
.Net Remoting

Jim Fawcett

CSE681 – Software Modeling & Analysis

Fall 2004

2

References

 Programming Microsoft .Net, Jeff Prosise,

Microsoft Press, 2002, Chap 15.

 http://samples.gotdotnet.com/quickstart/howto/

http://samples.gotdotnet.com/quickstart/howto/

3

Distributed Computing under .Net

 In .Net, there are three levels of access to
distributed computing machinery:
 Low Level:

 System.Net.Sockets

 Intermediate Level

 System.Runtime.InteropSerives

 Access COM objects and Win32 API

 System.Runtime.Remoting

 Access channels and CLR activation

 Channels based on TCP or HTTP over TCP

 High Level

 System.Web.Services

 System.Web.UI

4

Distributed Computing under .Net

 System.Net.Sockets
 Provides low-level access to socket objects

 You create listeners and send and receive just like we did
in the socket demonstration code.

 System.Runtime.Remoting
 Provides access at a medium level of abstraction.

 You create channels and proxies and do RPCs on remote
objects

 Data marshaling is much richer than under COM. You can
send anything the CLR understands as long as it has a
[serializable] attribute or derives from MarshalByRefObject.

 Basically you just add those .Net identifiers and the CLR takes
care of everything else.

5

Distributed Computing under .Net

 System.Web.Services
 Servers are hosted under IIS

 Use HTTP-GET and HTTP-POST or higher level SOAP

 Simple Object Access Protocol (SOAP)
 Wraps XML message in SOAP envelope (XML tags)

 SOAP messages are interpreted by IIS and ASP

 Typically use standard and/or custom COM components in
ASP pages.

 Active Server Pages (ASP) are XHTML pages with
embedded server-side and client-side scripts that may
access COM and C# objects for a significant part of their
processing.

6

.Net Remoting

 Remoting supports a client’s invocation of an

object on a remote machine.

 The server acts as a host for the remote object,

loading it into memory and servicing client

requests on a worker thread spawned by the

server process’s main thread.

 All of this is transparent to the designer.

 The client makes calls as if the object were

instantiated on the local machine.

7

Remoting Architecture

Application Domain

CLR Thread

Application Domain

CLR Thread

client Object

server object

proxy for

Remote-able

Object Remote-able

Object

channel

channel

8

Server Supporting Remote-able Object

 Class of Remote-able object is derived from
MarshalByRefObject.
 Otherwise the object is oblivious of the remoting

infrastructure.

 Server:
 creates a TcpServerChannel

 Registers Channel with ChannelServices

 Registers Class of remote-able object with
RemotingConfiguration

 Then main server thread waits for client to shut it down.

 This can be done either programmatically or with
a config file. We will demonstrate the former.

9

Client of Remote-able Object

 Client:

 Creates TcpClientChannel

 Registers channel with ChannelServices

 Creates a proxy for remote object by calling

Activator.GetObject

 Uses proxy to invoke remote object:

string retVal = clnt.proxy.say(msg);

10

Remoting Server Code

static void Main(string[] args)

{

TcpServerChannel chan = new TcpServerChannel(8085);

ChannelServices.RegisterChannel(chan);

RemotingConfiguration.RegisterWellKnownServiceType(

typeof(Hello), // type of the remote object

"HelloObj",

WellKnownObjectMode.Singleton

);

System.Console.WriteLine("\n Hit <enter> to exit...");

System.Console.ReadLine();

}

This server’s only role is
to setup the channel,
register the object, and
wait while it is used by
the client.

11

Remotable Object Code
public class Hello : MarshalByRefObject

{

private int count = 0;

public Hello()

{

Console.WriteLine(" construction of Hello Object");

}

public string say(string s)

{

++count;

Console.WriteLine(" " + s);

string rtnMsg = “remote object received message #”;

rtnMsg += count.ToString();

return (rtnMsg);

}

}

Just like any other
class except that it
derives from
MarshalByRefObject

12

Client Code

class client

{

private Hello proxy;

//----< set up TCP channel >-------------------------------

void SetUpChannel()

{

TcpClientChannel chan = new TcpClientChannel();

ChannelServices.RegisterChannel(chan);

}

//----< activate remote object and return proxy >----------

void ActivateRemoteObject()

{

proxy = (Hello)Activator.GetObject(

typeof(Hello),

"tcp://localhost:8085/HelloObj"

);

if(proxy == null)

Console.WriteLine("can't activate object");

}

Client sets up channel
and constructs proxy.
Then it uses object, as
shown on next slide.

