
Message Passing Systems

Jim Fawcett

CSE681 – Software Modeling and Analysis

Summer 2007

Distributed Architectures

 Project #5 statement asks you to develop a complex collaboration system that
requires communication between multiple servers and clients:

– ASCS provides agents and servers for collaboration, managing source code and other
project resources, and running extensive tests.

– The ASCS requires a communication subsystem that can use either a corporate
network or the internet as a transmission medium.

– It could be designed in a Peer-To-Peer structure (see next slide) since all of the agents
and servers act as both servers and clients. For example, the Repository Server acts
as a client during check-in and a server during check-out. The same is true of the
Collaboration Server, Testbed Server and each of the Clients and agents.

– In Project #5, you need to investigate building a reusable communication layer using
Message-Passing (MP) communication styles, which could be implemented with
sockets, remoting, or web services.

• Remoting and Web Services directly support an RPC style of communication using proxies and
remote objects. But most designs using RPC are not reusable. The communication channel is
tied to application specific remote objects. It can, with some work, be made reusable, as
shown in the next few slides.

• Message-passing can be layered on top of .Net Remoting or web services, as we will show later
in this presentation. This can lead to a very general reusable communication layer.

Peer-To-Peer Architecture

Peer UIForm

Peer UIForm

clientPart

Send thread

ServerPart

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

Main thread

Posts message

clientPart

Send thread

ServerPart

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

main thread

posts message

Remoting Object

Receive Thread

created by Run-Time

system

Send thread created by

client main thread.

Static Collection

Of client

references

Static Collection

Of client

references

A Reusable Communication Structure

Servers use message

IDs or types to figure

out what to do with

each message.

Reusable Communication Channel

 In order to build a reusable communication channel we have to
isolate the channel from application specific code.

 We can do that using what is known as the Abstract Factory
Pattern (discussed in CSE776 – Design Patterns, each summer).

– In this pattern clients of application code can be isolated from the
concrete classes that implement the application by using:

• AbstractApplication class – defines the application interface

• ConcreteApplication class – supplies application functionality

• AbstractFactory class – allows clients to create objects bound to the
abstract application interface.

• ConcreteFactory class – creates instances of application specific classes

Abstract Factory Pattern

Reusable part Reusable part

Client of
Reusable

Component

AbstractFactory

ConcreteFactory

AbstractApplication

ConcreteApplication

CServer

Not affected by
changes to the
Concrete parts.

A Candidate Remoting Architecture

ServerPart
ServerPart

ClientPart

ClientPart
ClientPart

ServerPart

Server Main

Thread

SingleCall

Client Handler
SingleCall

Client Handler

CallHandler
CallHandler

Server does appropriate
file operations and sends
results to its ClientPart to
send back to requestor.

Reusable communication
layer. Passes requestor IP
address so reply can be
sent back.

Static queue so Client
Handler accesses using
Server Class name.

Candidate Web Services Architecture

ServerPart
ServerPart

ClientPart

ClientPart
ClientPart

ServerPart

Server Main

Thread

Web Method

Client Handler
Web Methodl

Client Handler

CallHandler
CallHandler

Web Method

Message Handler

Server does appropriate
operations on message
and sends results to its
ClientPart to send back to
requestor.

Reusable communication
layer. Passes requestor IP
address so reply can be
sent back.

Queue held in Application
server object.

Message Passing Communications

Client Send

Thread

Peer

Client Send

Thread

SingleCall

Remote Obj

Client Main

Thread

Peer

Client Main

Thread

SingleCall

Remote Obj

Peer

Server Main

Thread

Server Send

Thread

Messages

for Unreachable

Clients

SingleCall

Remote ObjSingleCall

Remote Obj

Client Send

Thread

Communication System
supports PostMessage
and GetMessage.

Send Queues may not be
needed if network and
client latency are small
enough.

Rationale

 This design factors server processing into:
– Client Handlers that are independent of other clients, used to post

to a single server queue, made available through a static function.

– A central server part, running on the server’s main thread.

 Use of server main thread input queue requires the use of
messages.
– Calls on the main thread are now deferred until the server gets

around to servicing them.

