+

Software Design

Jim Fawcett
CSE687 — Object Oriented Design
Spring 2009



Software Development

+

Architecture Design Implementation
«— Strategy > Tactics >
m Strategy: m Tactics
Concept Implementing ideas and structure
— Rationale, options — Activities
Organizing ideas — Classes and relationships
and structure — Algorithms
— Uses — Data management

— Partitions and responsibilities
— Ciritical issues

Software Design p



Design Goals

Make each software Component:

‘ = Simple = Reliable

— Small functions — Repeatable behavior
— Low Cyclomatic Complexity — Free of latent errors
— Small number of functions s Robust
= Understandable — Will not crash with unexpected
— Self documented inputs or environment
— Descriptive names m Flexible
— Simple — Changes don't propagate
= Maintainable — Supports substitution of

implementations
m Extendable

— Supports addition of new
implementations

— Simple, flexible, and robust
m Selectable

— Capability summary

— Keywords
= Reusable

— Selectable, understandable,
low fan-out
(not counting framework lib
calls)

are Design 3



Simplicity

+ s Small functions

— Lines of code < 50

m Low cyclomatic complexity
— All functions CC < 10
— Average much lower

m Small number of functions
— Functions per module < 20
— Average much lower

m Measurable by size and complexity

Software Design 4



04/05/2007 08:57:59 AM 13640 Sockets.cpp

cyclo lines function name
3 32 SocketSystem: :GetLastMsg
3 14 SocketSystem: : SocketSystem
2 9 SocketSystem
1 6 SocketSystem: :getHostName
3 22 SocketSystem: :getIpFromName
2 10 SocketSystem: :getNameFromIp
1 4 Socket::Socket
1 4 Socket::Socket
1 ) Socket::Socket
1 1 Socket::Socket
1 ) Socket
1 6 operator=
3 14 Socket: :connect
1 5 Socket::disconnect
1 4 operatorSOCKET
5 25 Socket: :send
5 19 Socket::recv
1 7 Socket::getLocallP
2 12 Socket::getLocalPort
2 12 Socket::getRemotelIP
2 12 Socket::getRemotePort
3 22 SocketListener::SocketListener
1 6 SocketListener
1 7 SocketListener::waitForConnect
1 6 SocketListener::stop
1 4 SocketListener::getLocallIP
1 4 SocketListener::getLocalPort
3 97 main

04/05/2007 08:57:59 AM 4905 Sockets.h

cyclo lines function name

type:
type:

1
1

type:

1
1

error
getHandle

class SocketSystem
class Socket

class SocketListener



Socket is AlImost Simple

m Small functions
m Low complexity

m Interface is fairly large
— 15 member functions

m Couples well with SocketListener

Software Design



Understandable

+

m Self documented

— Manual page
m read about operations and interface

— Maintenance page
m see how to build

— Test stub
m see how it works

m Descriptive hames
— Name describes operation or result

m Simple
m Measurable by detecting decorations

Software Design 7



//
//
//
//
//
//
//
//
//
//
/*

[I17177777777777777777777777777777777777777777777777777777777777777

Tokenizer.h - Reads words from a file //
ver 1.4 //
//

Language: Visual C++ 2005 //
Platform: Dell Dimension 9150, Windows XP SP2 //
Application: Prototype for CSE687 Prl, Sp06 //
Author: Jim Fawcett, CST 2-187, Syracuse University //
(315) 443-3948, jfawcett@twcny.rr.com //

[I17177777777777777777777777777777777777777777777777777777777777777

Module Operations:

This module defines a tokenizer class. Its instances read words from

an attached file. Word boundaries occur when a character sequence

read from the file:

- changes between any of the character types: alphanumeric, punctuator,
or white space.

- certain characters are treated as single character tokens, e.g.,
"("I ")"I "{"/ "}"I "["- "]"/ ";"1 "'"I and "\n"-

A tokenizer is an important part of a scanner, used to read and interpret

source code.

