
Software Design

Jim Fawcett
CSE687 – Object Oriented Design
Spring 2009

Software Design 2

Software Development

 Strategy:
Concept

– Rationale, options

Organizing ideas
and structure

– Uses

– Partitions and responsibilities

– Critical issues

 Tactics
Implementing ideas and structure

– Activities

– Classes and relationships

– Algorithms

– Data management

Strategy Tactics

Architecture Design Implementation

Software Design 3

Design Goals
Make each software Component:

 Simple
– Small functions
– Low Cyclomatic Complexity
– Small number of functions

 Understandable
– Self documented
– Descriptive names
– Simple

 Maintainable
– Simple, flexible, and robust

 Selectable
– Capability summary
– Keywords

 Reusable
– Selectable, understandable,

low fan-out
(not counting framework lib
calls)

 Reliable
– Repeatable behavior
– Free of latent errors

 Robust
– Will not crash with unexpected

inputs or environment

 Flexible
– Changes don’t propagate
– Supports substitution of

implementations

 Extendable
– Supports addition of new

implementations

Software Design 4

Simplicity

 Small functions
– Lines of code ≤ 50

 Low cyclomatic complexity
– All functions CC ≤ 10

– Average much lower

 Small number of functions
– Functions per module ≤ 20

– Average much lower

 Measurable by size and complexity

Software Design 5

04/05/2007 08:57:59 AM 13640 Sockets.cpp

===

cyclo lines function name

3 32 SocketSystem::GetLastMsg

3 14 SocketSystem::SocketSystem

2 9 SocketSystem

1 6 SocketSystem::getHostName

3 22 SocketSystem::getIpFromName

2 10 SocketSystem::getNameFromIp

1 4 Socket::Socket

1 4 Socket::Socket

1 5 Socket::Socket

1 1 Socket::Socket

1 5 Socket

1 6 operator=

3 14 Socket::connect

1 5 Socket::disconnect

1 4 operatorSOCKET

5 25 Socket::send

5 19 Socket::recv

1 7 Socket::getLocalIP

2 12 Socket::getLocalPort

2 12 Socket::getRemoteIP

2 12 Socket::getRemotePort

3 22 SocketListener::SocketListener

1 6 SocketListener

1 7 SocketListener::waitForConnect

1 6 SocketListener::stop

1 4 SocketListener::getLocalIP

1 4 SocketListener::getLocalPort

3 97 main

04/05/2007 08:57:59 AM 4905 Sockets.h

==

cyclo lines function name

- type: class SocketSystem

- type: class Socket

1 1 error

1 1 getHandle

- type: class SocketListener

Software Design 6

Socket is Almost Simple

 Small functions

 Low complexity

 Interface is fairly large

– 15 member functions

 Couples well with SocketListener

Software Design 7

Understandable

 Self documented
– Manual page

 read about operations and interface

– Maintenance page
 see how to build

– Test stub
 see how it works

 Descriptive names
– Name describes operation or result

 Simple
 Measurable by detecting decorations

Software Design 8

///

// Tokenizer.h - Reads words from a file //

// ver 1.4 //

// //

// Language: Visual C++ 2005 //

// Platform: Dell Dimension 9150, Windows XP SP2 //

// Application: Prototype for CSE687 Pr1, Sp06 //

// Author: Jim Fawcett, CST 2-187, Syracuse University //

// (315) 443-3948, jfawcett@twcny.rr.com //

///

/*

Module Operations:

==================

This module defines a tokenizer class. Its instances read words from

an attached file. Word boundaries occur when a character sequence

read from the file:

- changes between any of the character types: alphanumeric, punctuator,

or white space.

- certain characters are treated as single character tokens, e.g.,

"(", ")", "{", "}", "[". "]", ";", ".", and "\n".

A tokenizer is an important part of a scanner, used to read and interpret

source code.