– Processing is serialized based on messages using a first-come-first-
serve order imposed by the queue.

 This structure is appropriate if clients have to share server state
(that’s not the same thing as sharing files).

 The communication channel can be reusable because Client
Handlers do no application specific processing. They just
enqueue messages to the core server part.

Modified Candidate Server Architecture

ServerPart
ServerPart

ClientPart

ClientPart
ClientPart

ServerPart

Client Handler

Client Handler

CallHandler
CallHandler

Message Handler

runs on

Client Handler

thread

Message Handler

runs on

Client Handler

thread

Static HashTable (remoting) or

Application dictionary (Web Service)

holds references to

MessageHander objects

key is client’s IP address

Reusable communication
layer.

Message Handler does
appropriate operations and
sends results to its
ClientPart to send back to
requestor.

File Handler objects are
created for each
requestor on first call.
References are Stored
with IP address as key.

Client Handlers can find
HashTable because it is
static or in Application.

Rationale

 This design factors server processing into:
– Client Handlers are independent of other clients, used to post to a

client specific queue held in static map or web service Application.

– Message Handlers that are independent of other client requests.

– We will still pass messages to the Server Part. Doing so helps us
keep the communication layer reusable, as all the Client Handler
has to do is to post client messages to its queue. The Message
Handlers are application specific, but are made available through
abstract factory and abstract application interfaces.

– Processing now is fairer, allowing small requests to be served
quickly rather than sitting waiting in a central queue for large
requests to complete.

 This structure is appropriate if clients don’t have to share server
state (that’s not the same thing as sharing files).

Message-Passing

 All communication is via messages rather than function calls.

– Messages are sent via a PostMessage(msg) function call.

• but its purpose is to send the message

• It does not expect a return value nor does it wait for processing to
complete.

– Return values, for this Peer-To-Peer architecture, are sent back
over a separate channel to the requestor’s ServerPart.

– Server-side processing is determined by message contents, not by
which function is called.

– Everything is serialized by first-come-first-serve queues.

– All messages are formed as XML strings.

– File transfer is effected by using Base64 Encoding to convert a
binary file into a text string.

Consequences

 Client/server interface becomes much simpler – it just provides
message passing.

 Now we have to add message parsing and processing.

– A lot of the parsing can be handled by the XML DOM.

 Client and Server are not bound to each other in time.

– Message passing works like email.

• You can send a message whether or not the recipient is listening.

Advantages of Message Passing

 Client and server are decoupled in time.

– Messages are serialized in receive queue(s) and so it is easier to
manage server processing.

– Server can send notifications whenever appropriate.

• If client is running, notifications come whenever server sends them.

• Otherwise, client simply collects pending messages when connecting to
the server.

– For file downloads, client can break connection and allow the
server to send the files whenever it is ready.

• Frees up resources on server and on the client.

 Communication is more reliable.

– If clients are not available, server simply stores messages and lets
client collect them later.

 Communications can be factored into a module and reused.

Performance Data

 On the next two slides find performance data taken for a
message-passing system configured just like the previous page.

– Measurements taken by Poonam Bijlani for her Final Project for
CSE775 – Distributed Objects, Spring 2003.

 You may want to take performance data like this from your own
prototype.

– If you are running out of time, you can extrapolate from this data
and describe how you would measure from a prototype if you had
more time.

Remoting Performance:
Activation vs Message Size

Comparison of 3 methods with 1 client

0

20000

40000

60000

80000

100000

120000

1 2 5 10 25 50 100

Message Size (Kb)

T
im

e
 (

M
ic

ro
S

e
c

o
n

d
s

)

Singleton with 1

client

SingleCall with 1

Client

Client Activated

With 1 Client

Remoting Performance:
Activation vs Number of Users

Comparision of 3 methods with multiple users

 (Message Size = 2Kb)

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8

Number of users

T
im

e
 (

M
ic

ro
s
e
c
o

n
d

s
)

Singleton with

Multiple users

SingleCall with

Multiple Clients

ClientActivated

with Multiple

Clients

End of Presentation