13

static void Main(string[] args)

{

client clnt = new client();

clnt.SetUpChannel();

clnt.ActivateRemoteObject();

if (clnt.proxy == null)

{

System.Console.WriteLine(" -- Could not locate server -- "); return;

}

Console.Write("\n To call remote object enter string");

Console.WriteLine("\n Just hit enter to quit:");

try

{

while(true)

{

string test = "...";

Console.Write("\n > ");

test = Console.ReadLine();

if(test == "")

break;

// invoke remote object

string retVal = clnt.proxy.say(test);

// display string returned from remote object

Console.Write(" ");

Console.Write(retVal);

}

}

catch(System.Exception e)

{

Console.WriteLine(e.Message);

}

}

Here, client accesses
remote object via its
proxy.

14

15

Multiple Clients

 Remote-able objects have one of three activation
attributes:

 Client Activated
Object is created on first call, then lives a fixed amount of
time – its lease – unless it is called again, in which case its
lease is extended. Each client gets a new object running
on its own thread.

 Singlecall
each client gets a new copy of the remote-able object on its
own child thread, which exists for the duration of a single
call.

 Singleton
All clients get a reference to the same remote-able object
operating on the only child thread. Singletons also have a
lease on life that is renewed on each subsequent call.

16

Multiple Clients

Server

main thread

Server

main thread

Client #1 remote-able object

child thread #1

remote-able object

child thread #2

remote-able object

child thread #n

Message Passing

Client #2
Message Passing

Client #n
Message Passing

Shared

Server-Side

resources

17

Message Passing

 Remoting can be used to construct a message-passing

system with very little code.

 Use a remote-able object for server-side processing.

 The client main thread creates a child thread to handle

sending and receiving messages.

 The client threads share two First-In-First-Out (FIFO) queues.

 To make a request of the server, the client main thread

composes a request message and posts it to a sendQ shared

with the child thread.

 The child thread deQs the message and sends it as a parameter

in a call to the remote server object.

 When the server processing is complete, the server’s response

message is returned to the child thread.

 The child thread posts the return value to the RecvQ.

 The client main tread dequeues the response for processing.

18

Message Passing Architecture

Client Server

remote-able objectClient-Side
Message
Handler

RecvQ

SendQ

Server-Side

Processing

of

Client Messages

Client-Side

Processing

of

Server Responses
child thread

child thread

Client-Side

Preparation

of

Request Messages Request Msg - call parameter

Response Msg - return value

main thread

main thread

19

Other Topics

 Prosise discusses:

 Asynchronous method calls

 Handling remote events with delegates

 Declarative configuration (using config files)

 Client activated remote objects

 Leases control lifetime of singleton and client

activated objects.

 IIS activation and HTTP channels

20

Building a Remoting Application

 First create a remote-able object:

 Design an object to be invoked remotely, derived from

MarshalByRefObject

 Implement the class as a C# library – this creates a dll.

 Any objects that you need to pass to that object need to be

serializable.

 The basic types like ints and strings already are serializable.

 Your class objects need to have the [Serializable] attribute

and contain only serializable data members.

Or they can derive from MarshalByRefObject.

21

Define Remote Object

Application Domain

CLR Thread

Application Domain

CLR Thread

client Object

server object

proxy for

Remote-able

Object
Remote-able

Object

channel

channel

22

Building a Remoting Application

 Create a server:
 Design a C# class, using a C# Console Application, or

Empty Project in which you will create a WinForm.

 In a member function – main will work:
 Create a TcpServerChannel

 Register the Channel with ChannelServices

 Register the type of object clients want to use remotely by
calling RegisterWellKnownServiceType

 Then, block the main thread.
 The object will be created by the CLR on its own thread and

remote clients will access the object through the CLR.

 You don’t have to write any server code to support this access
– the CLR takes care of it for you.

 Create a reference to the remote-able object’s assembly,
build, and run the server.

23

Define the Server

Application Domain

CLR Thread

Application Domain

CLR Thread

client Object

server object

proxy for

Remote-able

Object
Remote-able

Object

channel

channel

24

Building a Remoting Application

 Create a client:
 Design a C# class, using a C# Console Application, or

Empty Project in which you will create a WinForm.