Public Interface:

=================

Toker t; // create tokenizer instance

returnComments(); // request comments return as tokens

if(t.attach(someFileName)) // select file for tokenizing

string tok = t.getTok(); // extract first token

int numLines = t.lines(); // return number of lines encountered

t.lines() = 0; // reset line count

Software Design 9

Tokenizer is Understandable

 Simple model

 Simple interface

 Cohesive

 Couples only to input stream

Software Design 10

Maintainable

 Maintenance consists of
– Fixing latent errors

– Modifying existing functionality

– Adding new functionality

 Is maintainable if:
– Needs no maintenance

 So simple it obviously has no defects

 Additions made by composing with new components

– Easy to fix, modify, and extend
 Used through interface so changes don’t propagate

 Interface can be bound to new implementations

 Simple so easy to test

 Only indirectly measurable

Software Design 11

class IAction

{

public:

virtual ~IAction() {}

virtual void
doAction(SemiExp& se)=0;

};

class IRule

{

public:

virtual ~IRule() {}

void addAction(IAction*
pAction);

void doActions(SemiExp& se);

virtual bool doTest(SemiExp&
se)=0;

protected:

std::vector<IAction*>
actions;

};

class Parser

{

public:

Parser(SemiExp& se);

~Parser();

void addRule(IRule* pRule);

bool parse();

bool next();

private:

ITokCollection* pTokColl;

std::vector<IRule*> rules;

};

Software Design 12

Parser is Maintainable

 Very simple structure

 Very simple operation

 Partitions activities into Parsing, Rules,
and Actions

 Very loose coupling

 Example of Open/Closed Principle

Software Design 13

Selectable

 Five million lines of code project
– Has roughly 10, 000 modules

 Average of 500 lines of code per module
– 10 functions with 50 lines of code each

 Need ways to find parts to salvage and reuse
– Need to make quick decisions

 Localize candidates by functionality or application
– has operational summaries in prologue and manual page

– Need to quickly evaluate candidates
 Easy to build

– has maintenance information with build process

 Easy to run
– has test stub

 Measurable by detecting decorations

Software Design 14

///

// blockingQueue.cpp - queue that blocks on deQ of empty queue //

// ver 1.0 //

// Language: Visual C++, ver 7.1, SP 2 //

// Platform: Dell Dimension 8300, Win XP Pro, SP2 //

// Application: CSE687 - Object Oriented Design //

// Author: Jim Fawcett, CST 2-187, Syracuse Univ //

// (315) 443-3948, jfawcett@twcny.rr.com //

// //

///

/*

Module Operations

=================

This module provides a simple thread-safe blocking queue, based

on the STL queue container adapter. When a client thread attempts

to deQ an empty queue, it will block until another thread enQs an

item. This prevents very high CPU utilization while a reading

thread spin locks on an empty queue.

Public Interface

================

BQueue<std::string> Q // create blocking queue holding std::strings

Q.enQ("an item"); // push onto queue

std::string str = Q.deQ(); // pop from queue

size_t s = Q.size(); // number of elements in queue

Q.clear() // remove all contents from queue

*/

Software Design 15

BlockingQueue is Selectable

 Simple functionality

 Simple interface

 Clear Manual Page

 Clear Maintenance Page

 Test Stub

– Easy to see what BQueue does

Software Design 16

Reusable

 Selectable
– Has prologue and Manual Page

 Understandable
– Has module operation description
– Meaningful names
– Simple structure

 Low fan-out
– Dependent on very few other components

 Needs no application specific code
– Uses delegates
– Provides base class “hook”

 Fan-out and selectable/maintainable are
measurable

Software Design 17

class defProc

{

public:

virtual ~defProc() { }

virtual void dirsProc(const std::string &dir);

virtual void fileProc(const fileInfo &fi);

};

class navig

{

public:

navig(defProc &dp); // accept user defined proc

~navig(); // restore user's dir

void start(std::string dir, const std::string& fileMask="*.*");

// start dir navigation

std::string getPath();

private:

static const int PathBufferSize = 256;

void walk(const std::string &dir, const std::string& fileMask);

// directory walker

std::string userDir_; // user's working directory

defProc &dp_; // provides extendable processing

// of file and directory names

};

Software Design 18

Navig is Reusable

 Provides a base class “hook” called
defproc

 Application code derives from defproc
so that Navig calls application code
whenever it encounters a file or
directory.

Software Design 19

Reliable

 Understandable model

 No surprises

– Operates according to known model

– Processing is repeatable

– No race conditions or deadlocks

 Thoroughly tested

 Probably only measurable “after the fact” by
keeping statistics on bugs and testing.

