(pPreprocStatement);

// configure to detect and act on function definitions

pFunctionDefinition = new FunctionDefinition;

pPrintFunction = new PrintFunction;

pFunctionDefinition->addAction(pPrintFunction);

pPrettyPrintFunction = new PrettyPrintFunction;

pFunctionDefinition->addAction(pPrettyPrintFunction);

pParser->addRule(pFunctionDefinition);

return pParser;

}

catch(std::exception& ex)

{

std::cout << "\n\n " << ex.what() << "\n\n";

return 0;

}

}

Software Design 24

ConfigParse is Robust

 Uses try and catch blocks

 Returns exception message consistent
with application

– Uses cout for console application

Software Design 25

Flexible

 Changes don’t propagate
– Provide an interface so users don’t bind to your

implementation
– Change to some implementation detail won’t

cause changes to other components

 Supports changes of implementation
– Interfaces guarantee substituability of any

implementing class
– Template parametrization supports compile-time

substitution.

 Weakly measurable, by looking for
interfaces and template parametrization.

Software Design 26

template <thread_type type>

class Thread

{

public:

Thread(Thread_Processing& p);

~Thread();

void start();

void wait();

static void wait(HANDLE tHandle);

unsigned long id();

HANDLE handle();

void sleep(long Millisecs);

void suspend();

void resume();

thread_priority getPriority();

void setPriority(thread_priority p);

void endThread(unsigned int exit_code);

private:

Thread_Processing* pProc;

HANDLE hThread;

static unsigned int __stdcall threadProc(void *pSelf);

unsigned int _threadID;

thread_priority _priority;

// disable copy and assignment

Thread(const Thread<type>& t);

Thread<type>& operator=(const Thread<type>& t);

};

Software Design 27

Thread Class is Flexible

 Template policy supports

– Stack-based default threads

 Allows interaction while processing unfolds

– Heap-based terminating threads

 Fire-and-forget paradigm

Software Design 28

Extendable

 Supports addition of new implementation

– Use of interface and object factory supports
adding new components

 No changes to users of the interface and factory

 Parser: easy to add new rules and actions

– Templates support compile-time substitutability

 Template policies support customization of behavior

 Weakly measurable, by looking for
interfaces and template parametrization

Software Design 29

Protocol DLL Demo

class protocol {

public:
virtual DLL_DECL int getInt() = 0;
virtual DLL_DECL void putInt(int) = 0;
virtual DLL_DECL std::string passVal(std::string s) = 0;
virtual DLL_DECL std::string passRef(std::string &s) = 0;
static DLL_DECL protocol* makeObj();

// static member object factory
};

extern "C" { DLL_DECL protocol* gMakeObj(); }
// global object factory

Software Design 30

Protocol Derived Classes
are Extendable

 Use of

– Interface

– Object factory

– DLL packaging

Supports modification with no
breakage or rebuilding of clients

Software Design 31

Design Attributes

 Abstraction

 Modularity

 Encapsulation

 Hierarchy

 Cohesion

 Coupling

 Locality of
reference

 Size and complexity

 Use of objects

 Performance

Software Design 32

Abstraction

 Logical model or metaphor used to
think about, and analyze, component
– Toker

 collect words from a stream

– SemiExpression
 group tokens for analysis

– Parser
 apply set of grammar rules to each semiExp

 apply set of actions to each rule

Software Design 33

Modularity

 Package abstractions in cohesive
modules

– Parser applies rules

– Rules do grammar detections

– Actions respond to detections

– Configure parser builds parts

Software Design 34

Encapsulation

 Hide implemenation behind interface

– Prevents binding to internal implementation
details

– Helps to prevent propagation of errors

 No non-constant public data

 Return pointers or references to private
data only to give access to an object:

– char& str::operator[](int n); O.K.

– T* T::clone(); O.K.

Software Design 35

Hierarchy

 Layering of responsibility. Each layer hides
its decendents

– Anal: Application level

– Scanner: Processes documents

– Parser: Mechanizes processing

– Semi: Generates source for processing

– Toker: Generates tokens

 Hierarchy is a dependency relationship

– Inheritance, composition, aggregation, using

Software Design 36

Cohesion

 Cohesive component is focused on a single
activity

– Parser: apply grammar rules to each semiExp

– Rule: detect a specific gramatical structure

– Semi: gather tokens for analysis

– Toker: generate tokens from file

Software Design 37

Coupling
How is data passed to functions?

 Narrow coupling
– Only a few arguments

 Normal coupling
– Requires no knowledge of the design of

arguments or their references
– No pointers, no structures

 Properly scoped
– Explicitly entered into scope

 Passed as argument
 Declared in local scope

 No assumption coupling

Software Design 38

Locality of Reference

 References to local data are easier to understand
– We see the declaration

– Know all the qualifiers

 Non local references can be powerful
– Inheritance: base may be defined elsewhere

– Composition: Composed may be defined elsewhere

– Delegates: called functions may be defined
elsewhere

 Global data is poster child for non-local reference
– Hard to understand

– Not powerful in any sense

Software Design 39

Size and Complexity

 Large and complex modules and functions
are:
– Hard to understand
– Hard to test
– Hard to maintain
– Hard to document

 Complex functionality + small simple
modules
– implies Lots of modules
– imples need for fine-grained configuration

control

Software Design 40

Use of Objects

 Class is a form of information cluster
– Provides a simple abstraction

– Hides possibly complex implementation behind simple
interface

– Provides methods guaranteed to maintain integrity of state
data while supporting user’s data transformations