Public Interface:

Toker t; // create tokenizer instance
returnComments () ; // request comments return as tokens
if(t.attach (someFileName)) // select file for tokenizing

string tok = t.getTok() ; // extract first token
int numLines = t.lines() // return number of lines encountered
t.lines() = 0; // reset line count

Software Design



Tokenizer i1s Understandable

+

m Simple model

m Simple interface

m Cohesive

m Couples only to input stream

Software Design



Maintainable

—‘~ m Maintenance consists of
— Fixing latent errors

— Modifying existing functionality
— Adding new functionality
s Is maintainable if:

— Needs no maintenance
m So simple it obviously has no defects
m Additions made by composing with new components
— Easy to fix, modify, and extend
m Used through interface so changes don't propagate
m Interface can be bound to new implementations
m Simple so easy to test

s Only indirectly measurable

Software Design 10



class IAction

{

public:
virtual ~IAction () {}
virtual void
doAction (SemiExpé& se)=0;

b g

class IRule

{

public:
virtual ~IRule() {}
void addAction (IAction*
pAction) ;
void doActions (SemiExpé& se);
virtual bool doTest (SemiExp&
se)=0;

protected:
std: :vector<IAction*>
actions;

b

class Parser

{

public:
Parser (SemiExp& se);
~Parser () ;
vold addRule (IRule* pRule);
bool parse() ;
bool next () ;

private:
ITokCollection* pTokColl;
std: :vector<IRule*> rules;

b g



Parser is Maintainable

m Very simple structure
m Very simple operation

m Partitions activities into Parsing, Rules,
and Actions

m Very loose coupling
m Example of Open/Closed Principle

Software Design 12



Selectable

—‘~ m Five million lines of code project

— Has roughly 10, 000 modules

m Average of 500 lines of code per module
— 10 functions with 50 lines of code each

s Need ways to find parts to salvage and reuse

— Need to make quick decisions
m Localize candidates by functionality or application
— has operational summaries in prologue and manual page
— Need to quickly evaluate candidates
m Easy to build
— has maintenance information with build process
m Easy to run
— has test stub

m Measurable by detecting decorations

Software Design 13



LI TTT0 0770007777777 77777777

// DblockingQueue.cpp - queue that blocks on deQ of empty queue //
// ver 1.0 //
// Language: Visual C++, ver 7.1, SP 2 //
// Platform: Dell Dimension 8300, Win XP Pro, SP2 //
// Application: CSE687 - Object Oriented Design //
// Author: Jim Fawcett, CST 2-187, Syracuse Univ //
// (315) 443-3948, jfawcett@twcny.rr.com //
// //

L1117 7077777777777 777 77777777 7777777777 777777777777 77777777777777777
/*
Module Operations

This module provides a simple thread-safe blocking queue, based
on the STL queue container adapter. When a client thread attempts
to deQ an empty queue, it will block until another thread enQs an
item. This prevents very high CPU utilization while a reading
thread spin locks on an empty queue.

Public Interface

BQueue<std::string> Q // create blocking queue holding std::strings
Q.enQ("an item"); // push onto queue

std::string str = Q.deQ(); // pop from queue

size t s = Q.size(); // number of elements in queue

Q.clear () // remove all contents from queue

*/



BlockingQueue Is Selectable

m Simple functionality

m Simple interface

m Clear Manual Page

m Clear Maintenance Page

m Test Stub
— Easy to see what BQueue does

Software Design

15



Reusable

l m Selectable

— Has prologue and Manual Page

s Understandable

— Has module operation description

— Meaningful names

— Simple structure
s Low fan-out

— Dependent on very few other components
s Needs no application specific code

— Uses delegates

— Provides base class “hook”

m Fan-out and selectable/maintainable are
measurable

Software Design

16



class defProc

{

public:
virtual ~defProc() { }
virtual void dirsProc(const std::string é&dir);
virtual void fileProc(const fileInfo &fi);

— };

class navig

{
public:

navig(defProc &dp) ; // accept user defined proc
~navig() ; // restore user's dir

void start(std::string dir, const std::stringé& fileMask="*.*");
// start dir navigation

std: :string getPath() ;

private:
static const int PathBufferSize = 256;
void walk (const std::string &dir, const std::string& fileMask) ;
// directory walker
// user's working directory
// provides extendable processing
// of file and directory names

std: :string userDir ;
defProc &dp ;

}s;



Navig is Reusable

m Provides a base class “hook” called
defproc

m Application code derives from defproc
so that Navig calls application code
whenever it encounters a file or
directory.