Software Design 20

Tokenizer Maintenance

Maintenance History:
====================
ver 1.4 : 10 Feb 07
- fixed bug in braceCount to eliminate changing count when brace
is in a quoted string or comment

ver 1.3 : 24 Feb 06
- fixed bug in eat comment that hung on ending comment with no
newline, by testing for stream state good.

ver 1.2 : 06 Feb 06
- added stream closing to destructor and attach memeber functions
ver 1.1 : 01 Feb 06
- added if test at end of getTok() to avoid returning space after
C comment as a token

ver 1.0 : 12 Jan 06
- first release

Software Design 21

Tokenizer is Reliable

 Code is not simple

– Many special cases that you may not
think of while designing

 It took awhile to get there

 Kept records of bugs and fixes

 Responded to bug reports

Software Design 22

Robust

 Will not crash with unexpected inputs or
environment
– Use partitions to isolate processing

 Interfaces, AppDomains, COM components, controls

– Use exception handling to trap unexpected
events

– Validate user input, especially strings and paths

 Indirectly measurable by looking for
partitions, exception handling, and
validation code.

Software Design 23

Parser* ConfigParseToConsole::Build()

{

try

{

// configure to detect and act on preprocessor statements

pToker = new Toker;

pSemi = new SemiExp(pToker);

pParser = new Parser(*pSemi);

pPreprocStatement = new PreprocStatement;

pPrintPreproc = new PrintPreproc;

pPreprocStatement->addAction(pPrintPreproc);

pParser->addRule(pPreprocStatement);

// configure to detect and act on function definitions

pFunctionDefinition = new FunctionDefinition;

pPrintFunction = new PrintFunction;

pFunctionDefinition->addAction(pPrintFunction);

pPrettyPrintFunction = new PrettyPrintFunction;

pFunctionDefinition->addAction(pPrettyPrintFunction);

pParser->addRule(pFunctionDefinition);

return pParser;

}

catch(std::exception& ex)

{

std::cout << "\n\n " << ex.what() << "\n\n";

return 0;

}

}

Software Design 24

ConfigParse is Robust

 Uses try and catch blocks

 Returns exception message consistent
with application

– Uses cout for console application

Software Design 25

Flexible

 Changes don’t propagate
– Provide an interface so users don’t bind to your

implementation
– Change to some implementation detail won’t

cause changes to other components

 Supports changes of implementation
– Interfaces guarantee substituability of any

implementing class
– Template parametrization supports compile-time

substitution.

 Weakly measurable, by looking for
interfaces and template parametrization.

Software Design 26

template <thread_type type>

class Thread

{

public:

Thread(Thread_Processing& p);

~Thread();

void start();

void wait();

static void wait(HANDLE tHandle);

unsigned long id();

HANDLE handle();

void sleep(long Millisecs);

void suspend();

void resume();

thread_priority getPriority();

void setPriority(thread_priority p);

void endThread(unsigned int exit_code);

private:

Thread_Processing* pProc;

HANDLE hThread;

static unsigned int __stdcall threadProc(void *pSelf);

unsigned int _threadID;

thread_priority _priority;

// disable copy and assignment

Thread(const Thread<type>& t);

Thread<type>& operator=(const Thread<type>& t);

};

Software Design 27

Thread Class is Flexible

 Template policy supports

– Stack-based default threads

 Allows interaction while processing unfolds

– Heap-based terminating threads

 Fire-and-forget paradigm

Software Design 28

Extendable

 Supports addition of new implementation

– Use of interface and object factory supports
adding new components

 No changes to users of the interface and factory

 Parser: easy to add new rules and actions

– Templates support compile-time substitutability

 Template policies support customization of behavior

 Weakly measurable, by looking for
interfaces and template parametrization

Software Design 29

Protocol DLL Demo

class protocol {

public:
virtual DLL_DECL int getInt() = 0;
virtual DLL_DECL void putInt(int) = 0;
virtual DLL_DECL std::string passVal(std::string s) = 0;
virtual DLL_DECL std::string passRef(std::string &s) = 0;
static DLL_DECL protocol* makeObj();