 In a member function – main will work:
 Create a TcpClientChannel

 Register the Channel with ChannelServices

 In a member function – main will work:
 Create a proxy to access the remote component. You do this

by calling Activator.GetObject(…) and casting the result to the
type of the remote object.
 Note that both client and server need the assembly for the

remote-able object.

 Then, make calls on the remote object as needed.
 You simply use the proxy as if it were the real object.

 Create a reference to the remote-able object’s assembly,
build, and run the client.

25

Define the Client

Application Domain

CLR Thread

Application Domain

CLR Thread

client Object

server object

proxy for

Remote-able

Object
Remote-able

Object

channel

channel

26

Passing Object Parameters to Remote Methods

 You pass an object to a remote method call:

 By value
 Object must be serializable.

 That usually means that you simply decorate the class
declaration with [serializable].

 Object is declared by client, remoting channel serializes
it on client and deserializes it on server.

 By reference
 Object must derive from MarshalByRefObject.

 Client creates object and uses it in method call.

 Remoting channel activates object on client, using clr
thread, and manipulates it to reflect actions by server.

27

Pass-By-Reference Objects with Remoting

Client Server

remotable object

Child Thread created by
Remoting Run-Time

Server-Side
Processing

of
Client Messages

child thread created by
Remoting Run-Time

Client Request Msg - PBRO call Parameter

Server Requests

main thread

main thread

Client-Side
Processing

of
Server Requests
Using PBR Object

Response Msg - return value

Pass-By-Ref
object created
by client with
new operator

28

Deployment

 Configuration files

 Server Deployment with Windows Services

 Server Deployment with IIS

 Client Deployment with IIS

29

Deployment Issues

 Change in server location

 Does the client hard-code the location and port of remote objects

on the server?

 Uses of the application

 Will this application be used in other ways? For instance, LAN vs

Internet use.

 New/additional remotable objects

 Will we be adding remotable objects after we have built the

application?

 Web deployment

30

Configuration Files

 Rather than hard-code the registration of remote

objects and their channels, we can use a

configuration file.

 Using a configuration file allows us to do the

following without recompiling the server or client:

 Change the type of channel that is used

 Add additional remotable objects

 Change the lifetime settings of remotable objects

 Add message sinks or formatters to the server or client

 This functionality is available through the

System.Runtime.Remoting assembly.

31

Configuration Files (cont)

 A configuration file is an XML document that is
loaded by the server or client.

 Use two different configuration files for the client and
the server.

 On the server, load the configuration file using
RemotingConfiguration.Configure(“MyServer.exe.config”);

 On the client, load the configuration file using
RemotingConfiguration.Configure(“MyClient.exe.config”);

 After loading the configuration file on the client,
simply call new on the remotable object class to
create a proxy.

32

Configuration Files (cont)

 Content and structure
<configuration>

<system.runtime.remoting>

<application>

<lifetime />

<channels />

<service />

<client />

</application>

</system.runtime.remoting>

</configuration>

33

Configuration Files (cont)

 Lifetime

 The <lifetime> tag allows you to change the lifetime of your

remotable objects.

 Valid attributes:

 leaseTime – This is the initial lease time that an object will

have to live before it is destroyed.

 sponsorshipTimeout – The time to wait for a sponsor’s reply.

 renewOnCallTime – This is the additional lease time that is

added with each call on the remote object.

 leaseManagerPollTime – Specifies when the object’s current

lease time will be checked.

 Note that these apply to Singleton and Client-Activated

objects only.

34

Configuration Files (cont)

 Channels
 The <channels> element contains the channels that your

application will be using. We declare channels with the
<channel> tag.

 The <channel> tag specifies the type, port, and other properties
for a particular channel.

 Valid attributes:

 ref – “http” or “tcp”

 displayName – Used for .NET Framework Configuration Tool

 type – if ref is not specified, contains namespace, classname, and
assembly of the channel implementation.

 port – server side port number. Use 0 on the client if you want to get
callbacks from the server.

 name – Unique names to specify multiple channels (use “”)

 priority – Sets priority of using one channel over another.