Software Design 18



Reliable

m Understandable model

m NoO surprises
— Operates according to known model
— Processing is repeatable
— No race conditions or deadlocks

m Thoroughly tested

m Probably only measurable “after the fact” by
keeping statistics on bugs and testing.

Software Design 19



Tokenizer Maintenance

Maintenance History:

ver 1.4 : 10 Feb 07

- fixed bug in braceCount to eliminate changing count when brace
is in a quoted string or comment

ver 1.3 : 24 Feb 06

- fixed bug in eat comment that hung on ending comment with no
newline, by testing for stream state good.

ver 1.2 : 06 Feb 06

- added stream closing to destructor and attach memeber functions

ver 1.1 : 01 Feb 06

- added if test at end of getTok() to avoid returning space after
C comment as a token

ver 1.0 : 12 Jan 06

- first release



Tokenizer is Reliable

+

m Code is not simple

— Many special cases that you may not
think of while designing

m [t took awhile to get there
m Kept records of bugs and fixes
m Responded to bug reports

Software Design



+

Robust

m Will not crash with unexpected inputs or
environment
— Use partitions to isolate processing
m Interfaces, AppDomains, COM components, controls

— Use exception handling to trap unexpected
SYES

— Validate user input, especially strings and paths
m Indirectly measurable by looking for

partitions, exception handling, and
validation code.

Software Design

22



Parser* ConfigParseToConsole: :Build()
{
try
{

// configure to detect and act on preprocessor statements
pToker = new Toker;
pSemi = new SemiExp (pToker) ;
pParser = new Parser (*pSemi) ;
pPreprocStatement = new PreprocStatement;
pPrintPreproc = new PrintPreproc;
pPreprocStatement->addAction (pPrintPreproc) ;
pParser->addRule (pPreprocStatement) ;
// configure to detect and act on function definitions
pFunctionDefinition = new FunctionDefinition;
pPrintFunction = new PrintFunction;
pFunctionDefinition->addAction (pPrintFunction) ;
pPrettyPrintFunction = new PrettyPrintFunction;
pFunctionDefinition->addAction (pPrettyPrintFunction) ;
pParser->addRule (pFunctionDefinition) ;
return pParser;

}

catch (std: :exception& ex)

{
std: :cout << "\n\n " << ex.what() << "\n\n";

return 0O;



+

ConfigParse is Robust

m Uses try and catch blocks

m Returns exception message consistent
with application

— Uses cout for console application

Software Design

24



Flexible

Jr m Changes don't propagate

— Provide an interface so users don't bind to your
implementation

— Change to some implementation detail won't
cause changes to other components

m Supports changes of implementation

— Interfaces guarantee substituability of any
implementing class

— Template parametrization supports compile-time
substitution.

s Weakly measurable, by looking for
interfaces and template parametrization.

Software Design 25



template <thread type type>
class Thread
{
public:
Thread (Thread Processingé& p);

~Thread () ;
void start() ;
void wait() ;

static void wait (HANDLE tHandle) ;

unsigned long id() ;

HANDLE handle() ;

void sleep(long Millisecs) ;

void suspend() ;

void resume () ;

thread priority getPriority()

void setPriority(thread priority p);

void endThread(unsigned int exit code) ;
private:

Thread Processing* pProc;

HANDLE hThread;

static unsigned int _ stdcall threadProc(void *pSelf) ;

unsigned int _threadID;

thread priority priority;

// disable copy and assignment

Thread (const Thread<type>& t);

Thread<type>& operator=(const Thread<type>& t);



Thread Class is Flexible

+

m Template policy supports
— Stack-based default threads
m Allows interaction while processing unfolds

— Heap-based terminating threads
m Fire-and-forget paradigm

Software Design 27



D ED][E

m Supports addition of new implementation

— Use of interface and object factory supports
adding new components
m No changes to users of the interface and factory
m Parser: easy to add new rules and actions

— Templates support compile-time substitutability
m Template policies support customization of behavior

s Weakly measurable, by looking for
interfaces and template parametrization

Software Design 28



Protocol DLL Demo

+

class protocol {

public:
virtual DLL_DECL int getint() = 0;
virtual DLL_DECL void putInt(int) = 0

virtual DLL_DECL std::string passVal(std::string s) = 0;
virtual DLL_DECL std::string passRef(std::string &s) = 0

static DLL_DECL protocol* makeObj();
// static member object factory

7

extern "C" { DLL_DECL protocol* gMakeObj(); }
// global object factory

Software Design

29



Protocol Derived Classes
are Extendable

m Use of
— Interface
— Object factory
— DLL packaging
Supports modification with no
breakage or rebuilding of clients