// static member object factory
};

extern "C" { DLL_DECL protocol* gMakeObj(); }
// global object factory

Software Design 30

Protocol Derived Classes
are Extendable

 Use of

– Interface

– Object factory

– DLL packaging

Supports modification with no
breakage or rebuilding of clients

Software Design 31

Design Attributes

 Abstraction

 Modularity

 Encapsulation

 Hierarchy

 Cohesion

 Coupling

 Locality of
reference

 Size and complexity

 Use of objects

 Performance

Software Design 32

Abstraction

 Logical model or metaphor used to
think about, and analyze, component
– Toker

 collect words from a stream

– SemiExpression
 group tokens for analysis

– Parser
 apply set of grammar rules to each semiExp

 apply set of actions to each rule

Software Design 33

Modularity

 Package abstractions in cohesive
modules

– Parser applies rules

– Rules do grammar detections

– Actions respond to detections

– Configure parser builds parts

Software Design 34

Encapsulation

 Hide implemenation behind interface

– Prevents binding to internal implementation
details

– Helps to prevent propagation of errors

 No non-constant public data

 Return pointers or references to private
data only to give access to an object:

– char& str::operator[](int n); O.K.

– T* T::clone(); O.K.

Software Design 35

Hierarchy

 Layering of responsibility. Each layer hides
its decendents

– Anal: Application level

– Scanner: Processes documents

– Parser: Mechanizes processing

– Semi: Generates source for processing

– Toker: Generates tokens

 Hierarchy is a dependency relationship

– Inheritance, composition, aggregation, using

Software Design 36

Cohesion

 Cohesive component is focused on a single
activity

– Parser: apply grammar rules to each semiExp

– Rule: detect a specific gramatical structure

– Semi: gather tokens for analysis

– Toker: generate tokens from file

Software Design 37

Coupling
How is data passed to functions?

 Narrow coupling
– Only a few arguments

 Normal coupling
– Requires no knowledge of the design of

arguments or their references
– No pointers, no structures

 Properly scoped
– Explicitly entered into scope

 Passed as argument
 Declared in local scope

 No assumption coupling

Software Design 38

Locality of Reference

 References to local data are easier to understand
– We see the declaration

– Know all the qualifiers

 Non local references can be powerful
– Inheritance: base may be defined elsewhere

– Composition: Composed may be defined elsewhere

– Delegates: called functions may be defined
elsewhere

 Global data is poster child for non-local reference
– Hard to understand

– Not powerful in any sense

Software Design 39

Size and Complexity

 Large and complex modules and functions
are:
– Hard to understand
– Hard to test
– Hard to maintain
– Hard to document

 Complex functionality + small simple
modules
– implies Lots of modules
– imples need for fine-grained configuration

control

Software Design 40

Use of Objects

 Class is a form of information cluster
– Provides a simple abstraction

– Hides possibly complex implementation behind simple
interface

– Provides methods guaranteed to maintain integrity of state
data while supporting user’s data transformations

– Class is responsible for managing all its needed resources

– Manual page and test stub provide a lot of self
documentation

 Inheritance, composition, aggregation, and using
relationships provide effective modeling tools

Software Design 41

Performance

 Performance is determined by:
– Locality of calls

 Within process, within machine, within network, across
internet

– Caching
 Avoid unnecessary calls

– Algorithms
 Log, linear, log-linear, power law, exponential

– Memory foot-print
 Affects rate of page faults

– Creation of copies
– Creation and destruction of objects

Software Design 42

Object Oriented Design

 Structuring design with classes and class
relationships

– Develop application-side objects:
 Executive, WorkingSet (inputs), Analysis, Display
 Supports reasoning about application

– Requirements
– Principles of operation

– Develop solution-side objects:
 Socket, SocketListener, BlockHandler
 Supports reasoning about solution

– Performance
– Quality
– Errors and Test

Software Design 43

Design Principles

 LSP supports loose coupling
– Don’t need to bind to concrete names

 OCP demands flexibility and extendability
– Don’t modify, do extend

 DIP avoids rigid coupling
– Depend on abstraction not implementation

 ISP supports cohesion
– Factor to avoid bloated interfaces with

inadvertant coupling of clients

Software Design 44

Class Relationships

 Classes support several types of
relationships:

– Inheritance supports substitution
 Derived classes are subtypes of base class
 Derived class has access to public and protected, but

not private members of base class

– Composition supports ownership
 Composed classes provide functionality through their

public interfaces
 Composer has no special access to private or protected

members of composed

– Using provides access to an object
 Provides access to public members of an object

without ownership

Software Design 45

Inheritance Relationship

 Inheritance comes in two flavors
– Inheritance of interface

 Provides a public contract for service, but no
implementation

 interface ISomeIF { … } in C#

 struct ISomeIF { // all pure virtual methods }; in C++

– Inheritance of implementation
 Provides a public interface

 Provides implementation of one or more functions,
fields, properties, and/or delegates in C#

 Provides implementation of one or more functions
and/or fields in C++

Software Design 46

Inheritance Relationship

 Inheritance
– “is-a”

– Supports substitutability (polymorphism)
 IMsgPass provides contract

 Allows posting message to any substitute:
– Executive, Comm, ToolUI, ToolLib

– Supports inheritance of implementation
 AWrapper provides:

– BlockingQueue

– asynchronous dequeuing on child thread

Software Design 47

Inheritance Relationship

 A frequently recurring idiom is to provide
three levels:
– An interface providing a contract for service
– An abstract class that provides the common part

of an implementation for all derived classes
– Derived concrete classes that complete the

functionality provided by the hierarchy

 This is just what the ADAM Prototype does

 Note:
It is considered to be a serious design flaw to have a deep
inheritance hierarchy with concrete classes deriving from
other concrete classes.

Software Design 48

Composition Relationship

 Composition comes in two flavors:
– Strong Composition supports a strong form of

ownership
 Composed lifetime is same as that of composer

 Makes an instance of composed a field of composer
– Supported by C++ but not by C# or Java

– Weak Composition (Aggregation) supports a
weaker form of ownership
 Composer creates and disposes the composed in

member functions

 Composer holds references to composed objects on
the heap

– Supported by C++, C#, Java

Software Design 49

Composition Relationship

 Composition

– “owned-by”, “part-of”

– Provides layering

 Supports building incrementally

 Supports decomposition of testing

– Provides strong encapsulation

Software Design 50

Using Relationship

 Using

– “used by”

– References to “used” passed as
arguments of a member function

– User not responsible for creation or
disposal

Software Design 51

Implementation

 A module consists of:
– Prologue identifying

 Module
 Platform
 Application
 Author

– Manual page that discusses
 Module operations
 Its public interface

– Maintanence Page
 Build process
 Maintenance History

– Code structured as interfaces and classes
– A test stub, e.g., a Main function surrounded by compilation

constant guards

Software Design 52

Modules in C#

 A GUI module consists of:
– Three files defining a Form

 A file containing event handlers

 A file containing control declarations and designer code

 A file containing resource information as an XML schema

– A file providing a Main function that runs the form
application

 A Console module consists of:
– A file containing a class with a Main function

 A Library module consists of:
– A single file containing one or more classes

Software Design 53

Modules in C++

 Managed C++

– GUI modules, Console Applications, and Library modules have
the same structure as C# modules

 Unmanaged (standard native) C++

– We tend not to build GUI modules in unmanaged C++

– Console executive modules consist of one file that contains:

 zero or more classes

 one global main function

– Library modules consist of two files

 Header file with:

– class declarations

– inline function definitions

– template class and function definitions

 Implementation file with class member definitions

Software Design 54

What makes a good
implementation?

 Proper Encapsulation
– No public data

– Any functions that require design knowledge to call
properly are private

 Error Handling
– Input data is validated, especially strings and paths

– Use Exception handling

 Make assumptions explicit
– Use manual page to disclose any assumptions made about

callers

 Make low-level modules reusable

Software Design 55

What makes a poor
implementation?

 Vague or imprecise abstractions:
– Manual page should be clear, consise, and effective
– Public interface should be small and consistent with the

module’s abstraction

 Lack of design modularity, encapsulation, and
layering
– Should have an executive module and server modules
– Every form should delegate all of its computations to

testable libraries
– Oversize or complex functions
– Modules and functions with poor cohesion

 Latent defects
 Unhandled exceptions

End of Presentation

