
Example Size and Time Estimates for Project 5

Working Set

Assume Moderate size large project

5,000,000 lines of code
500 lines of code per module (10 functions at 50 lines each)
=> 10,000 modules in finished project
50 modules per developer
=> 200 developers

Schedule

5,000,000 lines / 30 lines/developer day = 166,667 developer days
166,667 developer days / 200 developers = 833.3 days
 833.3 days / 240 working days /year = 3.47 years

Testing

Test strategy: every time we add a module to baseline, we run tests on all
modules in baseline, so:

1 module => 1 test
2 modules => 2 more tests
3 modules => 3 more tests
n modules => n more tests
total tests = 1+2+3 + .. + n + .. + number of modules
=> total tests = N(N+1)/2 where N = number of modules
=> 50,005,000 tests

50,005,000 tests / 833.3 days = 60,006 tests /day average
24 hrs/day * 60 min/hr * 60 sec/min = 86,400 secs/day

Sequential Tests

60,006 test /day / 86,400 secs/day = 0.695 tests/sec
=> avg test time must be < 1/0.695 tests/sec = 1.44 secs/test
=> we will want to run tests concurrently.

If we run tests on two threads with one processor, that may nearly double the
test rate, since each test thread will spend a lot of time blocked on I/O, file
access, etc. This won’t go on increasing linearly with each thread, but at least,
the allowable average time per test can be relaxed somewhat.

File Transfers

Check-in and Check-out

10,000 modules completed / 833.3 project days = 12 modules /day average
Avg of 3 versions per module => 36 modules/day
=> no problem

Extraction to Testbed for testing

Assume that the Testbed will only keep one version of any file in its cache, but
won’t remove files, overwriting older version when a new one is extracted.
Adding new files will be roughly the same as check-in, e.g., about 36
modules/day => no problem.

Extracting and building an earlier version of some component will require more
file transfers, as earlier versions are not kept in the file cache.
Assume that 10 percent of the modules changed from the earlier version to the
latest (obviously this is speculative, but probably not too far off). Since the full
system build consists of 10,000 modules, this extraction will require the transfer
of about 1000 modules.

Using the TimedFileStreamService example, we find a “typical” module transfer
takes about 25 milliseconds for a 3500 byte file.
=> 25 seconds for the entire extraction. => no problem since this is a fairly rare
occurrence.