Software Design 30



Design Attributes

m Abstraction m Locality of

= Modularity reference

» Encapsulation m Size and complexity
= Hierarchy m Use of objects

m Cohesion m Performance

m Coupling

Software Design 31



Abstraction

+

m Logical model or metaphor used to
think about, and analyze, component
— Toker

m collect words from a stream
— SemiExpression
m group tokens for analysis

— Parser
m apply set of grammar rules to each semiExp
m apply set of actions to each rule

Software Design

32



+

Modularity

m Package abstractions in cohesive
modules

— Parser applies rules

— Rules do grammar detections
— Actions respond to detections
— Configure parser builds parts

Software Design

33



+

Encapsulation

s Hide implemenation behind interface

— Prevents binding to internal implementation
details

— Helps to prevent propagation of errors
s No non-constant public data

m Return pointers or references to private
data only to give access to an object:
— char& str::operator[](int n); O.K.
— T* T::clone(); O.K.

Software Design

34



Hierarchy

+

m Layering of responsibility. Each layer hides
its decendents

— Anal: Application level

— Scanner: Processes documents

— Parser: Mechanizes processing

— Semi: Generates source for processing
— Toker: Generates tokens

m Hierarchy is a dependency relationship
— Inheritance, composition, aggregation, using

Software Design 35



Cohesion

+

m Cohesive component is focused on a single

activity
— Parser:
— Rule:
— Semi:
— Toker:

apply grammar rules to each semiExp
detect a specific gramatical structure
gather tokens for analysis

generate tokens from file

Software Design 36



+

Coupling

How is data passed to functions?

m Narrow coupling
— Only a few arguments

s Normal coupling

— Requires no knowledge of the design of
arguments or their references

— No pointers, no structures

m Properly scoped

— Explicitly entered into scope
m Passed as argument
m Declared in local scope

m No assumption coupling

Software Design

37



Locality of Reference

‘ m References to local data are easier to understand
— We see the declaration
— Know all the qualifiers

m Non local references can be powerful

— Inheritance: base may be defined elsewhere

— Composition: Composed may be defined elsewhere

— Delegates: called functions may be defined
elsewhere

m Global data is poster child for non-local reference
— Hard to understand
— Not powerful in any sense

Software Design

38



Size and Complexity

+

m Large and complex modules and functions
dalre.
— Hard to understand
— Hard to test
— Harad to maintain
— Hard to document

s Complex functionality + small simple
modules
— implies Lots of modules

— imples need for fine-grained configuration
control

Software Design 39



Use of Objects

‘ m Class is a form of information cluster

Provides a simple abstraction

Hides possibly complex implementation behind simple
interface

Provides methods guaranteed to maintain integrity of state
data while supporting user’s data transformations

Class is responsible for managing all its needed resources

Manual page and test stub provide a lot of self
documentation

m Inheritance, composition, aggregation, and using
relationships provide effective modeling tools



+

Performance

m Performance is determined by:

— Locality of calls

m Within process, within machine, within network, across
internet

— Caching
m Avoid unnecessary calls

— Algorithms

m Log, linear, log-linear, power law, exponential

— Memory foot-print
m Affects rate of page faults

— Creation of copies
— Creation and destruction of objects

Software Design 41



Object Oriented Design

“ m Structuring design with classes and class
relationships

— Develop application-side objects:
m Executive, WorkingSet (inputs), Analysis, Display
m Supports reasoning about application

— Requirements
— Principles of operation

— Develop solution-side objects:
m Socket, SocketListener, BlockHandler

m Supports reasoning about solution
— Performance

— Quality

— Errors and Test



+

Design Principles

m LSP supports loose coupling
— Don't need to bind to concrete names

m OCP demands flexibility and extendability

— Dont modify, do extend

m DIP avoids rigid coupling
— Depend on abstraction not implementation

m ISP supports cohesion

— Factor to avoid bloated interfaces with
inadvertant coupling of clients

Software Design

43



Class Relationships

4 m Classes support several types of
relationships:

— Inheritance supports substitution
m Derived classes are subtypes of base class

m Derived class has access to public and protected, but
not private members of base class

— Composition supports ownership

m Composed classes provide functionality through their
public interfaces

m Composer has no special access to private or protected
members of composed

— Using provides access to an object

m Provides access to public members of an object
without ownership



Inheritance Relationship

Jr m Inheritance comes in two flavors

— Inheritance of interface

m Provides a public contract for service, but no
implementation

m interface ISomelF{ ... } in C#
m struct ISomelF { // all pure virtual methods }; in C++

— Inheritance of implementation
m Provides a public interface

m Provides implementation of one or more functions,
fields, properties, and/or delegates in C#

m Provides implementation of one or more functions
and/or fields in C++

Software Design

45



Inheritance Relationship

Jr m Inheritance
_ \\is_a"
— Supports substitutability (polymorphism)

m IMsgPass provides contract
m Allows posting message to any substitute:
— Executive, Comm, ToolUI, ToolLib
— Supports inheritance of implementation

s AWrapper provides:
— BlockingQueue
— asynchronous dequeuing on child thread

Software Design 46



Inheritance Relationship

m A frequently recurring idiom is to provide
three levels:
— An interface providing a contract for service

— An abstract class that provides the common part
of an implementation for all derived classes

— Derived concrete classes that complete the
functionality provided by the hierarchy

m This is just what the ADAM Prototype does

m Note:
It is considered to be a serious design flaw to have a deep

inheritance hierarchy with concrete classes deriving from
other concrete classes.

Software Design 47



Composition Relationship

Jr m Composition comes in two flavors:

— Strong Composition supports a strong form of
ownership
m Composed lifetime is same as that of composer

m Makes an instance of composed a field of composer
— Supported by C++ but not by C# or Java

— Weak Composition (Aggregation) supports a
weaker form of ownership

m Composer creates and disposes the composed in
member functions

m Composer holds references to composed objects on
the heap
— Supported by C++, C#, Java

Software Design 48



+

Composition Relationship

m Composition

77\

—“owned-by”, “part-of”

— Provides layering
m Supports building incrementally
m Supports decomposition of testing

— Provides strong encapsulation

Software Design

49



+

Using Relationship

m Using
—“used by”

— References to “used” passed as
arguments of a member function

— User not responsible for creation or
disposal

Software Design

50



Implementation

‘ m A module consists of:

— Prologue identifying
s Module
m Platform
m Application
m Author
— Manual page that discusses
m Module operations
m [ts public interface
— Maintanence Page
m Build process
m Maintenance History
— Code structured as interfaces and classes

— A test stub, e.g., a Main function surrounded by compilation
constant guards

Software Design 51



+

Modules in C#

m A GUI module consists of:

— Three files defining a Form
m A file containing event handlers
m A file containing control declarations and designer code
m A file containing resource information as an XML schema

— A file providing a Main function that runs the form
application

m A Console module consists of:
— A file containing a class with a Main function

m A Library module consists of:
— A single file containing one or more classes

Software Design

52



Modules in C++

4{‘ m Managed C++

— GUI modules, Console Applications, and Library modules have
the same structure as C# modules

s Unmanaged (standard native) C++
— We tend not to build GUI modules in unmanaged C++
— Console executive modules consist of one file that contains:
m zero or more classes
m one global main function

— Library modules consist of two files

m Header file with:
— class declarations
— inline function definitions
— template class and function definitions

m Implementation file with class member definitions

Software Design 53



What makes a good
iImplementation?

m Proper Encapsulation
— No public data

— Any functions that require design knowledge to call
properly are private

s Error Handling

— Input data is validated, especially strings and paths
— Use Exception handling

s Make assumptions explicit

— Use manual page to disclose any assumptions made about
callers

m Make low-level modules reusable

Software Design 54



What makes a poor
iImplementation?

m Vague or imprecise abstractions:
— Manual page should be clear, consise, and effective

— Public interface should be small and consistent with the
module’s abstraction

m Lack of design modularity, encapsulation, and
layering
— Should have an executive module and server modules

— Every form should delegate all of its computations to
testable libraries

— Oversize or complex functions
— Modules and functions with poor cohesion

m Latent defects
s Unhandled exceptions

Software Design 55



+

End of Presentation