35

Configuration Files (cont)

 Channels

 Valid attributes (cont):

 clientConnectionLimit – Number of simultaneous

connections to a particular server (default = 2)

 proxyName – name of the proxy server

 proxyPort – port of the proxy server

 suppressChannelData – specifies whether a channel will add to the

ChannelData that is sent when an object reference is created

 useIpAddress – specifies whether the channel should use IP

addresses in URLs rather than hostname of the server

 listen – setting for activation hooks into listener service

 bindTo – used with computers that have multiple IP addresses

 machineName – overrides useIpAddress

 rejectRemoteRequests (tcp only) – sets local communication only

36

Configuration Files (cont)

 Providers

 Sink and formatter providers allow the user to specify the

manner in which messages are generated and captured by

the framework for each channel.

 Both the client and server may specify settings for

 The tags <serverProviders></serverProviders> and

<clientProviders></clientProviders> contain the individual

settings for each provider or formatter that you wish to set.

 You can specify one formatter and multiple provider settings.

 You must place the settings in the order shown:

37

Configuration Files (cont)

 Example channel entry for a server:

<channels>

<channel ref=“http” port=“1234”>

<serverProviders>

<formatter ref=“binary” />

<provider type=“MySinks.Sample, Server” />

</serverProviders>

</channel>

</channels>

38

Configuration Files (cont)

 Providers (cont)

 Available attributes for formatters and providers:

 ref – “soap”, “binary”, or “wsdl”

 type – if ref is not specified, contains namespace, classname, and

assembly of the sink provider implementation.

 includeVersions (formatter only) – specifies whether version

information is included with object requests

 strictBinding (formatter only) – specifies whether the server must

use an exact type and version for object requests

39

Configuration Files (cont)
 Service

 The <service> tag is used in the server’s configuration file to
specify the remote objects that will be hosted.

 Contains <wellknown /> and <activated /> entries for server-
activated objects (SAOs) and client-activated objects (CAOs),
respectively.

 Valid attributes for <wellknown />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

 mode – Singleton or SingleCall

 objectUri – Important for IIS hosting (URIs must end in .rem or .soap,
as those extensions can be mapped into the IIS metabase.

 displayName – Optional, used by .NET Framework configuration tool.

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

40

Configuration Files (cont)
 Client

 The <client> tag is used in the client’s configuration file to specify

the types of remote objects that it will use.

 Contains attribute for the full URL to the server if using CAOs.

 Contains <wellknown /> and <activated /> entries for server-

activated objects (SAOs) and client-activated objects (CAOs),

respectively.

 Valid attributes for <wellknown />

 url – The full URL to the server’s registered object

 type - Specifies the namespace, classname, and assemblyname of

the remote object.

 displayName – Optional, used by .NET Framework configuration tool

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of

the remote object.

41

Configuration Files (cont)

 Usage notes:

 Errors in your configuration file cause the framework to

instantiate a local copy of the remote object rather than a

proxy when you call new on it. Check the IsTransparentProxy

method to be sure you are using a remote object.

 When you specify assembly names in your <wellknown /> and

<activated />, don’t include the extension (.dll or .exe).

 You only have to specify the features that you want/need in

your configuration file.

 You don’t have to use the <channel /> setting on the client if

you use the default “http” or “tcp” channels on the server. You

must specify a port on the server.

42

Server Deployment with IIS

 If you are concerned about security, then IIS hosting is the

best way to go.

 Authentication and encryption features are available through

IIS.

 Remote objects are now hosted in IIS; there is no Main() in

the server.

 Updates to the server are easy: just copy over the remote

object assembly and web.config file. IIS will automatically

read the new data.

43

Server Deployment with IIS

 Procedure:

 Create a class library for your remotable objects

 Build the assembly for the class library

 Create a web.config file for the server

 Create a virtual directory on the host machine

 Set the desired authentication methods for the directory

 Place the web.config file in the virtual directory

 Create a /bin directory in the virtual directory

 Place the remotable object assembly in the virtual directory

 Create a client and configuration file

44

Client Deployment with IIS

 By placing a WinForm application in a virtual directory, we
can stream it to clients.

 When a URL is selected by a client machine, an HTTP
request is sent to the server, which streams the application
back to the client.

 The application is then stored in the browser cache and
also the .NET download cache.

 The runtime opens the application automatically and also
makes requests for additional assemblies and files as
necessary.

 Be sure to put any remoting configuration files in the virtual
directory with the client application.

45

.Net Remoting

The End