– Class is responsible for managing all its needed resources

– Manual page and test stub provide a lot of self
documentation

 Inheritance, composition, aggregation, and using
relationships provide effective modeling tools

Software Design 41

Performance

 Performance is determined by:
– Locality of calls

 Within process, within machine, within network, across
internet

– Caching
 Avoid unnecessary calls

– Algorithms
 Log, linear, log-linear, power law, exponential

– Memory foot-print
 Affects rate of page faults

– Creation of copies
– Creation and destruction of objects

Software Design 42

Object Oriented Design

 Structuring design with classes and class
relationships

– Develop application-side objects:
 Executive, WorkingSet (inputs), Analysis, Display
 Supports reasoning about application

– Requirements
– Principles of operation

– Develop solution-side objects:
 Socket, SocketListener, BlockHandler
 Supports reasoning about solution

– Performance
– Quality
– Errors and Test

Software Design 43

Design Principles

 LSP supports loose coupling
– Don’t need to bind to concrete names

 OCP demands flexibility and extendability
– Don’t modify, do extend

 DIP avoids rigid coupling
– Depend on abstraction not implementation

 ISP supports cohesion
– Factor to avoid bloated interfaces with

inadvertant coupling of clients

Software Design 44

Class Relationships

 Classes support several types of
relationships:

– Inheritance supports substitution
 Derived classes are subtypes of base class
 Derived class has access to public and protected, but

not private members of base class

– Composition supports ownership
 Composed classes provide functionality through their

public interfaces
 Composer has no special access to private or protected

members of composed

– Using provides access to an object
 Provides access to public members of an object

without ownership

Software Design 45

Inheritance Relationship

 Inheritance comes in two flavors
– Inheritance of interface

 Provides a public contract for service, but no
implementation

 interface ISomeIF { … } in C#

 struct ISomeIF { // all pure virtual methods }; in C++

– Inheritance of implementation
 Provides a public interface

 Provides implementation of one or more functions,
fields, properties, and/or delegates in C#

 Provides implementation of one or more functions
and/or fields in C++

Software Design 46

Inheritance Relationship

 Inheritance
– “is-a”

– Supports substitutability (polymorphism)
 IMsgPass provides contract

 Allows posting message to any substitute:
– Executive, Comm, ToolUI, ToolLib

– Supports inheritance of implementation
 AWrapper provides:

– BlockingQueue

– asynchronous dequeuing on child thread

Software Design 47

Inheritance Relationship

 A frequently recurring idiom is to provide
three levels:
– An interface providing a contract for service
– An abstract class that provides the common part

of an implementation for all derived classes
– Derived concrete classes that complete the

functionality provided by the hierarchy

 This is just what the ADAM Prototype does

 Note:
It is considered to be a serious design flaw to have a deep
inheritance hierarchy with concrete classes deriving from
other concrete classes.

Software Design 48

Composition Relationship

 Composition comes in two flavors:
– Strong Composition supports a strong form of

ownership
 Composed lifetime is same as that of composer

 Makes an instance of composed a field of composer
– Supported by C++ but not by C# or Java

– Weak Composition (Aggregation) supports a
weaker form of ownership
 Composer creates and disposes the composed in

member functions

 Composer holds references to composed objects on
the heap

– Supported by C++, C#, Java

Software Design 49

Composition Relationship

 Composition

– “owned-by”, “part-of”

– Provides layering

 Supports building incrementally

 Supports decomposition of testing

– Provides strong encapsulation

Software Design 50

Using Relationship

 Using

– “used by”

– References to “used” passed as
arguments of a member function

– User not responsible for creation or
disposal

Software Design 51

Implementation

 A module consists of:
– Prologue identifying

 Module
 Platform
 Application
 Author

– Manual page that discusses
 Module operations
 Its public interface

– Maintanence Page
 Build process
 Maintenance History

– Code structured as interfaces and classes
– A test stub, e.g., a Main function surrounded by compilation

constant guards

Software Design 52

Modules in C#

 A GUI module consists of:
– Three files defining a Form

 A file containing event handlers

 A file containing control declarations and designer code

 A file containing resource information as an XML schema

– A file providing a Main function that runs the form
application

 A Console module consists of:
– A file containing a class with a Main function

 A Library module consists of:
– A single file containing one or more classes

Software Design 53

Modules in C++

 Managed C++

– GUI modules, Console Applications, and Library modules have
the same structure as C# modules

 Unmanaged (standard native) C++

– We tend not to build GUI modules in unmanaged C++

– Console executive modules consist of one file that contains:

 zero or more classes

 one global main function

– Library modules consist of two files

 Header file with:

– class declarations

– inline function definitions

– template class and function definitions

 Implementation file with class member definitions

Software Design 54

What makes a good
implementation?

 Proper Encapsulation
– No public data

– Any functions that require design knowledge to call
properly are private

 Error Handling
– Input data is validated, especially strings and paths

– Use Exception handling

 Make assumptions explicit
– Use manual page to disclose any assumptions made about

callers

 Make low-level modules reusable

Software Design 55

What makes a poor
implementation?

 Vague or imprecise abstractions:
– Manual page should be clear, consise, and effective
– Public interface should be small and consistent with the

module’s abstraction

 Lack of design modularity, encapsulation, and
layering
– Should have an executive module and server modules
– Every form should delegate all of its computations to

testable libraries
– Oversize or complex functions
– Modules and functions with poor cohesion

 Latent defects
 Unhandled exceptions

End of Presentation

